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This study introduces a boundary element method to solve the three-dimensional problem
of internal tide generation over arbitrary isolated seamounts in a uniformly stratified
finite-depth fluid with background rotation, without assumptions on the size or slope of
the topography. Focusing on linearly propagating waves with small tidal excursions, the
approach employs a vertical mode decomposition to describe the wavefield and the wave
energy flux. We apply the model to the generation of internal tides by a unidirectional
barotropic tide interacting with an axisymmetric Gaussian seamount. We study the
conversion rate and flow field for various topographic configurations. We qualitatively
recover some of the two-dimensional results of Papoutsellis et al. (2023 J. Fluid Mech.
964, A20), and find topographies with weak conversion rates, as discussed by Maas (2011
J. Fluid Mech. 684, 5–24). Furthermore, our results reveal the previously underestimated
influence of the Coriolis frequency on the wavefield and on the spatial distribution of
radiated energy flux. Due to Coriolis effects, the energy fluxes are shifted slightly counter-
clockwise in the northern hemisphere. We explain in detail how this shift increases with
the magnitude of the Coriolis frequency and the topographic features and why such effects
are absent in models based on the weak topography assumption.
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1. Introduction
Internal tides are inertia-gravity waves that propagate within the stratified ocean, generated
by the interaction of barotropic tidal currents with underwater topography (Garrett &
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Kunze 2007; Musgrave et al. 2022). These waves are associated with significant vertical
displacements and represent a major source of baroclinic energy that contributes to the
mixing of the stratified fluid when breaking and dissipating (Munk & Wunsch 1998;
Egbert & Ray 2000, 2001; Whalen et al. 2020). This mixing, in turn, affects global
ocean circulation (Wunsch & Ferrari 2004) and ecosystems through nutrient transport
(Sandstrom & Elliott 1984). However, accurately modelling internal tide dynamics is
challenging due to the complex interactions across a wide range of scales. Global models
typically lack the spatial resolution required to solve these processes explicitly and must
rely on parametric approaches to represent the mixing induced by internal-wave breaking
(MacKinnon et al. 2017). These choices are critical for climate scenarios, as it can
significantly impact the global-scale dynamics (Melet et al. 2013, 2016). Parametrisations
traditionally rely on local energy conversion rates, which correspond to the energy
transmitted from the barotropic tide to the internal waves (St. Laurent, Simmons & Jayne
2002), to represent the contribution of internal tides to mixing near the generation sites.
More recent models describe also the horizontal propagation of internal-wave energy
and various energy sinks (Eden & Olbers 2014; de Lavergne et al. 2019), allowing
for the estimation of the far-field energy dissipation. In this context, the geometry of
energy dissipation is strongly related to local generation maps, highlighting the need for
approaches that accurately capture the variability of internal tide generation.

One widely used framework to estimate the energy conversion rate is referred to as
the weak topography assumption (WTA). This approach assumes that the topographic
height is much smaller than the total fluid depth and that internal waves are subcritical,
i.e. propagate at an angle to the horizontal larger than the topographic slope. These
assumptions allow for the linearisation of the non-penetration condition at the seafloor,
making the problem analytically tractable. Bell (1975a,b) developed the first WTA model
for a semi-infinite ocean, which was later extended to a bounded ocean by Llewellyn
Smith & Young (2002), using the decomposition into vertical modes. Their work provided
estimates of the conversion rate for any three-dimensional (3-D) seamount, which were
used for global calculations of tidal energy conversion, such as those by Nycander (2005),
Green & Nycander (2013) and Falahat et al. (2014).

To extend these results to more realistic cases, several other approaches have been
developed to address the generation of internal tides at supercritical topographies, namely,
when the maximum topographic slope is larger than the angle of internal-wave beams to
the horizontal. These include analytical methods based on the assumption of infinitely
steep topography like the knifeedge or the top-hat barrier (St. Laurent et al. 2003;
Llewellyn Smith & Young 2003; Baines 2007), the body-forcing approach (Baines
1973) later revised and corrected by Garrett & Gerkema (2007), asymptotic expansions
(Balmforth, Ierley & Young 2002) or coupled-mode approaches (Griffiths & Grimshaw
2007; Kelly 2016; Papoutsellis, Mercier & Grisouard 2023); see Garrett & Kunze (2007)
for additional references. Among these, Pétrélis et al. (2006), Echeverri & Peacock (2010)
and Mathur, Carter & Peacock (2016) adapted the boundary element method (BEM),
commonly used in elasticity, acoustics and electromagnetism, for internal tide generation
over topography of various steepness. Their method offers solutions for internal tide
generation over both subcritical and supercritical topographies, but it is restricted to 2-D
ridges.

More recently, efforts have been made to account not only for the conversion rate, but
also for the directional dependence of the baroclinic energy radiated by 3-D topographies.
The work of Llewellyn Smith & Young (2002) first showed that the conversion rate
differs for symmetric and asymmetric 3-D seamounts depending on the orientation of the
barotropic tide, but it did not provide information on the direction of the energy flux.
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This missing information is now discussed in Pollmann et al. (2019), using the same
WTA approach to describe the energy flux direction, emphasising the dependence on the
shape of the topography and the orientation of the barotropic tidal ellipse. This modelling
approach has been applied to the global ocean by Pollmann & Nycander (2023), allowing
us to decompose, in terms of directions, the barotropic-to-baroclinic energy conversion.
However, since it is restricted to the WTA, it leads to invalid results at steep continental
slopes and large seamounts, especially for supercritical cases (Geoffroy, Pollmann &
Nycander 2024). The 3-D modelling at supercritical topographies has first been addressed
using step-like axisymmetric features, the pillbox-shaped seamounts (Baines 2007). The
internal waves radiated resemble the beams radiated at 2-D step topographies, but there
is variation in amplitude and phase with azimuthal angle. Although it is not the focus
of this paper, the author indicates that the direction of maximum flux is not always
aligned with that of the barotropic tide, due to the influence of background rotation.
The boundary integral representation has also been used for 3-D supercritical bodies by
Voisin, Ermanyuk & Flor (2011), Voisin (2021) and Voisin (2024). In this last paper, the
author derives the internal waves generated by translational oscillations of an ellipsoidal
seamount in a semi-infinite non-rotating and uniformly stratified ocean. In particular, he
finds that the conversion rate for the spheroid of length a and height c can be orders
of magnitude lower than its WTA equivalent for large values of the ratio γ = μc/a,
where μ−1 is the slope of the wave beams. He also studies the effects of the anisotropy of
the seamount, which are found to be similar to the ones observed by Llewellyn Smith &
Young (2002), as well as the influence of the orientation of the tidal ellipse with the
major axis of the topography. The studies of Baines (2007) and Voisin (2024) are the only
analytical studies that tackle internal-wave generation for 3-D supercritical topographies,
but both are limited to the infinitely steep slope limit.

The validation of these analytical approaches with observations is often difficult due
to the complex nature of oceanic bathymetry and tidal forcing. Nevertheless, the use
of analytical inputs remain crucial to investigate the internal tide lifecycle in specific
regions (Vic et al. 2018; Waterhouse et al. 2018; Savage, Waterhouse & Kelly 2020).
Better comparisons can be obtained with direct numerical simulations of idealised
scenarios, which indeed confirmed that non-axisymmetric topographies convert more
energy into internal tides (Holloway & Merrifield 1999; Munroe & Lamb 2005), as
discussed earlier. Another important result is that axisymmetric seamounts can generate
waves with asymmetric patterns of energy distribution (Munroe & Lamb 2005), induced
by the background rotation (Coriolis frequency). However, no clear explanation has been
reported. Some specific studies with no background rotation have also focused on the
radiated 3-D internal waves, focusing on weakly nonlinear aspects (King, Zhang &
Swinney 2010) or on the interactions of multiple isolated seamounts (Zhang et al. 2017).

In this study, we address the limitations of past analytical approaches by developing
a boundary element method to solve the 3-D problem of internal tide generation over
an isolated seamount in an ocean with finite depth. In particular, our approach allows
us to account for arbitrary seamount geometries and slopes, by taking into account
the full bottom boundary condition, similarly to the approach developed in 2-D studies
(Echeverri & Peacock 2010). The use of boundary integral equations enables an accurate
representation of the flow field at a reasonable computational cost. We set the problem in
§ 2 before providing the analytical details on how to solve the internal tide generation
problem in three dimensions, based on the Green’s function approach, in § 3. The
properties of the internal tide generated by a linear barotropic forcing over a Gaussian
seamount are presented in detail in § 4, focusing on the influence of the topographic
features on the conversion rate as well as the orientation of the radiated tide (§ 5).
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Figure 1. Schematic of the problem with representations of the first three vertical modes a1, a2, a3 for
constant stratification.

We explain in § 6 the origin of the peculiar azimuthal dependence of the energy flux
radiated, influenced by the background rotation and criticality, before concluding in § 7.

2. Governing equations

2.1. Wave equation
We investigate the internal tides generated by a spatially uniform barotropic tide,
interacting with an isolated seamount of horizontal and vertical scales L and Λ (see
figure 1). For the sake of simplicity, we will consider a rectilinear tide Ũ0 = U0 cos(ωt)ex ,
where ω is the tidal frequency. However, the tide can also be chosen to be elliptical.
The vertical coordinate z is aligned with gravity and increases upward, while ex and ey
represent the horizontal coordinate vectors.

The ocean is modelled as a rotating, incompressible and inviscid layer of finite depth H0.
The seafloor bathymetry is defined by its depth h(x, y). We focus on isolated seamounts,
meaning that h tends to −H0 in all directions. The ocean is stably stratified with mean
density ρ̄0 and background buoyancy frequency N . For the results presented hereafter, the
buoyancy frequency is chosen uniform. However, the method can be extended to more
generic cases with vertically varying stratification N (z) defined between z = −H0 and
z = 0, as done in two dimensions by Mathur et al. (2016). Under the f -plane
approximation, the Coriolis frequency f = 2Ω sin(φ), with Ω the Earth’s angular velocity
is assumed spatially uniform for a given latitude φ.

