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TWO ^-CLOSED SPACES 

R. M. STEPHENSON 

1. Introduction. Throughout this paper all hypothesized spaces are 
7\. A regular space is called R-closed [11] {regular-closed [7] or, equivalently, 
regular-complete [2]) provided that it is a closed subset of any regular space 
in which it can be embedded. A regular space (X, J^~) is called minimal 
regular [2; 4] if there exists no regular topology on X which is strictly weaker 
than 3T. We shall call a regular space X strongly minimal regular provided 
that each point x G X has a fundamental system of neighbourhoods 7 '̂x such 
that for every V Ç ̂ X1 X\V is an ^-closed space. 

In §2 we note that a strongly minimal regular space is minimal regular, 
but we do not know if the converse holds. M. P. Berri and R. H. Sorgenfrey 
[4] proved that a minimal regular space is i^-closed, and Horst Herrlich [7] 
gave an example of an ^-closed space that is not minimal regular. 

In [3] Berri asked if the product of minimal regular spaces is minimal regular. 
Ikenaga [8] partially answered his question by proving that if a minimal 
regular space X is compact, then for every minimal regular space F, X X F 
is minimal regular. (It is well-known and easy to prove that every compact 
Hausdorff space is minimal regular.) In [11] C. T. Scarborough and A. H. 
Stone considered an analogous question for ^-closed spaces, and they proved 
that if an inclosed space X is compact, then for every inclosed space F, X X F 
is i£-closed. Using the Scarborough-Stone theorem and the obvious fact that 
a regular space which is a finite union of inclosed spaces is inclosed, one can 
easily obtain a proof of the following. 

THEOREM 1.1. Let X be a compact Hausdorff space. Then for every strongly 
minimal regular space F, X X F is strongly minimal regular. 

In §3 we construct a non-minimal regular inclosed space (5, Sf) and a 
non-compact strongly minimal regular space (7", ^) such that for every 
inclosed space F, (S,S^) X F is i^-closed, and for every strongly minimal 
regular space F, (T, ^) X F is strongly minimal regular. Thus we show 
that the converses of the Scarborough-Stone theorem and Theorem 1.1 are 
false. 

While the spaces obtained in §3 are sequentially compact, in §4 we prove 
that if the Continuum Hypothesis holds, then there exist spaces (51, Sf) and 
(T, ^") with the above properties and such that, in addition, neither is 
sequentially compact, and both are first countable and separable. As far as 
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the author knows, it has not been known previously if there exists a non-
compact , separable, first countable inclosed space. 

2. Pre l iminar ie s . In this section we s ta te a number of definitions and 
known results t ha t we will need. For the most part , the lemmas listed below 
are jus t special cases of much more general results obtained by the authors 
referred to. 

A filter base on a topological space is called open (closed) if the sets belonging 
to it are open (closed) sets. A regular filter base is an open filter base t h a t is 
equivalent with some closed filter base; i.e., an open filter base in which each 
set contains the closure of some member of the filter base. The set of adherent 
points of a filter base J ^ Pi {F\ F £ ^], will be denoted ad Jr. 

L E M M A 2.1 [2; 7]. A regular space X is R-closed if and only if every regular 
filter base on X has an adherent point. 

Using Lemma 2.1, one can obtain a proof of the next result. 

L E M M A 2.2. Every open-and-closed subset of an R-closed space is R-closed. 

L E M M A 2.3 [2; 4]. A regular space X is minimal regular provided that every 
regular filter base on X with a unique adherent point is convergent. 

Using Lemmas 2.1 and 2.3, one can easily check tha t a strongly minimal 
regular space is minimal regular. 

A space X is called feebly compact [11] (or lightly compact [1]) if any one 
of the following equivalent conditions holds: each locally finite system of 
open subsets of X is finite; every countable open filter base on X has an 
adherent point. 

