ON THE WEAKNESS OF SOME BOUNDARY COMPONENT

TOHRU AKAZA

1. Let D be a domain in the complex z-plane and γ be a boundary component of D consisting of a single point. The component γ is said to be weak if its image under any conformal mapping of D consists of a single point. If γ is not weak, then we say that γ is unstable (Sario [3], [4]).

Let $S_n(n = 1, 2, ...)$ be a sequence of slits being symmetric and orthogonal to the positive real axis of the complex z-plane and converging to the origin O: z = 0. We delete the set $\bigcup_{n=1}^{\infty} S_n \cup \{O\}$ from the z-plane and denote by Dthe resulting domain. In this note, we treat the weakness of the boundary component O of the domain D.

2. First we prove the following

LEMMA 1. Consider two slits: $x = a_j(>0), |y| \le h_j (j = 1, 2), (a_2 < a_1)$ which are symmetric and orthogonal to the positive real axis and satisfy the equality $\frac{h_1}{a_1} = \frac{h_2}{a_2} = k$. Construct a doubly connected domain B bounded by two circular arcs $C_j : |z| = \sqrt{a_j^2 + h_j^2} \alpha \le$, arg $z \le 2\pi - \alpha$, (j = 1, 2), where $0 < \alpha = \tan^{-1}k \left(< \frac{\pi}{2} \right)$, and slits S_1, S_2 . Let μ be the module of B and μ^* be the module of the ring domain $R : \sqrt{a_2^2 + h_2^2} < |z| < \sqrt{a_1^2 + h_1^2}$. Then it holds

$$\frac{1}{M(\alpha)}\mu^* \leq \mu \leq M(\alpha)\mu^*,$$

where $M(\alpha)$ is a constant depending only on α .

Proof. Let $z_j = a_j + ih_j$ and $z'_j = a_j - ih_j$ be two endpoints S_j (j = 1, 2). We map the trapezoid $T: (z_2, z'_2, z'_1, z_1)$ onto the quadrilateral (z_2, z'_2, z'_1, z_1) bounded by two minor circular arcs $\widehat{z_2 \ z'_2}$ on $|z| = \sqrt{a_2^2 + h_2^2}$, $\widehat{z_1 \ z'_1}$ on $|z| = \sqrt{a_1^2 + h_1^2}$ and two rectilinear segments $\overline{z_2 \ z_1}$, $\overline{z'_2 \ z'_1}$ under the topological mapping $\zeta(z) = \sqrt{(1+k^2)x^2-y^2} + iy = \sqrt{x^2 \sec^2 \alpha - y^2} + iy$, z = x + iy. It is obvious that $|\zeta(z)| = \sqrt{1+k^2}x$.

Received June 29, 1960.

Now we put

$$p = \frac{1}{2} \left(\frac{\partial \zeta}{\partial x} - i \frac{\partial \zeta}{\partial y} \right), \qquad q = \frac{1}{2} \left(\frac{\partial \zeta}{\partial x} + i \frac{\partial \zeta}{\partial y} \right).$$

By an easy computation, we have

$$\frac{|p|+|q|}{|p|-|q|} \le \frac{(x \sec^2 \alpha + \sqrt{x^2 \sec^2 \alpha - y^2})^2 + y^2}{x \sec^2 \alpha \sqrt{x^2 \sec^2 \alpha - y^2}} \le \frac{(\sec^2 \alpha + \sec \alpha)^2 + \tan^2 \alpha}{\sec^2 \alpha}$$
$$\le \frac{4 \sec^4 \alpha + \sec^2 \alpha}{\sec^2 \alpha} = 4 \sec^2 \alpha + 1.$$

If we put $4 \sec^2 \alpha + 1 = M(\alpha)$, then

$$\sup_{z\in T}\frac{|p|+|q|}{|p|-|q|} \leq M(\alpha).$$

Hence $\zeta(z)$ is a quasiconformal mapping with bounded dilatation. Therefore, if we define

$$\zeta = \varphi(z) = \begin{cases} \zeta(z), & z \in T \\ z, & z \in B - T, \end{cases}$$

then $\zeta = \varphi(z)$ is a quasiconformal mapping of B onto R with bounded dilatation. Thus we have the required inequality

$$\frac{1}{M(\alpha)}\mu^* \leq \mu \leq M(\alpha)\mu^*.$$

3. Suppose that S_n (n = 1, 2, ...) are segments: $x = a_n (>0)$, $|y| \le h_n$ satisfying $0 < a_{n+1} < a_n$, $\lim_{n \to \infty} a_n = 0$ and

$$h_n \leq a_n \tan \alpha = h'_n$$

for some fixed $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$.