Velocity, pressure and buoyancy fluctuations (ũ, p̃, b̃) away from the background state
verify the linear Boussinesq inviscid equations

ũ,t − f ṽ = − p̃,x , ṽ,t + f ũ = − p̃,y, w̃,t − b̃ = − p̃,z, (2.1a,b,c)

b̃,t + N 2w̃ = 0 and ũ,x + ṽ,y + w̃,z = 0, (2.1d,e)

where ũ = (ũ, ṽ, w̃) and p̃ refers to the pressure scaled with the reference density ρ̄0 (with
dimensions of velocity squared). Bold characters represent vectors. Commas followed by
subscripts denote partial derivatives (e.g. A,t = ∂ A/∂t).
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We further assume that the waves are monochromatic with frequency ω and we
introduce the complex value A, associated with the real quantity Ã such that

Ã(x, y, z, t) = 1
2

[
A(x, y, z)e−iωt + A∗(x, y, z)eiωt]= Re

[
A(x, y, z)e−iωt], (2.2)

where A∗ denotes complex conjugation. This assumption leads us to the internal-wave
equation for the complex vertical velocity w(x, y, z), namely,(

N 2 − ω2

ω2 − f 2

)
∇2

Hw − w,zz = 0, (2.3)

where ∇2
H = ∂xx + ∂yy is the horizontal Laplacian. We define

μ−1 =
√

ω2 − f 2

N 2 − ω2 , (2.4)

as the slope of the characteristics of the hyperbolic equation (2.3), which corresponds to
the slope of the wave rays.

The problem has a rich parameter space, including length scales H0, L , Λ; frequencies
ω, f , N ; and the velocity U0. Garrett & Kunze (2007) introduce five relevant non-
dimensional numbers. The first three are taken as the frequency ratios

β = f/ω and ζ =N/ω, (2.5)

and the height ratio

δ = Λ

H0
. (2.6)

Of particular interest is the relative steepness ε, defined as the ratio of the maximum slope
of the topography in the direction of the barotropic tide to the internal-wave slope, namely,

ε = μ max (∂x h). (2.7)

This parameter measures the criticality of the topography, with ε < 1 (respectively >1)
corresponding to the subcritical (respectively supercritical) regime. Finally, the last non-
dimensional number is defined as the ratio of the tidal excursion U0/ω to the horizontal
length of the topography L , namely,

α = U0

ωL
. (2.8)

The assumption of small excursion parameter α � 1 allows us to neglect the advective
term U0 · ∇ in the Boussinesq equations (see e.g. Garrett & Kunze 2007 and Bell 1975a,b
for the complete solution). Furthermore, if we assume that u is smaller than, or similar to,
U0, the nonlinear terms u · ∇ can similarly be neglected. These conditions are verified
when the topography is flat enough. As ε increases, beams with increasingly sharp
gradients appear, reaching a singularity when ε = 1. This results in the breakdown of the
linear regime, which can lead to two types of processes: the generation of smaller-scale
internal gravity waves (e.g. higher harmonics, overturning or shear instabilities, parametric
subharmonic instability) with small group velocities that carry a small portion of the
energy flux; and turbulent motions near critical slopes (Gáyen & Sarkar 2011). However,
larger scales remain mostly unaffected by this breakdown. Therefore, it is still reasonable
to explore solutions for steep topography while assuming linearity.
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2.2. Boundary conditions
We consider an ocean with upper and lower horizontal boundaries. We disregard the
motion of the free surface and treat it as a solid surface. Therefore, the velocity field must
satisfy the non-penetration condition at both the bottom and the top boundaries, that is,

w|z=0 = 0 and w|z=h = (U0 + uH ) · ∇H h, (2.9a,b)

where uH = (u, v) is the horizontal velocity, r = (x, y) and ∇H = (∂x , ∂y). The
horizontal boundary conditions are chosen so that there are only waves radiated outwards
as ‖r‖ → ∞.

In the WTA, the topography is assumed to be small and flat, in the sense that δ � 1
and ε � 1. The term uH · ∇H h, of order εw, can thus be neglected in the non-penetration
condition at the seamount (2.9b) and the vertical velocity can be evaluated at the bottom
(z = −H0). Equation (2.9b) then becomes w|z=−H0 = U0 · ∇H h. However, for steeper
topographies, the horizontal velocity uH can be locally larger than, or of the same order
as, the tidal velocity U0, and this approximation is no longer valid. Here, we use the full
boundary condition, in order to more accurately represent larger topographies whatever
the values of the steepness.

2.3. Dimensionless modal equations for constant stratification
In the case of constant stratification N , the slope of the wave beams μ−1 is uniform along
the depth. We introduce the following dimensionless length scales, velocities, pressure and
buoyancy:

[x̂, ŷ] = π[x, y]
μH0

, ẑ = π z

H0
, [û, v̂] = [u, v]

U0
, ŵ = μw

U0
, (2.10)

p̂ = πp

ωU0 H0μ(1 − β2)
, b̂ = μωb

N 2U0
. (2.11)

The asymmetric scaling between the horizontal and vertical directions allows us to
rescale the problem in order to have wave beams with slope 1. In the following sections, all
horizontal lengths, such as the topographic width and the horizontal mesh size, are scaled
by μH0/π , while vertical lengths are scaled using H0/π .

We project the solution onto the vertical modes associated with the stratification N ,
namely, [

ŵ, b̂
]
(x̂, ŷ, ẑ) =

∑[
ŵm, b̂m

]
(x̂, ŷ)am(ẑ), (2.12a)[

û, v̂, p̂
]
(x̂, ŷ, ẑ) =

∑
k̂−1

m

[
ûm, v̂m, p̂m

]
(x̂, ŷ)a′

m(ẑ). (2.12b)

With the scaling (2.10), the modal functions am are determined by the following
eigenproblem:

d2am

dz2 + m2am = 0 with am(0) = am(−π) = 0, (2.13)

where m = k̂m = km(μH0/π) is the dimensionless horizontal wavenumber of mode m.
This leads to: am(ẑ) = sin(mẑ). The first three vertical modes are represented in figure 1.
The orthogonality conditions are∫ 0

−π

sin(nẑ) sin(mẑ) dẑ =
∫ 0

−π

cos(nẑ) cos(mẑ) dẑ =
{ π

2 if m = n,
0 otherwise.

(2.14)
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The Boussinesq equations (2.1) can be rewritten in their dimensionless form, dropping
the hats for simplicity

u − iβv + i
(
1 − β2)p,x = 0, v + iβu + i

(
1 − β2)p,y = 0, w − i p,z = 0,

(2.15a,b,c)
− ib + w = 0 and u,x + v,y + w,z = 0. (2.15d,e)

By projecting onto the vertical modes, i.e. multiplying (2.15a,b,e) by cos(mz) and
(2.15c,d) by sin(mz) and integrating vertically between −π and 0, we obtain the following
modal equations:

um = m−1(wm,x + iβwm,y), vm = m−1(wm,y − iβwm,x ), (2.16a,b)

pm = im−1wm and bm = −iwm . (2.16c,d)

In the following sections, we use dimensionless quantities, but we remove the hats for
simplicity, except in the figures’ axes, legends and captions, where the scaling is fully
detailed.

3. Solution based on Green’s function approach

3.1. Boundary integral equation
We derive an analytical expression for the solution of the problem using the boundary
element method, which represents the topography as a layer of sources with unknown
distribution S(x, y). This method was first used by Pétrélis et al. (2006) to compute
internal tide generation over 2-D topographies. However, their method, using vertical
discretisation, was restricted to symmetric seamounts. Echeverri & Peacock (2010)
extended it to arbitrary 2-D topographies by implementing horizontal discretisation. The
method presented here is an adaptation of their method to 3-D seamounts.

The source term S(x, y) is introduced as a forcing term for the vertical velocity wave
equation

∇2
Hw − w,zz = S. (3.1)

We look for the Green’s function G or fundamental solution of problem (3.1) for a
single source point located at (r ′, h(r ′)) = (x ′, y′, h(x ′, y′)). This function is a solution
of equation

∇2
HG − G,zz = δ(2)(r − r ′)δ(1)(z − h(r ′)), (3.2)

where δ(i) is the Dirac delta function in i-dimensional Cartesian coordinates. We
decompose G into vertical modes, namely,

G(r, z ; r ′, h(r ′)) =
∞∑

m=1

gm(r, r ′) sin(mz). (3.3)

With this decomposition, the solution verifies the non-penetration condition at the top and
bottom boundaries (z = −π and z = 0). Formally, the velocity, pressure and buoyancy
fields are defined for the whole domain, both above and below the topography. The
method thus implies that such a wave solution exists below the topography, which is not
guaranteed, as discussed in Voisin (2021) (see § 6.1), especially in the case of supercritical
seamounts. This is a consequence of the use of the indirect formulation of the boundary
integral equation. However, we find that the direct formulation, as derived in Martin &
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G(r, z; r ′, h(r ′)) =∑∞
m=1

sin(mh(r ′)) sin(mz)

2iπ
H(1)

0 (m‖r − r ′‖),

Gu(r, z ; r ′, h(r ′)) = −∑∞
m=1

(x − x ′) + iβ(y − y′)
2iπ‖r − r ′‖ sin(mh(r ′)) cos(mz)H(1)

1 (m‖r − r ′‖),

Gv(r, z ; r ′, h(r ′)) = −∑∞
m=1

(y − y′) − iβ(x − x ′)
2iπ‖r − r ′‖ sin(mh(r ′)) cos(mz)H(1)

1 (m‖r − r ′‖),

Gp(r, z ; r ′, h(r ′)) =∑∞
m=1

sin(mh(r ′)) cos(mz)

2mπ
H(1)

0 (m‖r − r ′‖),

Gb(r, z ; r ′, h(r ′)) = −∑∞
m=1

sin(mh(r ′)) sin(mz)

2π
H(1)

0 (m‖r − r ′‖).