L E M M A 2.4. (i) An R-closed space is feebly compact. 
(ii) The closure of an open subset of a feebly compact space is feebly compact. 
(iii) Every continuous image of a feebly compact space is feebly compact. 
(iv) The product of a sequentially compact space and a feebly compact space 

is feebly compact. 

Each of the s ta tements in Lemma 2.4 can be found in one of [1] and [11, p . 
137 and p . 143]. 

A space is called ^-bounded [6] if every countable subset has compact 
closure. 

L E M M A 2.5. (i) An ^-bounded space is feebly compact. 
(ii) [6] The property ^-bounded is productive. 

L E M M A 2.6 [11, p . 141], Every product of first countable feebly compact spaces 
is feebly compact. 
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LEMMA 2.7 [10, p. 469]. Let X be a first countable space. For any feebly 
compact space Y and open subset UofXX Y, pi"i([7) is a closed subset of X. 

3. The spaces (5, 5^) and (T, 3T). Several authors have put to good use 
an ingenious non-compact inclosed space of Tychonoff [12, p. 553]. In papers 
concerning minimal regular spaces, the same has been true (see [4; 7, p. 288 
and p. 293; 11, p. 140]). For example, Berri and Sorgenfrey [4] used a modi­
fication of Tychonoff's space to give the first known example of a non-compact 
minimal regular space. The construction given here will be similar to the 
Berri-Sorgenfrey version; however, for building blocks we will need to use 
not Tychonoff planks but instead what are sometimes called "big squares," 
and we will need to glue them together in a different manner. 

Given an ordinal a, we will denote the set of all ordinals less than a by 
W(a). B will denote W(ai + 1) X Wfa + l)\{(o>i, wi)}, topologized in the 
usual manner. Z will be the set of integers, with the discrete topology. 

We will say that a set V gets into the corner of B provided that for each 
a < o)i there exists a point (x, y) £ V P B with a g x and a ^ y. 

LEMMA 3.1. Let X be a topological space containing B as a subspace, and 
suppose that (i) B is a closed subset of X and (ii) U = {(x, y) G B\x ^ y, 
x < coi, and y < coi} is an open subset of X. Let V be an open subset of X which 
gets into the corner of B, and let F be a feebly compact subset of X such that 
V C F. Then for each a < coi there exists a point (x, x) Ç B P F with a rg x. 

Proof. Let a < coi. If there exists a ^ x with (x,x) £ V then we are done. 
Let us suppose then that V P {(x, x) £ B \a S x} = <t>- Since V is open, 
there is a point (x, x) 6 [U C\ V]~ with a ^ x (see [5, 8L.1J). Let i^ be a 
countable fundamental system of open neighbourhoods of (x,x) in the spaced, 
and setW = i^ \ JJ (~\ V. T h e n ^ is a countable open filter base on the feebly 
compact space F, so F P ad W ^ <j>. On the other hand, since B is a closed 
subset of X and U *V C B, we have a d ^ C ad V C {(x, x)}. Thus (x, x) 
G F. 

Description of the spaces (T, ^~) and (5, 5f). Let R be the equivalence 
relation on B X Z defined by the rule (x, y, i)R(v, w,j) if: (i) x = v, y = w, 
and i = j ; (ii) x = v and either (a) y = x, w = coi, and j + 1 = i or (b) 
w = v, y = coi, and i + 1 = j \ (hi) 3; = w and either (a) x = y, v = coi, 
and i + I = j or (b) z; = w, x = coi, and j + 1 = i; (iv) x = w, y = v = cox, 
and i + 2 = j ; or (v) v = y, w = x = coi, and j + 2 = i. If A is the "diagonal" 
in B and ^ 6 Z, then i? just identifies points of A X {̂ } with corresponding 
points of (right side of B) X \n + 1} and points of (top side of 5 ) X \n — 1}. 
Choose two new points a, 6 not in this set and take T = {a, b] VJ (B X Z)/R. 
We shall continue to use the same symbols to denote the points of (B X Z) /R . 