Let S'_n be a segments $x = a_n$, $|y| = h'_n$. Denote by D (or D') the domain obtained by deleting segments S_n (or S'_n) (n = 1, 2, ...) and the origin z = 0 from the complex z-plane. It is obvious that $D \supset D'$.

We construct doubly connected domains B_n (n = 1, 2, ...) in D' bounded by S'_n , S'_{n+1} and by two circular arcs $C_j : |z| = \sqrt{a_j^2 + h_j'^2}$, $\alpha \leq \arg z \leq 2\pi - \alpha$, (j = n, n+1). Evidently, $B_n \subset D$ and $B_n \cap B_m = \phi$ if $n \neq m$. Let μ_n be the module of B_n . By Lemma 1, we have

220

$$\frac{1}{M(\alpha)} \mu_n^* \leq \mu_n \leq M(\alpha) \mu_n^*,$$

where $\mu_n^{\mathbb{R}} = \log \frac{a_n}{a_{n+1}}$ is the module of the ring domain $\sqrt{a_{n+1}^2 + h_{n+1}'^2} < |z| < \sqrt{a_n^2 + h_n'^2}$. Hence it follows that

$$\sum_{n=1}^{\infty} \mu_n^* \leq M(\alpha) \sum_{n=1}^{\infty} \mu_n.$$

Since $\lim_{n\to\infty} a_n = 0$, the left hand side of the above inequality is divergent. By Savage's criterion [5] we see that the origin O is a weak boundary component of D. Thus we obtain the following

THEOREM 1. If S_n (n = 1, 2, ...) are segments: $x = a_n(>0)$, $|y| \le h_n$ satisfying $0 < a_{n+1} < a_n$, $\lim_{n \to \infty} a_n = 0$ and

$$(*) h_n \leq a_n \tan \alpha = h'_n$$

for some fixed α $\left(0 < \alpha < \frac{\pi}{2}\right)$, then O is a weak boundary component of the domain obtained by deleting $\bigcup_{n=1}^{\infty} S_n \cup \{O\}$ from the z-plane.

4. Here we show that in the case when segments in our Theorem 1 do not satisfy the condition (*) the origin O is not always weak.

First we prove the following

LEMMA 2. Consider two slits $S_j : x = a_j(>0)$, $|y| \le h_j$ (j = 1, 2), $(a_2 < a_1)$ which are symmetric and orthogonal to the real axis. Let Ω be the doubly connected domain obtained by deleting S_1 and S_2 from the z-plane and let Q be the rectangle: $(a_2 + ih, a_2 - ih, a_1 - ih, a_1 + ih)$, where $h = Min(h_1, h_2)$. If μ is the module of Ω , then it holds

$$\mu \leq \frac{\pi(a_1-a_2)}{h}.$$

Proof. We denote by $\{\gamma\}$ a family of rectifiable curves in Ω separating S_1 from S_2 and by $\{\gamma'\}$ a family whose elements consist of rectifiable curves joining the upper side $\overline{a_2+ih}$, $\overline{a_1+ih}$ to the lower side $\overline{a_2-ih}$, $\overline{a_1-ih}$ of Q in Q. It is obvious that each $\gamma \in \{\gamma\}$ contains a curve $\gamma' \in \{\gamma'\}$. Denoting by $\lambda\{\gamma\}$, $\lambda\{\gamma'\}$ the extremal lengths of these families in the sense of Ahlfors-Beurling [1], we get the following inequality:

https://doi.org/10.1017/S0027763000002154 Published online by Cambridge University Press