Table 1. Expression of the Green’s functions for the velocities w, u, v, the pressure p and the buoyancy b.

Llewellyn Smith (2012) and Voisin (2021) and which would avoid this assumption, cannot
be easily applied in this case.

By projecting (3.2) on mode m, we obtain the following Helmholtz equation for the
mode gm :

∇2
H gm + m2gm = 2 sin(mh(r ′))

π
δ(2)(r − r ′). (3.4)

The solution of this equation with outward radiation as r = ‖r‖ → ∞ is given by

gm(r; r ′) = sin(mh(r ′))
2iπ

H(1)
0 (m‖r − r ′‖), (3.5)

with H(1)
0 the Hankel function of the first type and order zero (Couto 2013). Thus, the 3-D

Green’s function can be expressed as

G(r, z; r ′, h(r ′)) =
∞∑

m=1

sin(mh(r ′)) sin(mz)

2iπ
H(1)

0 (m‖r − r ′‖). (3.6)

The vertical velocity field can then be calculated at any point using the convolution

w(x, y, z) =
∫∫

R
G(r, z; r ′, h(r ′))S(r ′) dx ′dy′ = G ∗ S, (3.7)

with R being the domain where the topography is defined, i.e. where the source S is
not zero. Moreover, knowing that the modal horizontal velocity and pressure can be
expressed as function of wn (see (2.16)) and that wn = gn ∗ S, the internal wavefields can
be expressed as convolutions with S, that is,

u = Gu ∗ S, v = Gv ∗ S, p = Gp ∗ S, b = Gb ∗ S. (3.8)

The expressions of the functions Gu , Gv and Gp are detailed in table 1.
Hence, the source distribution S is the only unknown of the problem and has to verify

the condition at the seafloor, which involves both the vertical velocity field w and the
horizontal velocity fields u and v. Using (3.7) and (3.8), the non-penetration condition at
the topography

U0 · ∇H h(r) = w [r, h(r)] − h,x (r)u [r, h(r)] − h,y(r)v [r, h(r)], (3.9)
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can be rewritten as an integral equation problem

U0 · ∇H h(r) =F ∗ S =
∫∫

R
F(r, h(r); r ′, h(r ′))S(r ′) dx ′dy′, (3.10)

where

F = G − h,xGu − h,yGv. (3.11)

Equations (3.7) and (3.8) are valid anywhere outside the seamount surface. To write (3.10),
it is necessary to ensure that the convolution integrals are continuous as the evaluation
point (x, y, z) approaches the topography, as discussed in Martin & Llewellyn Smith
(2012). While a complete analytical proof of this continuity – such as the one outlined
in Brebbia et al. (2012, Chapter 2.3) – eluded us in our configuration, we conducted
a numerical analysis to assess the behaviour of the Green’s function G and its gradient
components Gu and Gv near the surface. In subcritical cases, this analysis showed that all
three functions can be bounded by integrable functions whose integrals over vanishingly
small neighbourhoods around (r ′, z′) tend to zero. This ensures the continuity of the
integrals and validates the boundary integral formulation. However, the same method
cannot be directly applied in supercritical cases, where a singular behaviour is expected
along the critical wave beam (Le Dizès 2024). To the best of our knowledge, a rigorous
proof of continuity in this regime remains an open problem. Despite this, we extended the
method into the supercritical regime. However, we find that the BEM struggles to solve
the problem for large values of ε. We attribute these difficulties to numerical limitations
due to the singular structure of the wave beams, which introduces large numerical errors,
rather than to the continuity issue discussed here. However, we acknowledge that a formal
proof of continuity is still needed and that the results of the BEM for supercritical cases
need to be considered with caution.

To solve the integral problem in (3.10), we discretise the topography into square cells
as shown in figure 1. These cells are denoted as Cij = [xi − Δ/2, xi + Δ/2] × [y j −
Δ/2, y j + Δ/2] in the following, where Δ is the cell side length (see figure 1). We then
assume that S is constant over a cell: ∀r ∈ Cij, S(r) = Sij. This allows us to write

U0 · ∇H h(r) =
∑

ij

Sij

∫∫
Cij

F(r, h(r); r ′, h(r ′)) dx ′dy′. (3.12)

Integrating (3.12) over the cell Ckl, we obtain the following matrix equation:

B = AS, with

{
Bkl =

∫∫
Ckl

U0 · ∇H h(x, y) dx dy,

Aklij =
∫∫

Ckl

∫∫
Cij

F(r, h(r); r ′, h(r ′)) dx dy dx ′dy′.
(3.13)

The function F involves an infinite sum over the vertical modes. In practice, we truncate
the sum at a maximum mode number Ms to compute the matrix A and solve the boundary
integral equation (3.13). Moreover, the function F is a linear combination of the Hankel
functions of the first type H(1)

0 and H(1)
1 , which are both singular at r = 0. To handle this

singularity, we analytically integrate their asymptotic forms.
Details on the computation of the matrix coefficients are given in Appendix A. Equation

(3.13) is then solved numerically using the Generalized minimal residual solver from the
PETSc library.
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3.2. Wavefield and energetics
Once the boundary integral equation (3.10) is solved and the source distribution S
is computed, the convolutions (3.7)–(3.8) can be evaluated to reconstruct the velocity
components u, v, w, the buoyancy b and pressure p at any point (x, y, z) in the domain.

To discuss the solution in terms of energetic considerations, we consider the depth-
integrated time-averaged energy density flux defined as

J̃ =
∫ 0

−π

〈 p̃ũ〉dz = 1
2

∫ 0

−π

Re
(

p∗u
)

dz =
∞∑

m=1

J̃m, (3.14)

where 〈·〉 is the average over a time period and the modal flux J̃m is given by

J̃m = Re
[π

4
p∗

m(r)um(r)
]
. (3.15)

Another quantity of interest for internal tide generation is the energy conversion rate C̃ ,
defined as the integral of the energy flux across a closed cylindrical boundary ∂Ω of height
π around the topography, namely,

C̃ =
∫∫

∂Ω

〈 p̃ũ〉 · er ds =
∫ 2π

0
J̃ · errdθ =

∞∑
m=1

C̃m, (3.16)

where er is the outward normal vector, ds the dimensionless horizontal differential surface
element, (r, θ) represent the horizontal cylindrical coordinates and

C̃m =
∫ 2π

0
J̃m · errdθ (3.17)

is the modal conversion rate. Far away from all sources (r 
 1), the energy flux decays
as 1/r , as discussed hereafter, which means that the conversion rates will be independent
of the distance. Here, the flux J̃ and the conversion rate C̃ are scaled respectively by the
quantities

J0 = ρ̄0U 2
0 μω

(
1 − β2) H2

0
π2 and C0 = ρ̄0U 2

0 μ2ω
(
1 − β2) H3

0
π3 . (3.18)

All of the convolutions (3.7)–(3.8), the energy flux (3.14) and the conversion rate (3.16)
involve infinite sums over the vertical modes. In practice, these series are truncated at
a finite mode number, M f . To compute energy fluxes and for the analysis presented in
§ 6, we use a cutoff M f = M�

f , defined as the smallest mode such that the contribution
CM�

f
represents less than 1 % of the cumulative energy of all the lower modes, i.e.

CM�
f
� 0.01

∑M�
f

m=1 Cm . The values of M�
f , which were found to be independent of β, are

listed in table 2 for the different topographies. They range from 2 to 12, increasing with
ε and decreasing with δ. However, it was observed that using M f = M�

f is insufficient to
accurately reconstruct the velocity field or clearly visualise the wave beams. This can be
explained by the fact that modal amplitudes decay more rapidly with mode number for the
energy flux than for the velocity components. As a result, for visualising the velocity field,
we use an arbitrary value of M f = 20 modes, which ensures that the wave beams are well
defined.

Finally, as done by Pollmann et al. (2019), we are also interested in an asymptotic
expression of the modal energy flux. This asymptotic expression is used in § 6 to compare
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ε δ Ms Δ M�
f ε δ Ms Δ M�

f

0.3 0.3 62 0.0508 2 0.7 0.1 300 0.0082 12
0.4 0.3 150 0.0264 2 0.7 0.2 240 0.0131 7
0.5 0.3 137 0.0229 3 0.7 0.3 160 0.0196 5
0.6 0.3 151 0.0208 4 0.7 0.4 132 0.0238 4
0.7 0.3 160 0.0196 5 0.7 0.5 115 0.0272 3
0.8 0.3 200 0.0286 6 0.7 0.6 96 0.0327 2
0.9 0.3 200 0.0254 7 0.7 0.7 96 0.0327 2
1.1 0.3 750 0.0208 9 0.7 0.8 200 0.0697 2

Table 2. Axisymmetric Gaussian cases, varying the criticality parameter ε for a fixed height ratio δ = 0.3
(left) and varying δ for a fixed ε = 0.7 (right). All cases were tested with five different values of β = f/ω =
{0; 0.1; 0.5; 0.7; 0.9}.

the results obtained by our method and the WTA. First, we write the modal horizontal
velocity in the polar coordinates (r, θ)

um = −i

(
pm,x + iβpm,y

pm,y − iβpm,x

)
(ex ,ey)

= −i

(
pm,r + iβpm,θ /r

pm,θ /r − iβpm,r

)
(er ,eθ )