Let B XZ have the product topology and (2? X Z)/R the resulting quotient 
topology. We de f ined to be the topology on T that has as a base { 7 C 2"| V 

https://doi.org/10.4153/CJM-1972-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-023-5


R-CLOSED SPACES 289 

is an open subset of (B XZ)/R} U {Vn\n 6 Z} U {Wn\n 6 Z } , where the 
sets Fn , Wn are defined as follows: 

Vn = {a} U { ( * , ? , » ) ! * < ? } U { ( * , ? » » + l ) | x < c o i } U 5 X 

{m G Z | m ^ w + 2} ; 

W» = {&} U {(*, y, n) \y < %} \J {(x, y, n - 1) \y < Wl} U B X 

{m G Z | m ^ w — 2}. 

For the space (5, y), one may take 5 = T\W% and 5 ^ = ^ " | 5 . 

LEMMA 3.2. Let n £ Z <md fe£ F fre 0»e of the spaces {T\Vn,$~\ T\Vn) and 

(T\Wn,^\ T\Wn). Suppose that X is a feebly compact space and f:X—>Y 
is a continuous open surjection. Then for every regular filter base £% on X, either 
(i) {a,b} r\r\f(m) ^ 0 o r (ii) ( F - { a f i } ) n a d / ( ^ ) 5*0. 

Proof. We consider only the case F = {T\Wn,^\ T\Wn). 
Suppose (i) is false. Then, since Si is regular, there is a set R Ç é% with 

a (? f{R). According to Lemma 2.4, f(R) is feebly compact. Since the point 
a has a countable fundamental system of closed neighbourhoods, there mus t 
exist a neighbourhood of a which misses f(R). Let m be the smallest integer 
for which there is a set i n / ( ^ ? ) which misses Vm. 

Because / ( ^? ) is equivalent with a filter base consisting of feebly compact 
sets, it follows from Lemma 3.1 tha t there exists a set W G f(&) which 
gets into the corner of neither B X {m} nor B X {m + 1}. Thus there is an 
ordinal b < a>i such tha t the compact set 

K = W(b + 1) X W(«i + 1) X {m - 1, m) \J W(u! + 1) X 

W(b + 1) X [m - \,m) 

contains the set WC\ (Vm^i\Vm). Then f(S?)\K is a filter base, and so we 
h a v e 0 j£ Kr\3Ldf(@) C F - j a , 6 } . 

T H E O R E M 3.3. (i) 77ze s^a^e (5, «50 is ^0/ minimal regular. 
(ii) If I ^ <j> then the product space (S,y)T is R-closed. 
(iii) For every R-closed space F, (S, <50 X Y is R-closed. 

Proof, (i). The same argument as one given by Herrlich [7, Example 2] 
can be used here. If (S,Sf') denotes the Alexandroff one-point compactifica-
tion of the locally compact space ( 5 \ { a } , y \ S \ { a } ) , then since S^\S\{a} = 
yf\S\{a], we mus t have Sf ' dSf. Fur thermore, since B is a closed non-
compact subset of ( 5 , y ) , S^ ^ y . 

(ii). In order to prove t ha t a regular space is i^-closed, it suffices by Zorn's 
lemma to prove t ha t every maximal regular filter base on the space is con­
vergent. Let us suppose t ha t ai is a maximal regular filter base on (5, y )7 . 
W e will prove t ha t each pr^(c^) is convergent. 

Let i G / . T h e space (S, «50 is clearly Xo-bounded, so by Lemma 2.5 the 
space (S, «SO7 is feebly compact . T h u s we can appeal to Lemma 3.2 and 
conclude t ha t there exists a point 5 Ç ad p r z (^? ) . Let ^ be a fundamental 

https://doi.org/10.4153/CJM-1972-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-023-5


290 R. M. STEPHENSON 

system of open neighbourhoods of s. Then it follows from the continuity of 
pr, that SP = {Rr\pr-l(V)\R G 3ft and V G V} is also a regular filter 
base on (S,S^ )T. By the maximality of Sft, 3P must be equivalent with 3ft. 
Thus for every V G 7^, p r r H F ) contains some member of 3ft \ i.e., pvi(3?) 
converges to 5. 