 $\lambda(\gamma') \leq \lambda(\gamma).$

From the relation $\lambda(\gamma) = \frac{2\pi}{\mu}$ and $\lambda(\gamma') = \frac{2h}{a_1 - a_2}$, we have

$$\mu \leq \frac{\pi(a_1-a_2)}{h}.$$

Now we denote by S_n (n = 1, 2, ...) segments in the z-plane

$$x = \frac{1}{n}, |y| \le h_n = c \left(\frac{1}{n-1}\right)^p, \quad (0$$

where c is a positive constant and z = x + iy. Let D be a domain obtained by deleting $\bigcup_{n=1}^{\infty} S_n \cup \{O\}$ from the z-plane and let B_j (j = 1, 2, ...) be any sequence of doubly connected domains in D separating O from the infinity and converging to O. We suppose that B_{j+1} lies in a domain G_j which is a component, containing O, of the complementary sets of $\overline{B_j}$ with respect to the z-plane.

Let $S_{m(j)}$ be the segment such that, for any n > m(j), $S_n \subset G_j$ and that $S_{m(j)} \oplus G_j$. Then B_j separates S_n (n > m(j)) from $S_{m(j)}$.

Without loss of generality, we may assume that $\{B_j\}$ $(j = k_l + 1, \ldots, k_{l+1})$ are all the doubly connected domains separating $S_{m(k_l+1)}(=\cdots=S_{m(k_{l+1})})$ from $S_{m(k_l+1)+1}$, where $k_0 = 0$, m(1) = 1 and

$$m(k_{l+1}) < m(k_l+1) + 1 \leq m(k_{l+1}+1).$$

Denote by Ω_l the domain obtained by deleting $S_{m(k_l+1)}$ and $S_{m(k_l+1)+1}$ from the z-plane. Then B_j $(j = k_l + 1, \ldots, k_{l+1})$ are contained in Ω_l . The well-known Teichmüller's inequality implies that

$$\sum_{j=k_l+1}^{k_{l+1}} \mu_j \leq \mu_l^*,$$

where μ_j $(j = k_l + 1, \ldots, k_{l+1})$ are the moduli of B_j $(j = k_l + 1, \ldots, k_{l+1})$ and μ_l^* is that of \mathcal{Q}_l .

Thus, using Lemma 2, we obtain

$$\sum_{j=1}^{\infty} \mu_j = \sum_{l=0}^{\infty} \sum_{j=k_l+1}^{k_{l+1}} \mu_j \leq \sum_{l=0}^{\infty} \mu_l^*$$

$$\leq \pi \sum_{l=0}^{\infty} \frac{\frac{1}{m(k_l+1)} - \frac{1}{m(k_l+1)+1}}{h_{m(k_l+1)+1}} \leq \pi \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} \leq \frac{\pi}{c} \sum_{n=1}^{\infty} n^{b-2}$$

222

Since $\sum_{n=1}^{\infty} n^{p-2}$ $(0 is convergent, we see that the series <math>\sum_{j=1}^{\infty} \mu_j$ is convergent for any sequence $\{B_j\}$. By using Oikawa's theorem [2], i.e., the converse of Savage's criterion, we have the following

THEOREM 2. If S_n (n = 1, 2, ...) are segments: $x = \frac{1}{n}$, $|y| \leq c \left(\frac{1}{n-1}\right)^p$, $(0 , then the origin O is an unstable boundary component of the domain obtained by deleting <math>\bigcup_{n=1}^{\infty} S_n \cup \{O\}$ from the z-plane.

Recently Oikawa has treated the case that the number of boundary components converging to the origin is not countable and obtained interesting results, some of which contain our results.

References

- [1] Ahlfors, L. V. and Beurling, A., Conformal invariants and function-theoretic nullsets, Acta Math., 83 (1950), 101-129.
- [2] Oikawa, K., On the stability of boundary component, Pacific Jour. Math., 10 (1960), 263-294.
- [3] Sario, L., Stability problems on boundary components, Proc. Conference Analytic Function, Princeton (1957), 55-72.
- [4] Sario, L., Strong and weak boundary components, Jour. Analyse Math., 5 (1958), 389-398.
- [5] Savage, N., Weak boundary components of an open Riemann surface, Duke Math. Jour., 24 (1957), 79-95.

Mathematical Institute Kanazawa University