. (3.19)

Given that pm = im−1gm ∗ S, we can express the modal pressure as

pm = 1
2πm

∫∫
R

σm(r ′)H(1)
0 (m‖r − r ′‖) dx ′dy′, (3.20)

with σm a modal forcing term defined as

σm(r) = sin(mh(r))S(r). (3.21)

Using the asymptotic expansion of the Hankel functions, similar to what is done by
Pollmann et al. (2019) (see their equation (2.23)) but at a higher order of approximation,
we can express the modal pressure at a point (r, θ) far away from all sources as

pm(r) ∼ 1
2πm

√
2

πmr
ei(mr−π/4)

[(
1 − i

8mr

)
fm(θ) + i

gm(θ)

2r

]
, (3.22)

where

fm(θ) ≡
∫∫

σm(r ′)e−imer ·r ′
dx ′dy′ = F[σm](mer )= F[σm](m cos θ, m sin θ), (3.23)

gm(θ) ≡
∫∫

(−ier ) · r ′σm(r ′)e−imer ·r ′
dx ′dy′ = (∂kF[σm])(mer ), (3.24)

where F[σm] is the Fourier transform of the forcing term σm and ∂kF[σm] is the derivative
of the Fourier transform with respect to the wavevector norm k. By definition, fm and gm
are solely functions of the polar coordinate θ via the unit vector er and do not depend on
the radius r , but vary depending on the nature of the topography and the ratio of Coriolis
and tidal frequencies β = f/ω.

We use a similar approach to express the derivatives of the modal pressure. Details of
the calculation are given in Appendix B. This leads to an approximation at O(r−2) of the
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(a) (b)

Figure 2. Source distribution for an axisymmetric Gaussian of parameters δ = 0.3 and ε = 0.7, solved for
Ms = 160 modes: magnitude (a) and phase (b).

modal energy flux

J̃m = 1
8π2m2r

{(
| fm |2(θ) + β

Re
[

f ∗
m(θ) f ′

m(θ)
]

mr
+ Im

[
fm(θ)g∗

m(θ)
]

r

)
er

+
(

β
| fm |2(θ)

2mr
+ Im

[
f ∗
m(θ) f ′

m(θ)
]

mr

)
eθ

}
. (3.25)

This expression shows the leading-order 1/r decay of the energy flux in the far field. The
azimuthal component decreases as 1/r2 and, therefore, far from the generation site, the
flux is mainly radial.

4. Internal tide radiated by Gaussian seamounts

4.1. Examples of subcritical and supercritical seamounts
To validate our boundary integral method and illustrate how topographic criticality
influences both the internal tide field and the numerical performance, we investigate
the internal tide generated by a unidirectional M2 tide along ex over two references
topographies, one subcritical and one supercritical. In both cases, the seamount is
modelled as an axisymmetric Gaussian topography, defined as:

h(x, y) =
⎧⎨
⎩−π + πδe

−‖r‖2

2L2 if |x |, |y|� 3L,

−π otherwise.
(4.1)

We focus first on the subcritical topography with height ratio δ = 0.3 and criticality ε =
0.7. This yields a dimensionless topographic width of L = πδ/(ε

√
e) ≈ 0.82. Rotational

effects are initially neglected by setting β = 0. Using dimensional parameters relevant to
the oceanic context, for example an ocean depth of H0 = 3 km, a tidal frequency ω =
1.4 × 10−4 s−1 and a buoyancy frequency N = 2 × 10−3 s−1, this would correspond to a
dimensional seamount of height 900 m and width 11 113 m.

The topography spans a mesh of 250 × 250 points, resulting in a horizontal mesh size
of Δ ≈ 0.020. Figure 2 displays the source distribution, computed with Ms = 160, with
magnitude and phase represented, respectively, in panels (a) and (b). The magnitude of
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Figure 3. Isocontours of internal-wave vertical velocity field μw/U0 = ±0.37 generated by a unidirectional
tide over a subcritical Gaussian topography with δ = 0.3 and ε = 0.7, reconstructed with M f = 20 modes. The
blue and yellow panels correspond, respectively, to the vertical and horizontal slices shown in figure 4.

the source distribution varies continuously between values of the order [0.1 − 10] except
for a specific line at x = 0 and along specific circular ones, where very weak amplitudes are
observed (‖S‖ < 10−3). The regions separated by these lines display changes in sign of the
phase distribution. Increasing the maximum number of modes to compute S leads to the
appearance of finer length scales in the source distribution but does not cause significant
differences in the wavefield presented below.

Figure 3 shows the isocontours w = ±0.37 of the wave’s vertical velocity, obtained
from (3.7) using the previously shown source distribution. As discussed previously, the
wavefield is reconstructed with the first 20 modes. Notably, we observe the conical
structure of the wave beams, as expected for 3-D internal-wave generation. The beams
then reflect at the top and bottom boundaries as they propagate away from the topography.
Figure 4(a) shows horizontal and vertical slices of the vertical velocity field, at z = −1
and y = 0. We note the symmetry about the x-axis, consistent with the unidirectional
nature of the tide and the axisymmetry of the topography. The amplitude of the vertical
velocity is maximised along the direction of the tide. Moving azimuthally away from this
axis, the amplitude progressively decays, reaching zero on the y-axis, perpendicular to the
generating tide.

The method also allows us to compute a solution for the internal tide field for
supercritical cases. However, as mentioned in the previous section, the solver fails to
converge for large values of ε. Because of this, we restrict our analysis to ε < 1.1. Larger
values may require numerical adaptations to better handle singularities at critical points.

Figure 4(b) shows the horizontal and vertical slices of the vertical velocity field for the
case δ = 0.3 and ε = 1.1, reconstructed using the first 20 modes. The horizontal slices
shown in the top panels appear qualitatively similar for both subcritical and supercritical
topographies. In both cases, we observe radially radiating rings with azimuthal amplitude
modulation. However, the vertical slices in the bottom panels reveal that the wave beams
are narrower in the supercritical case and reach a maximum amplitude of 3.9 (saturated in
the colour bar) roughly 3.5 times larger than in the subcritical case. This large amplitude
comes from the singular nature of the wave beam in supercritical cases. Although, here,
the use of a finite number of modes (M f ) regularises the solution and smooths out
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Figure 4. Internal-wave vertical velocity field μw/U0 reconstructed with M f = 20 for (a) a subcritical
topography (δ = 0.3, ε = 0.7) and (b) a supercritical topography (δ = 0.3, ε = 1.1). The top orange panels
represents horizontal slices at π z/H0 = −1.0, and the bottom blue panels vertical slices at πy/(μH0) = 0. For
the case (b), the colour bar is saturated at ±2.0, while the true extrema are ±3.9.
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Figure 5. Energy conversion rate for the first 20 modes for a subcritical (black, ε = 0.7) and supercritical
topography (grey, ε = 1.1): (a) fraction Cm going into each mode m, normalised by C0, with decay rates
represented by the dashed lines: 3 m−6 in black and 500 m−3 in grey ; (b) cumulative sum up to mode M f

scaled by model predictions: Cmodel = CWTA (subcritical) and Cmodel = CVoisin (supercritical).

the singularity. Additionally, we observe in figure 4(b) an oscillating signal with small
wavelength near the centre of the topography in (x, y) = (0, 0), which we interpret as a
Gibbs phenomenon.

For further analysis, we compute for both topographies the modal energy conversion
rate Cm going into mode m, as shown in figure 5(a). In both regimes, the energy is
concentrated in the first 10 modes and decreases with mode number from m = 2 onward.
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In the subcritical case, mode 1 dominates. However, for the supercritical case, this is no
longer the case and the energy content appears to decrease more slowly with mode number
than for the subcritical case. The black and grey dashed lines are indication for the rates of
decay, which are proportional to m−6 for the subcritical case and m−3 for the supercritical
case. Similar results for subcritical and supercritical cases were previously observed in two
dimensions by Papoutsellis et al. (2023) (see their figure 3a). Additionally, we compute
the global conversion rate defined as the cumulative sum of the modal components Cm
up to mode m = M f . Figure 5(b) displays this quantity scaled by a reference value Cmodel
as a function of the maximum mode number M f . For the subcritical case, we use the
WTA estimate as a reference for the axisymmetric Gaussian in a finite-depth ocean from
Llewellyn Smith & Young (2002), computed over the first 20 modes

CWTA = π3

2
δ2L4

20∑
m=1

CWTA
m , with CWTA

m = m2 exp
(−m2 L̂2), (4.2)

where CWTA and CWTA
m are scaled by C0 and L by μH0/π . Using δ = 0.3 and ε = 0.7

(i.e. L ≈ 0.82), this yields CWTA ≈ 0.505. For the supercritical seamount, we compare our
estimate with the value from Voisin (2024) for an equivalent spheroid in an infinite ocean.
As discussed by this author, the equivalent spheroid has the same height Γ and a radius
given by d = 3/(2

√
π) × L ≈ 0.846 L . We compute the conversion rate using (5.6) and

(5.7) from that reference with γ ′
v = μΛ/d ≈ 2.143, which yields CVoisin ≈ 0.104. In both

cases, the conversion increases with M f and reaches a plateau at a certain threshold: M�
f =

5 (subcritical) and M�
f = 9 (supercritical). For the subcritical case, the WTA provides a

good estimate, with a relative error around 5 % that can be attributed to convergence errors
(see Appendix C). In the supercritical case, however, Voisin’s estimate for an equivalent
spheroid underpredicts the conversion by a factor of 2.5. Finite-depth effects are unlikely
to explain this discrepancy, as the topography is small enough for the reflected beams not
to re-interact with the topography. Instead, we believe that the difference in shape between
the Gaussian and the ellipsoid accounts for the higher conversion rate observed with our
model.