(iii). Since (S, Sf) is of course sequentially compact, (S, £f) X F is feebly 
compact by Lemma 2.4, and so we can use Lemma 3.2 here. 

Let J * b e a regular filter base on (5, Sf) X F. We will prove that ad 3ft 9^ <f>. 

Case 1: there is a point s G (^{a}) C\ ad pri(3%). Then 5 has a compact 
neighbourhood K. By the Scarborough-Stone Theorem, i£ X F is inclosed, and 
since 3ft \ K X F is a regular filter base on K X F, ad ^ 7e </>. 

Case 2: a £ H p r ^ ) . Then 3% | {a} X F i s a regular filter base on {a} X F. 
Since {a} X F is inclosed, 0 ^ ad <̂ ?. 

Before stating our next result, we indicate why the space (T, ^) is strongly 
minimal regular. 

Since the space F in Lemma 3.2 is feebly compact, the hypothesis of Lemma 
3.2 is satisfied if one takes X = F a n d / = the identity on F. Thus it follows 
from Lemma 3.2 that (T,0~) is inclosed and that if t G {a, b), then / has a 
fundamental system of neighbourhoods 'V t such that for every V G ^u T\V 
is i^-closed. On the other hand, the same is also true for any point / G T\\a, b], 
for each point of T\{a, b] has a fundamental system of neighbourhoods con­
sisting of open-and-closed sets. 

THEOREM 3.4. (i) The space (T, 3f) is not compact. 
(ii) If I T^ <j> then the product space (T, 0~Y is strongly minimal regular. 
(iii) For every strongly minimal regular space F, (T, 0~) X F is strongly 

minimal regular. 

The proof is similar to the proof of Theorem 3.3. 

Remark 3.5. In order to obtain a space having just the properties of (S, £f) 
but possibly not those of (T, <&~), one can simplify the construction above, as 
follows: instead of using B as a building block, use B' = {(x,y) G B \y ^ x], 
and for any n G Z and x < coi, identify the points (pc, x, n) and (coi, x, n + 1). 

4. A separable non-compact ^-closed space. The construction given 
in this section is also similar to the Berri-Sorgenfrey space, but for building 
blocks we use copies of a space, denoted B, that is due to J. Isbell and S. 
Mrôwka [5, 51], and the technique we use for glueing them together, including 
Lemma 4.1, resembles one due to F. B. Jones [9]. 

The space B. Let N denote the set of natural numbers, and let *J£ be a 
family of infinite subsets of N which has the following properties: \<Jt\ = c; 
if L, M ^Jé and L j± M, then \L C\ M\ < K0; for every infinite subset I of 
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N , \I C\ M\ = Ko for some M G ^ . (Use Sierpinski's lemma [5, 6Q.1] to 
obtain |«yK| = c with JV a family of infinite subsets of N such t ha t the inter­
section of any two is finite. Then take ^ to be any enlargement of JV t h a t 
is a maximal family of infinite subsets of N such tha t the intersection of 
any two is finite.) Let D = {pM\M £ ^ } be a new set of distinct points, and 
let B = N U D , topologized as follows: each point of N is isolated; a neighbour­
hood of a point pM is any set containing pM and all bu t finitely many elements 
of M. 

T h e space B is a first countable, zero-dimensional, feebly compact, locally 
compact Hausdorfï space which is not normal, and D is a closed discrete subset 
of cardinali ty c (see [5]). 

L E M M A 4.1 . There exists a subset A of D such that \A\ = c, and for every 
open subset U of B, if \ U H A\ = c, then \ V C\ (D\A)\ = c. 