We verified that the results presented above are converged with respect to mesh size,
mode truncation and domain extent, with a relative error lower than 5 %. A detailed
convergence analysis is provided in Appendix C. We find that the convergence behaviour
with mesh size is similar in both regimes. However, the number of modes Ms required
to reach convergence for the supercritical case is significantly higher. Specifically, the
convergence rate scales approximately as M−3/2

s in the subcritical case and as M−3/4
s

in the supercritical case, indicating slower convergence in the latter. This increased modal
requirement might partially explain the numerical difficulties encountered for larger values
of ε, as resolving the singular beam structure necessitates a larger number of vertical
modes.

4.2. Energy conversion rate
We now evaluate the energy conversion rate C , computed using the first 20 modes, for a
series of Gaussian topographies with different values of height ratio δ, relative steepness ε

and ratio β = f/ω.
For each pair (δ, ε), we examine multiple values of β = f/ω ranging from 0 to 1.

Negative values of β, corresponding to latitudes in the southern hemisphere, were also
tested but display a north/south symmetry with the corresponding positive β and are
therefore not shown here. To maintain a fixed criticality ε for each β, the characteristic
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Figure 6. Evolution of the dimensionless energy conversion rate C/C0 (computed using the first 20 modes)
with the criticality parameter ε for δ = 0.3 (a) and with the height ratio δ for ε = 0.7 (b). The black dashed
lines correspond to the value given by the WTA prediction for a Gaussian topography.

width L of the Gaussian is adapted according to L = μH0δ/(ε
√

e). All tested cases
are summarised in table 2. The grid cell size Δ and maximum mode number Ms
were selected to balance computational efficiency with numerical accuracy, following
the guidelines discussed in Appendix C. For each configuration, we systematically test
multiple values Ms and retain the lowest value that ensures convergence of the total energy
conversion rate to within 3 % relative error. The mesh resolution, however, is limited by
numerical constraints. The associated error is estimated by extrapolation from the detailed
convergence studies in Appendix C. Across all cases considered, the coarsest mesh
corresponds to Δ = 0.0697, which yields a maximum relative error on the conversion rate
of approximately 5 %.

Figure 6(a) shows the variation of C with ε for a Gaussian seamount with a given height
δ = 0.3, the colours of the symbol reflecting the values of the ratio β = f/ω. The black
solid line corresponds to the WTA estimate, defined in (4.2). As discussed in Papoutsellis
et al. (2023) (see their figure 6), energy conversion rates are in good agreement with the
WTA when 0.5 � ε � 0.9 for a Gaussian topography with δ = 0.3. When the topography
becomes supercritical ε � 1, both our model and theirs deviate smoothly from the WTA.
However, a stronger and more abrupt deviation is observed for ε � 0.4. This corresponds
to configurations where a beam emanates from one side of the seamount, propagates up
and towards the centre, reflects at the top and interacts with the other side of the seamount.

Similarly, figure 6(b) shows the evolution of C with δ for a Gaussian with ε = 0.7
and varying values of β. As predicted by Papoutsellis et al. (2023), we observe a strong
deviation from the WTA estimate for δ � 0.6 for a fixed ε = 0.7. The deviation is related
to instances of weakly radiating topographies, where the radiated flux is several orders
of magnitude smaller than the WTA estimate, for example the cases (δ = 0.7, ε = 0.7)

and (δ = 0.8, ε = 0.7). This occurs when opposite sides of the seamount emit waves that
interact with each other in a destructive manner (see figure 7). This phenomenon was
previously described in two dimensions (Pétrélis et al. 2006; Maas 2011; Papoutsellis et al.
2023; Geoffroy et al. 2024), but to our knowledge, it has not been previously documented
in 3-D cases.

The Coriolis frequency appears to have only a minor effect on the conversion rate
for topographies well described by the WTA. However, this effect is non-monotonic.
The conversion rate increases with β = f/ω for small ε and large δ, while it decreases
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Figure 7. Weakly radiating topography (δ = 0.7, ε = 0.7): (a) vertical slice of vertical velocity (with
M f = 20) and (b) horizontal mapping of the vertically integrated energy flux J̃ reconstructed with M�

f = 2
modes.

with β for larger ε and smaller δ. This non-trivial effect of β on the conversion rate was
observed by Baines (2007, see their figure 7) for a cylindrical pillbox of height hm and
radius a, in the limit of high aω/N H0. However, this limit cannot be directly accessed
in our case, as the pillbox has an infinite slope, which gives ε = ∞. For a Gaussian,
taking the limit ε → ∞ for a given δ leads to a = L = 0. Moreover, it is interesting
to note that the weak radiation phenomenon seems robust to variations of the Coriolis
frequency.

In the rest of this study, we focus on the impact of β on the wavefield patterns and on the
directivity of the energy flux. To ensure reliable analysis, we restrict our study to radiative
topographies, as weakly radiating cases exhibit energy flux levels comparable to numerical
noise, leading to significant uncertainties.

5. Influence of the Coriolis frequency
As discussed in the previous section, the Coriolis frequency only has a limited effect on
the overall energy conversion rate. However, its impact on the velocity field patterns as
well as on the spatial distribution and direction of the energy flux, is significant.

5.1. Velocity patterns
Figure 8 presents horizontal slices of the velocity components w (a), u (b) and v (c) at
depth z = −1, computed for an axisymmetric Gaussian seamount with (δ = 0.3, ε = 0.7).
These fields are reconstructed by summing the contributions of the first 20 vertical modes.
The panels from left to right show the effect of increasing the non-dimensional Coriolis
parameter β from 0 to 0.9. In the non-rotating case (β = 0), the vertical velocity w

in the upper-left panel exhibits a pattern of concentric waves radiating outward from
the topography, with an anti-symmetry about the x-axis, as described in the previous
section. However, as β increases, a distinct spiralling pattern emerges in the wavefield.
This effect is most pronounced in the horizontal velocity components u and v. Similar
spiral structures were previously identified by Munroe & Lamb (2005, see their figure 3)
as a consequence of the rotation, for a supercritical asymmetric Gaussian with horizontal
aspect ratio Lx/L y = 0.7, where Lx and L y are the characteristic length scales in the
x- and y-directions.
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Figure 8. Horizontal slices at π z/H0 = −1.0 of the dimensionless vertical (a) and horizontal (b,c) velocity
field generated by a uni-directional tide on a axisymmetric Gaussian with δ = 0.3 and ε = 0.7 for different
values of β = 0; 0.5; 0.9, increasing from left to right. The wavefield is reconstructed using M f = 20 modes.

5.2. Energy fluxes
Figure 9(a) displays the depth-integrated energy fluxes generated for the same Gaussian
topography (δ = 0.3, ε = 0.7) and increasing values of β = 0, 0.5 and 0.9. The flux is
computed using the first five modes, which together account for approximately 99 % of
the total flux (see table 2). When β = 0, the energy flux is symmetric about the x-axis
and propagates radially outward in two dominant lobes on each side of the topography
for positive and negative x . The radiation is strongest along the x-axis, while the y-axis
exhibits minimal flux. As β increases, the flux field becomes increasingly asymmetric. An
azimuthal component emerges, strongest near the seamount and decaying with distance.
This component also increases with β, resulting in a flux that is no longer purely
radial. Moreover, the dominant lobes are progressively rotated counter-clockwise with
increasing β. This means that the most intense fluxes are no longer aligned with the
direction of the barotropic tide, i.e. the x-axis, but appear sightly deviated.

To quantify this behaviour, we introduce the deviation angle θmax(r), defined as the
azimuthal angle at which the radial component of the energy flux reaches its maximum
for a given distance r from the seamount. The locations (r, θmax(r)), tracked for each lobe,
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Figure 9. Energy density flux generated by an uni-directional tide on an axisymmetric Gaussian with δ = 0.3
and ε = 0.7 using our model (a) and the WTA (b) for different values of β, increasing from left to right. The
hatched region corresponds to the region closed to the seamount, for which the asymptotic expression is not
valid. The flux is calculated by summation of the first modes up until M�

f = 5. The dashed lines represent the
locations of the maximum radial flux for a given radius.

are represented by the dashed lines in figure 9. In the following, we only focus on the right
side of the topography (x > 0), for which θmax ∈ [−π/2, π/2]. The energy fluxes maps
and specific deviations obtained with our model are compared with the WTA prediction
in the following section, using the asymptotic expression of the energy flux developed
in § 3.2.

5.3. Revisiting the WTA case
Previous studies by Llewellyn Smith & Young (2002) and later Pollmann et al. (2019)
derived analytical solutions for internal tide generation in the hydrostatic limit under
the WTA (see equation 2.19 of Pollmann et al. 2019). By extending their results to the
non-hydrostatic case and using our dimensionless values, we can apply their approach to
express the far-field energy flux as done in § 3.2, using the modified forcing term (see
(3.21)) defined by

σWTA
m = (−1)mm U0 · ∇H h(r). (5.1)

Figure 10 compares their mode-1 forcing terms σWTA
1 with σ1 from our model, obtained

for a unidirectional tide along ex over an axisymmetric Gaussian topography with δ = 0.3,
ε = 0.7 and increasing values of β = 0, 0.5 and 0.9. As is visible in the upper panels,
the two models exhibit very different forcing terms with larger values of the amplitude
in our case, and a different spatial distribution. In the WTA, the amplitude peaks along
the flanks of the seamount where the slopes are the steepest. In contrast, our model
predicts stronger amplitude near the summit, with concentric modulations and rings of
zero forcing. The lower panels represent the phase distribution. The WTA produces two
phase values, 0 and π , representing an anti-symmetry between the left and right sides of
the topography. Our model instead exhibits a rich phase structure displaying concentric
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Figure 10. Forcing term σ1 for the WTA (a) and our model for an axisymmetric Gaussian topography with
δ = 0.3, ε = 0.7 and different values of β: (b) β = 0; (c) β = 0.5 and (d) β = 0.9. The top panels show the
amplitudes and the bottom panels the phase distribution.

rings that are correlated to the modulations observed for the amplitude. For β = 0, each
concentric ring displays as well a π-shift across the y-axis. Increasing β disrupts this anti-
symmetry. In particular, the phase distribution features partial azimuthal shifts that depend
on the distance from the centre of the topography. This is not accounted for by the WTA,
for which the source term does not depend on β.

From the WTA forcing term in (5.1), we derive analytical expressions for the functions

f WTA
m (θ) = ςm cos(θ) and gWTA

m (θ) = ξm cos(θ), (5.2)

with ςm = −i(−1)mm2 F[h](mer ) and ξm = −i(−1)mm (1 − m2L2)F[h](mer ). These
coefficients are imaginary constants for a given mode m in the case of an axisymmetric
topography. In practice, the topography is defined as a Gaussian seamount truncated using
a square window of side length 6L (see (4.1)). The topography is thus not rigorously
axisymmetric. However, we expect the effects of the truncation to induce an angular
dependence of the coefficients only for the higher modes. In this context, the WTA modal
flux is given by

J̃WTA
m = |ςm |2

8π2m2r
cos2(θ)

{(
1 − β tan(θ)

mr

)
er + β

2mr
eθ

}
. (5.3)

An interesting observation is that, at O(1/r2), the flux is not purely radial but has an
azimuthal component proportional to β.

Figure 9(b) displays the total energy flux, calculated using (5.3) for the first five modes.
The expression is applied only far enough away from the seamount centre, i.e. outside of
the hatched region. While the amplitudes appear similar to that of our model, the direction
and spatial distribution differ significantly. In particular, the direction of maximum radial
flux, materialised by the dashed lines, occurs at negative angles. From (5.3), we derive the
corresponding deviation angle

θWTA
max (r) ∼ − β

2χr
, with χ =

∑
m−2|ςm |2∑
m−3|ςm |2 . (5.4)
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Figure 11. (a) Radial flux along the azimuthal coordinate θ at different values of r , and different values of β.
The solid lines represent (6.1), summing up to M�

f = 5. (b) Direction of the maximum radial flux θmax as a
function of the inverse radii 1/r (symbols ‘+’), with the least-squares linear fit materialised by the dashed
lines. The symbols ‘•’ are the deviations θ∞ given by the asymptotic expression.

This implies that the angular deviation in the WTA decays like 1/r and vanishes in the far
field (r → ∞).

These effects were not accounted for in the WTA framework used by Pollmann et al.
(2019), who considered only the leading-order O(1/r) terms for which the flux remains
radial and symmetric about the x-axis.

6. Deviation of the energy fluxes

6.1. Direction of the maximum radial flux
To characterise the deviation of the energy fluxes predicted by our model, we investigate
how the angles θmax at which the radial flux is maximum, evolve with the distance r and
the Coriolis parameter β.

To do so, we plot in figure 11(a) the radial component of the energy flux as a function
of the azimuthal angle θ for different r and β. The fluxes are here computed using the
first five modes via (3.14). For each configuration, we identify the angle θmax of maximum
radial flux and plot the values in figure 11(b) as a function of the inverse radius 1/r . The
near linear trend, materialised by the dashed lines using a least squares, indicates that the
deviations increase with distance. However, contrary to the WTA model, the angles θmax
in our model are positive and increase with β. Moreover, extrapolation shows that the
deviation does not vanish as r → ∞, but instead converges to a finite positive value θ∞.

To estimate this far-field limit θ∞ accurately, we use the asymptotic expression
from (3.25). At O(1/r), the energy flux is radial and its radial component can be
approximated by

(r J̃r )∞ = 1
8π2

(∑
m

| fm |2(θ)

m2

)
. (6.1)

The azimuthal dependence is given by the functions | fm |2(θ) = |F[σm](n cos θ, n sin θ)|2.
We compute (r J̃r )∞ numerically up to M�

f modes. This ensures that we accurately
represent the energy content of the internal waves, but avoid introducing spurious noise
due to higher modes. Moreover, we extend the source terms σm outside of the domain
where the topography is defined, using zero padding up to 60L , before computing the
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Figure 12. Evolution of the deviation angles θ∞ for which the radial flux at infinity is maximal, with β, ε and δ.
(a) The height ratio of the topography is kept at δ = 0.3 and the criticality parameter ε is varied; (b) δ is varied,
while ε is kept constant at ε = 0.7.

Fourier transform F[σm](mer ). We then interpolate the function (r J̃r )∞(θ) between −π/2
and π/2 to locate its maximum. This function is plotted for a few values of β in figure 11(a)
using solid lines. Finally, we measure the far-field deviation angles θ∞ for which the
maximum is reached and plot the values as the ‘•’ symbols along the y-axis in figure 11(b).

The results confirm that our model predicts persistent positive deviation angles in the
far field, which increase with β, in contrast to the WTA for which the deviation vanished
in the far field. This discrepancy is a direct consequence of the introduction of nonlinear
terms in the boundary condition at the seafloor (2.9b). Adding the horizontal velocity
components u and v breaks the symmetry and leads to the observed asymmetric spatial
distribution in the flux field. As the Coriolis force increases, the radiated energy pattern
rotates counter-clockwise, shifting the direction of maximum radiation away from the axis
of the barotropic tide. This effect has also been observed by Baines (2007) (see figure 17b)
for the pillbox topography. This author found that, when β = 0, the direction of maximum
flux aligns with that of the barotropic tide (θ = 0), with minima at θ = ±π/2. However,
as β increases, this direction moves to positive angles, and for mode-1 waves, it may reach
values in excess of 1 rad close to the limit β = 1.

6.2. Parametric dependence of the far-field deviation angle
Figure 12 explores how the far-field deviation angle θ∞ evolves with β and the
topography’s geometric properties (δ, ε). Panel (a) presents θ∞ as a function of β and ε

for a fixed δ = 0.3. The deviation increases linearly with β, with a stronger effect for
seamounts with larger values of steepness ε. For smaller values of ε, the deviation
converges towards zero, consistent with the WTA prediction. In the inset of figure 12(a),
the data collapse on a single linear trend

θ∞ ∼ β ε

2
. (6.2)

As shown in figure 12(b), there is no visible influence of the height ratio δ on the deviation
angle for values smaller than 0.5, and the results can be fitted with the linear trend given
by (6.2). For higher values of δ, namely, 0.6, 0.7 and 0.8, the left and right sides of the
topography interact with each other, giving a more complex spatial distribution and very
small values of the conversion rate, as discussed in § 4. We leave these cases to future
investigations.
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It is important to note that this result is specific to axisymmetric topographies. For
elongated topographies (not shown here), we verified that the deviation of the energy flux
with the Coriolis frequency is significantly reduced and the orientation between the tidal
forcing and the topography’s major axis governs the angular dependence of the energy
flux radiated, as discussed in § 1.

7. Conclusion and perspectives
This study presents a novel 3-D analytical model for internal tide generation over isolated
topographies, extending previous theoretical approaches based on the WTA (Llewellyn
Smith & Young 2002; Pollmann et al. 2019) by removing restrictions on the height and
the slope of the topography. Our method generalises the 2-D boundary element method of
Echeverri & Peacock (2010) to 3-D cases. It assumes linearly propagating inviscid waves
that verify the Boussinesq approximation and uses the decomposition into vertical modes
to calculate the wavefield. The solution of the problem is obtained by solving the fully
nonlinear boundary condition at the seafloor (recall 2.9b), which is a noticeable difference
from past studies. The model is implemented using a discrete boundary element method
on a regular Cartesian grid. It provides a full 3-D solution to the internal tide generation
problem for arbitrary seamounts. In particular, the method offers a description of the
various components of the wavefield, as well as energy conversion for both subcritical and
supercritical seamounts. However, the supercritical regime presents significant numerical
challenges. In this case, the internal-wave beams are singular and a large number of vertical
modes are required to accurately capture the velocity fields, thus increasing computational
cost. Moreover, for large values of the criticality parameter ε, the solver fails to converge,
and no solution is obtained. As a result, our analysis is restricted to cases with ε � 1.1.
We attribute these difficulties to numerical limitations in the computation of the matrix
coefficients. To be able to solve the problem for seamounts with larger ε, the method
would need to be adapted, in order to better handle the singularities at critical points.

Focusing on the internal tide generated by a rectilinear barotropic flow on axisymmetric
Gaussian topographies, we compute the energy conversion rates obtained for different
values of the topographic height and steepness. In the range of values considered for the
steepness ratio 0.3 � ε � 1.1 and the height ratio 0.1 � δ � 0.8, we find that the WTA
model overestimates the conversion rates for large topographies (ε = 0.7 and δ � 0.5),
and more surprisingly, also for some relatively small and flat topographies (δ = 0.3;
ε = 0.3). For both cases, this is due to destructive interferences of waves generated from
the opposite flanks of the seamounts, in the direction of the tide. Similar observations
regarding the range of validity of the WTA model in two dimensions have been obtained
by Papoutsellis et al. (2023) using a coupled-mode approach. This phenomenon is thought
to be relevant for a range of oceanic seamounts. In particular, prominent features with
relatively gentle slopes – such as the Batavia Rise (25.67◦ S, 100.5◦ E), the Magellan
Rise (7◦ N, 177◦ W) or the Ninety-East Ridge (90◦ E) – are potentially subject to such
interference effects. The Ninety-East Ridge in the Indian Ocean has been shown to emit
relatively weak internal tide energy through satellite altimetry (Zhao et al. 2016), which
may be partially attributed to this mechanism. We also provide a crude estimate of
the conversion rate for the Batavia Rise. By fitting an axisymmetric Gaussian to this
seamount, we find ε ≈ 0.4 and δ ≈ 0.6. These values were obtained by taking a Brunt–
Vaisälä frequency of N 2 = 1.25 × 10−6 s−2, which corresponds to an average over the
vertical extent of the seamount, based on the salinity and temperature profiles from NOAA
World Ocean Atlas 2023 (Reagan et al. 2024). The M2 barotropic tide is assumed to be
rectilinear, with components derived from the inverse model of Egbert & Erofeeva (2002)
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(version TPXO10), i.e. U0 = (U0, V0)e−iωt with U0 = 0.21 cm s−1, V0 = −0.96 cm s−1

and ω = 1.4 × 10−4 s−1 for the M2 tide. Under the WTA, the predicted conversion rate
is 3 × 105 W, while our model yields 1.8 × 104 W, indicating a reduction of approximately
95 % relative to the WTA estimate.