Proof. According to [5, 12B], there exists a family s/ of subsets of D which 
has the following properties: \<$/\ > c; for each A £s/, \A | = c; for all 
i , £ G ^ with A ^ E, \A C\ E\ < c. W e prove tha t some member of se 
has the desired property. 

Suppose, on the contrary, t ha t for each A £ S$ there exists an open set 
UA such t ha t \UAC\A\ = c bu t | [UA]- H (D\A)\ < c. Then consider a n y 
two sets A,E€sf. Since | [UA]~ C\ (E n A) | ^ \E H A \ < c and 
| [ * 7 A ] - n (E\A)\ ^ \[UA]-r\ (D\A)\ < c, \[UA]-r\E\ < c. T h u s the 
open set UE\[UA]~ is nonempty and hence intersects N . In particular, UE ^ 
N 9e UA C\ N . So the mapping A —* UA C\ N is a one-to-one mapping of 

s/ into 2N , in contradiction of the fact t ha t | 2 N | = c < \s/\. 

Acknowledgment 4.2. Our proof of Lemma 4.1 (or of an obvious generalization 
of L e m m a 4.1) is similar to the proof (due to F . B. Jones) t ha t appears on 
p. 144 of the Dugundji text. 

L E M M A 4.3. Leff be an open filter base on a feebly compact space, and suppose 
that^Y = 0. Then for every set V £ ^ , | V\ ^ Ki. 

Proof. V is feebly compact by Lemma 2.4. Now one can show tha t every 
open filter base on a Lindelôf feebly compact space has an adherent point . 
T h u s if V were countable, we would have V P\ ad i^ ^ 0. 

Description of the spaces (T, ^~) and (5, Sf). Let A be as in Lemma 4 .1 . 
Choose two disjoint subsets Ai and A2 of A such tha t A = A±\J A2 and 
\Ai\ = | A21 = c, and let/*: At —» D\A,i = 1, 2, be bijections. 

Let R be the equivalence relation on B X Z defined by the rule (x, i)R(y, j) 
if: (i) x = y and i = j ; (ii) x = f2(y) and i + 1 = j ; (iii) 3/ = f2(x) and 
7 + 1 = i ; (iv) x = /x(y) and j + 1 = i; (v) 3; = / i ( x ) and i + 1 = j ; (vi) 
/ i ( # ) = /26O and i + 2 = j ; or (v i i ) / i (y ) = .M*) and j + 2 = i. Choose two 
new points a, b not in this set and take T = {a, b] \J (B X Z)/R. 
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(T, $~) and (S, c$0 are defined as in §3 except that here the sets Vn, Wn 

are defined as follows: 

Vn = {a} \J {(x,n)\x € N U 4i} U {(x, n + 1) |x € 5 VI2} U 5 X 

{m Ç Z | w ^ w + 2); 

fl7n = {£} W {(*, n ) | x G N U ^ 2 } U {(x,n-l)\x £ B\i4i} U ^ X 

{w Ç Z | w ^ w - 2 | . 

THEOREM 4.4. (i) TTze spaces (S, Sf) and (T, $~) are first countable, separable, 
feebly compact, and regular. (S, Sf ) is not minimal regular, and neither (S, £f) 
nor (T, 3T) is countably compact. 

(ii). If the Continuum Hypothesis holds, then (S, Sf) is R-closed and (T, ^~) 
is strongly minimal regular. 

The proof of (i) is similar to the ones in §3. The same is true of (ii), if one 
uses Lemma 4.3, the properties of A, and the equation c = Ki. Given Lemma 
2.7, one can easily check that 3.3 (iii) and 3.4 (iii) hold for any first countable 
inclosed space (S, Sf) and first countable strongly minimal regular space 
(T, 3T). Likewise one can prove that a product of first countable i^-closed 
(minimal regular, strongly minimal regular) spaces is inclosed (minimal 
regular, strongly minimal regular). 
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