More surprisingly, our computations have shown for the first time the possible existence
of non-radiating 3-D topographies, analogous to the 2-D configuration described by Maas
(2011). While our model does not yield strictly zero radiation in the cases presented
here, it would be interesting to compute the conversion rate for the 3-D equivalent of
the non-radiating ridge from Maas (2011), or to investigate in more details the values
of the parameter space (ε, δ). In particular, an open question is whether specific 3-D
topographies can lead to minimal conversion rates, as reported in two dimensions by
Papoutsellis et al. (2023). If so, a natural extension would be to develop predictive criteria
for these minima.

In addition, we investigate the influence of the Coriolis frequency, via the parameter
β on the internal tide generation. While rotation has little effect on the global conversion
rate, we find that it significantly alters the spatial structure of the wavefield and energy flux,
a result that had been previously noticed (Holloway & Merrifield 1999; Munroe & Lamb
2005; Baines 2007) but not described in detail. In particular, we observe an asymmetric
distribution of the energy fluxes. In the Northern Hemisphere (where f > 0), the energy
is radiated preferentially in a direction that is not aligned with the tidal forcing direction,
but deviated counter-clockwise. We discuss how this deviation increases with both β and
the criticality parameter ε, and find that the far-field deviation angle θ∞ can be described
by θ∞ = βε/2. The height ratio δ has a weaker influence, except in regimes where the
topography becomes tall enough for the waves radiated from the left and right flanks to
interact. The direction of the energy fluxes in these cases was not investigated here, as the
radiated energy is significantly reduced. The deviation of the energy propagation observed
with our model originates from taking into consideration the fully nonlinear boundary
condition against the topography (recall 2.9b). This effect is not captured by the previous
WTA model of Pollmann et al. (2019), which derives an asymptotic expression of the
energy flux at O(1/r). By expanding this asymptotic derivation at O(1/r2), we showed
that the WTA does predict a small deviation, but only close enough to the topography. We
believe that this effect of the Coriolis frequency on the energy flux direction could have
an importance in the ocean, especially given the increasing interest of the oceanography
community on the direction of internal tide energy fluxes in order to predict wave–wave
interactions (Eden & Olbers 2014; Pollmann & Nycander 2023). However, the discussion
provided here, as well as the empirical law for θ∞, does not account for the influence of
non-axisymmetric topographies nor the ellipticity of the barotropic tide, whose effect on
the direction remains unknown. This could be the subject of a specific study.

Overall, our model offers an alternative approach to direct computational methods
(Arbic et al. 2018) for solving the full 3-D problem for internal tide radiation. It opens the
door to exploring more complex scenarios that go beyond the scope of this study, such as
more realistic tidal forcing and bathymetry, non-radiative topographies or 3-D attractors.
Even though the current work is limited to uniform stratification, it can be extended
to vertically varying stratification which will allow comparisons with realistic oceanic
scenarios. The case of horizontally varying stratification cannot, however, be treated using
this method. Finally, upon abandoning the WTA approximation, we find a significant
influence on the Coriolis frequency on both the near- and far-field wavefields and energy
flux distributions. Considering the nonlinear boundary condition at the seafloor could be
of similar importance for other problems dealing with 3-D inertial/internal-wave problems
involving topographies, such as lee-wave generation or topographic wave scattering.
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Appendix A. Matrix coefficients
The topography is discretised using square cells Cij = [xi − Δ/2, xi + Δ/2] × [y j −
Δ/2, y j + Δ/2], where Δ is the cell side length. The boundary element method amounts
to solving the matrix equation

B = AS, with

{
Bkl =

∫∫
Ckl

U0 · ∇H h(x, y) dx dy,

Aklij =
∫∫
Ckl

∫∫
Cij

F(r, h(r); r ′, h(r ′)) dx dy dx ′dy′. (A1)

Here, the kernel function F involves an infinite sum on the vertical modes. In practice,
we truncate this sum at a maximum mode number Ms . The full expression of Aklij with
truncation at the mode Ms is given below

Aklij =
Ms∑

m=1

Am
klij =

Ms∑
m=1

∫∫
Ckl

∫∫
Cij

sin(mh(r ′))
2iπ

(
sin(mh(r))H(1)

0 (m‖r − r ′‖)

+ h,x (r)
(x − x ′) + iβ(y − y′)

‖r − r ′‖ cos(mh(r))H(1)
1 (m‖r − r ′‖)

+h,y(r)
(y − y′) − iβ(x − x ′)

‖r − r ′‖ cos(mh(r))H(1)
1 (m‖r − r ′‖)

)
dxdydx ′dy′.

(A2)
Each coefficient involves the Hankel functions of the first type H(1)

0 and H(1)
1 . These

functions have an oscillatory behaviour at infinity and exhibit singularities at 0 in their
imaginary part. Their expansion close to 0 is given by

H(1)
ν (z) =

⎧⎪⎪⎨
⎪⎪⎩

1 + 2i

π

(
ln

( z

2

)
+ γ

)
+ o(1) if ν = 0,

− 2i

π z
+ o(1) if ν = 1.

(A3)

In our case, there is integration of the singularity when m‖r − r ′‖ = 0, which occurs
when the cells Ckl and Cij are overlapping, i.e. Ckl = Cij. This corresponds to the diagonal
terms (i, j) = (k, l). To deal with this singularity, as well as the oscillatory behaviour, we
develop computation methods that are specific to diagonal and extra-diagonal terms.
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A.1. Different cells
This case corresponds to all extra-diagonal terms of the matrix A. We define rkl = (xk, yl)

and r ij = (xi , y j ) as the centres of the cells Ckl and Cij, dklij = ‖rkl − r ij‖ as the distance
between those centres and Δ as the cell size of the regular grid.

When the mode m is small enough (m� � 1), we can approximate the value of one
mode in the sum by its value at the centres of the cells. In practice, we define a small τ

such that if m� < τ , we use the values at the centres of the cells.
However, when m becomes large (m� > τ ), the Hankel kernels H(1)

0 (m‖r − r ′‖) and
H(1)

1 (m‖r − r ′‖), as well as the eigenfunction am , can become highly oscillatory. To
deal with these oscillations, we adapt the numerical method from Wu & Sun (2022). In
particular, we transform the Hankel function H(1)

ν into the following improper integral (see
their (2.3) and (2.4)).

For m > 0, −(π/2) < arg x < (3π/2) and Re(ν) > −1/2

H(1)
ν (mx) = 2√

π

e−i
(

π
2 ν+ π

4

)
Γ (ν + 0.5)

(
1

2mx

)ν

eimx Iν(mx), (A4)

where

Iν(mx) =
∫ ∞

0
(2mx + iy)ν−0.5 yν−0.5e−ydy. (A5)

The advantage of this method is to separate the Hankel function into an oscillatory part
with a slowly varying part Iν . We then replace in the expression of the matrix coefficient
for the mode m and we approximate the non-oscillatory parts by their value at the centres
of the cells. For the oscillatory functions, we assume that the slope of the topography is
constant over a cell

h(r) = hkl + hkl,x x + hkl,y y, (A6)

with hkl, hkl,x and hkl,y are the values of the topography and its derivatives at the centre
of the cell and (x, y) = r − rkl. Moreover, we write

‖r − r ′‖ ∼ dklij + (xkl − xij)

dklij
(x − x ′) + (ykl − yij)

dklij
(y − y′). (A7)

This leads to

Am
klij =

e−i
(

mdklij+ π
4

)
iπ2

[
I0(mdklij)Uklij(m)Ui jkl(m) − i

I1(mdklij)

mdklij
Vklij(m)Ui jkl(m)

×
(

(xkl − xij)

dklij
(hkl,x − iβhkl,y) + (ykl − yij)

dklij
(hkl,y + iβhkl,x )

)]
, (A8)

with

Uklij(m) =
∫∫

Ckl

sin(mh(r))e
i
(xkl−xij)

dklij
x+ (ykl−yij)

dklij
y
dxdy, (A9)

and

Vklij(m) =
∫∫

Ckl

cos(mh(r))e
i
(xkl−xij)

dklij
x+ (ykl−yij)

dklij
y
dxdy. (A10)

The values of Uklij(m) and Vklij(m) are calculated analytically. As the integrand of
Iν is non-oscillatory and decays exponentially, we calculate I0(mdklij) and I1(mdklij)
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using a generalised Gauss–Laguerre quadrature rule with respect to the weight functions
yν−0.5e−y .

A.2. Same cells
This case correspond to all diagonal terms of the matrix A. To deal with the singularity
of the Hankel functions, we replace them by their limiting form at zero in (A2) and the
expression is integrated analytically.

The diagonals terms for a given mode m can then be expressed by

Am
klkl = sin(mhkl)

2iπ

{∫∫
Ckl

∫∫
Ckl

sin(mhkl)H(1)
0 (m‖r − r ′‖) dxdydx ′dy′

︸ ︷︷ ︸
Ikl(m)

+ hkl,x

∫∫
Ckl

∫∫
Ckl

cos(mhkl)
(x − x ′) + iβ(y − y′)

‖r − r ′‖ H(1)
1 (m‖r − r ′‖) dxdydx ′dy′

︸ ︷︷ ︸
0

+ hkl,y

∫∫
Ckl

∫∫
Ckl

cos(mhkl)
(y − y′) − iβ(x − x ′)

‖r − r ′‖ H(1)
1 (m‖r − r ′‖) dxdydx ′dy′

}
︸ ︷︷ ︸

0

.

(A11)
The second and third integrals on the right-hand side evaluate to 0 since their integrands
are odd functions of r ′ − r .

Moreover, using the expansion close to 0 and changing variable, we can write

Ikl(m) = 4
∫ Δ

x=0

∫ Δ

y=0

∫ x

x ′=0

∫ y

y′=0
H(1)

0 (m‖r ′‖) dx ′dy′dxdy

= 4
∫ Δ

x=0

∫ Δ

y=0

∫ x

x ′=0

∫ y

y′=0

{
1 + 2i

π

[
ln
(m

2

)
+ γ

]
+ i

π
ln

(
x ′2 + y′2)} dx ′dy′dxdy

= Δ4
{

1 + 2i

π

[
ln

(
m�

2

)
+ γ − 25

12
+ ln(2)

3
+ π

3

]}
. (A12)

This leads to

⇒ Am
klkl = Δ4

2iπ
sin2(mhkl)

{
1 + 2i

π

[
ln

(
m�

2

)
+ γ − 25

12
+ ln(2)

3
+ π

3

]}
. (A13)

This expression is only true for a mode m such that m� � 1. In practice, we use the
same parameter τ as for the non-superposed case, and use the expression in (A13) when
m� < τ .

When the mode m is larger, we divide the cell into k smaller cells such that the new cell
size Δnew verifies m�new < τ and apply the same procedure as for the bigger cells. This
method is expensive numerically. However, since it is only performed for the diagonal of
the matrix, the impact on the full construction of the matrix is still limited.

Appendix B. Expression of modal energy flux
Given that pm = im−1gm ∗ S, we express the modal pressure as

pm = 1
2πm

∫∫
R

σm(r ′)H(1)
0 (m‖r − r ′‖) dx ′dy′ with σm(r) = sin(mh(r))S(r). (B1)
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At a point r far from all sources (‖r ′‖ � ‖r‖), the Hankel functions H(1)
0 and H(1)

1 can be
expressed using asymptotic expansions, namely,

H(1)
0 (m‖r − r ′‖) =

√
2

πmr
ei
(

mr−mer ·r ′− π
4

) (
1 + er · r ′

2r
− i

8mr
+O(

r−2)), (B2)

H(1)
1 (m‖r − r ′‖) =

√
2

πmr
ei
(

mr−mer ·r ′− 3π
4

) (
1 + er · r ′

2r
+ 3i

8mr
+O(

r−2)). (B3)

Replacing H(1)
0 by its expansion in (B2), as was done in Pollmann et al. (2019), we obtain

the approximation (3.22) for the modal pressure, a combination of integrals depending
only on the mode number m and the polar coordinate θ .

We use the same approach to express the radial and azimuthal components of the modal
pressure gradient

pm,r = cos(θ)pm,x + sin(θ)pm,y

= − 1
2π

∫∫
R

er .(r − r ′)
‖r − r ′‖ H(1)

1 (m‖r − r ′‖)σm(r ′) dx ′dy′

= − 1
2π

√
2

πmr
ei
(

mr− 3π
4

)∫∫
R

(
1 + er · r ′

2r
+ 3i

8mr
+O(

r−2))σm(r ′)e−imer ·r ′
dx ′dy′

= i

2π

√
2

πmr
ei
(

mr− π
4

) ((
1 + 3i

8mr

)
fm(θ) + i

gm(θ)

2r
+O(

r−2)), (B4)

and
pm,θ

r
= − sin(θ)pm,x + cos(θ)pm,y

= − 1
2π

∫∫
R

eθ .(r − r ′)
‖r − r ′‖ H(1)

1 (m‖r − r ′‖)σm(r ′) dx ′dy′

= 1
2π

√
2

πmr
ei
(

mr− 3π
4

) ∫∫
R

(
eθ · r ′

r
+O(

r−2)) σm(r ′)e−imer ·r ′
dx ′dy′

= 1
2π

√
2

πmr
ei
(

mr− π
4

) (
f ′
m(θ)

mr
+O(

r−2)). (B5)

This leads to an O(r−2) approximation of the modal energy flux (3.15), given in (3.25).

Appendix C. Model validation
We analyse the internal tide generated by a unidirectional tide U0 = ex over an
axisymmetric Gaussian topography, defined as

h(x, y) = −π + πδe
− |r|2

2L2 , if |x |, |y| < xmax, (C1)

where δ is the height ratio and L the characteristic width of the seamount. The topography
is confined within the domain [−xmax, xmax], with h set to −π and S to zero beyond this
region. The numerical implementation relies on solving a boundary integral equation using
a square mesh with cell size Δ in both the x and y directions. The method considers up to
Ms modes for the computation of matrix coefficients.

To evaluate the accuracy and convergence of the approach, we examine the energy
conversion rate for the two seamounts presented in § 4, both the subcritical (ε = 0.7) and
the supercritical (ε = 1.1) seamounts. The height ratio is kept fixed to δ = 0.3 for both
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Figure 13. Evolution of the energy conversion rate, computed with 20 modes, with respect to the maximum
mode number Ms and the mesh cell size Δ for (a) ε = 0.7 and (b) ε = 1.1. The inset figures show the
convergence of the relative error, as defined in (C2).

cases. Rotational effects are neglected by setting β = 0. The convergence of the boundary
element method when considering rotation was also investigated and yields similar results.
They are thus not presented here.

We focus first on the convergence of the method with respect to the cell size Δ and
mode number Ms , keeping the domain size fixed at xmax = 3L . Figure 13 illustrates the
evolution of the energy conversion rate, calculated by summing the contributions of the
first 20 modes, with the maximum mode number Ms for different mesh refinements. For
the subcritical case (a), at a given mesh resolution Δ, the conversion rate is initially
overestimated for small Ms and decreases monotonically toward an asymptotic value. This
value increases with mesh resolution and converges to a finite limit. For the supercritical
case (b), the conversion rate is similarly overestimated for small Ms , then reaches a
minimum and increases again toward an asymptotic value. Improving the mesh resolution,
however, leads to a decrease of the estimated conversion rate. Both cases require a high
number of modes to achieve proper convergence of the source distribution (Ms > 100),
even though these higher modes do not account for a larger amount of the energy. This
is linked to the fact that modal velocities amplitude decrease more slowly with mode
number than modal energy flux amplitude. A large number of modes are thus necessary to
accurately describe the boundary condition at the topography. This might also be related
to the fact that our formulation does not account for an hydrostatic adjustment of the
barotropic tide at the seamount, as discussed in Papoutsellis et al. (2023). This adjustment,
which corresponds to a mode 0, is thus redistributed in all the other modes in our case.

We define as Cbest the ’best’ calculated conversion rate, i.e. the conversion rate for which
the source distribution was computed with the smallest cell size Δ and largest number of
mode Ms . The inset figures 13(a) and 13(b) displays the relative error

Error = |C − Cbest|
Cbest

, (C2)

as a function of Ms . For both topographies, the convergence rate with Ms is similar for
all mesh sizes. However, it is approximately proportional to M−3/2

s for the subcritical
seamount and to M−3/4

s for the supercritical one. The convergence with Ms is thus slower
in the supercritical case. This partially explain the numerical difficulties observed in
supercritical cases, as the solution requires more vertical modes.
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Figure 14. Evolution of the conversion rate with the domain size xmax for the case δ = 0.3 and ε = 0.7,
keeping Δ ≈ 0.027 and Ms = 200.

Moreover, looking at the limit for large Ms in the inset figures gives the relative error
for a given mesh cell size Δ. We find that the convergence with Δ is similar for both the
subcritical and supercritical seamounts, with an error below 5 %, when Δ > 0.05.

Lastly, we examine the convergence for the subcritical case (δ = 0.3, ε = 0.7) with
respect to the domain size xmax while keeping Δ ≈ 0.027 and Ms = 200. The conversion
rate increases as xmax increases, confirming that an adequately large domain size is
necessary to fully capture the energy radiated by the topography. However, beyond a
certain threshold for which the topography is larger than the length scale of mode 1,
further increasing xmax does not improve accuracy, as shown in figure 14. The final value
is close to the WTA estimate, with a difference of less than 1 %. Numerically, choosing a
larger xmax means that a higher number of cells are required to keep the cell size constant.
A compromise thus needs to be found between increasing xmax and decreasing Δ. In
practice, we choose to keep the domain size fixed to xmax = 3.

Based on this analysis, we adopt the following strategy to ensure numerically converged
results. For each configuration, we systematically test several values of Ms and verify
that the error on the convergence rate remains below 3 %. Each computation is done
using a mesh with a maximum number of 300 cells in each horizontal direction, which
corresponds to our numerical limit. This introduces a constraint on the mesh cell size.
The error due to the mesh cell size is extrapolated from the two convergence studies
presented here. For the cases discussed in this paper, the largest cell size is Δ = 0.0697,
which ensures a maximum relative error on the conversion rate of approximately 5 %.

The same conclusions hold when examining other convergence indicators, based on the
error on the source distribution or on the structure of the wavefield.
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