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L A R G E S E T S N O T C O N T A I N I N G I M A G E S 
O F A G I V E N S E Q U E N C E 

BY 

P É T E R K O M J Â T H 

ABSTRACT. In the first part we construct a subset H of positive 
measure in the unit interval and a zero-sequence {an} so that H 
contains no homothetic copy of {an}. In Theorem 2 we prove that if 
e > 0 and a zero-sequence {an} are given then there exists a set A of 
measure less than e so that Un = i ( ^ + a J covers the interval. An 
application of this result is Theorem 3: for any sequence {an} and 
e > 0 there is a set H of measure 1 - e such that for no N and c is 
{an+c}n>N contained by H. 

1. Introduction. The aim of this paper is to give two generalizations of the 
following theorem of D. Borwein and S. Z. Ditor [1]: there exists a set 
H ^ [ 0 , 1 ] of positive measure and a sequence {an} converging to 0 such that if 
x e [0, 1] then x + an<£ H for infinitely many n. We prove that there even exists 
a set H working simultaneously for all of the {Aan}'s, where {a^} is a certain 
specified sequence. We then prove that for any given {a^} we can actually 
construct a set H with the original property. A common generalization of these 
two theorems would give the solution of an old and quite challenging problem 
of P. Erdôs [2]: for any given {an} there is a set of positive measure not 
containing a subset similar to our sequence. 

2. Similarities 

PROPOSITION. Assume that n is a natural number n>2, e>l/n. Put A = 
[0,1 — e], B = [1 + £, 2]. If S is an n + 1-term arithmetical progression in A U B 
then either S ^ A or S ç^B. 

Proof. Assume otherwise. As there is a gap of length 2e between A and B, 
the difference of S is at least 2e. The total length of S i.e. the difference 
between its last and first member is at least 2 e n > 2 , a contradiction. 

THEOREM 1. For any given e>0 there exist a set H c [ 0 , 1 ] of measure 1 —e 
and a sequence {an} converging to 0 such that for any given x e [0,1] and À ^ 0, 
x + Xan £ H for infinitely many n. 

Proof. Let us define K0 = [0, 1] and for every n omit a central subinterval of 
relative length sn of every interval from Kn. Clearly Kn+1 will be the union of 
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2 n + 1 intervals of equal length and \(Kn+{) = (1 - e0) • • • ( ! - en). Our set will be 
of form H = CQ=o Kn for a suitably chosen sequence sn \ 0 . 

For fc = 1, 2 , . . . construct an arithmetic progression of nk terms Sk of length 
2~k in (0, 2~k+1), where nk > l/e2k- Clearly Uk = i Sk is a zero-sequence. If ASk 

is a subset of H then by repeated application of the proposition, ASk is in one 
of the intervals of K2k which has length <2"~2k ; so A < 2 k. Thus, if x e [0, 1], 
A ^ 0 are given, and /c is big enough, x + ASk has a point missing from H. 

THEOREM 2. 1/ e > 0 and an \ 0 are giuen, there is a finite subsequence 
ah > a,2> • - - > aJs and a set H e [0, 1] with A(H)< 8 and 

[ 0 , l ] ç H U Û (H+ah). 
i = \ 

(Here H+a denotes {x + a:xe H}.) 

Proof. Note first that by the well-known properties of Lebesgue-measure 
the statement of the theorem is equivalent to: there is, for any given e > 0 , a 
set H of measure less then e for which 

[0, l ] c H U | J (H + ai). 
i = .i 

We shall prove, however, the finite version. 
Our strategy will be the following: for e = e0 = 1 the statement is clear. Then 

we shall inductively define 1 > e1> e2> ' ' * and so on, and prove that if the 
statement holds for ek (and for every sequence) it is true for ek+1. As ek\0 
this "infinite descent" gives the desired result. 

Assume that the theorem is proved for s = ek and that H is a set witnessing 
this fact: P 

[0,1] = H U U (H+ai). 
i = l 

As the construction proceeds we shall see that the set H will be always a finite 
union of disjoint intervals—not too serious a restriction, in fact. Let 8 be a 
sufficiently small positive number (say 8 < ell 12). If H is the union of N 
disjoint intervals and a,<ô/2Np then we can divide H into two parts: H = 
H* U H** where A(H**) < 8/p and H* is the union of disjoint intervals each of 
length 2a,-. 

Let us define L as the union of the left-halves of these intervals, M as the 
union of the right-halves. Clearly H* = L U M and M = L + at. 

Now we are going to estimate the measure of X = LUlJ != i (L + ûi) 0 ^ p is 
assumed throughout). Since H U U f = i ( H + a i ) covers [0,1] and H*U 
Ur=i(W* + aj) covers all [0,1] but a set of measure at most 8 and [H*U 

<—2aj—> 

i 1 1 1 1 1 1 1 

into H* into H** 
Figure 1 
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Uf=i (H* + Oi)] —X is covered by certain intervals of length ay, for every such 
interval /, /—a, is in X and neither / nor J — at is in JFf*. This gives 

À(X)>è[ l -2pa j +A(H*)]>è[ l + 8 k -Ô] . 

(Loosely speaking, X U ( X + a J ) covers almost all of [0, 1], almost all of H* 
twice.) 

The set Y = [0, 1] — X is a union of finitely many disjoint intervals. Deleting 
from it a set of measure less than 8 we get the union T of disjoint intervals 
having equal length. 

In any one of these intervals, say in K, one can construct a set Q of measure 
ekX(K) and choose an index s such that K ç Q U(J?=i (Q + ad because our 
theorem is valid for e = ek. 

The appropriately chosen translated images of Q will give a set R with 

k(R) = ekX.(T) and T = R U|Jï=i (K + Oi). 
Set H = H * * U L U . R U ( Y - T ) . 
We can easily deduce H U | J £ i ( H + a ^ X U Y = [0,1]. 
The measure of H is À(H)<2ô+§£ k + e k ^ ( l - £ k + Ô ) - e k - i £ ^ + (2 + £k/2)Ô. 

We have already chosen 8 less than ^ £ k . Also ek+1 < sk — £k/3. Thus e0, e 1 ? . . . 
is clearly a zero-sequence supporting our claim. 

THEOREM 3. For any given zero-sequence an\0 and e>0 there is a set 
A c [ 0 , l ] with A ( A ) > l - £ possessing the property: if xe [0 ,1 ] then 
{n : x + an £ A} is infinite. 

Proof. We are going to construct the complement of the desired A. Using 
theorem 2 we inductively construct sets HUH2,... of measure k(Hk) = e/2k 

and subsequent strings of elements from the sequence {ajk 1+1,. . . , ak} with 
[0,1] covered by Hk U l J L + i (Hfc + a(). So if xe A =[0, l ] - (Uk = i Hk), for 
every fc there is an i with jk-i<i—jk a n d x — ateHk ç [ 0 , 1 ] —A. This gives a 
set A of measure 1 - £ with the property: if x e A then {j:x — a^A] is infinite. 
Taking a closed A with this property, one can remove the condition x e A , and 
{l — x:xeA} will be a good set. 

The author would like to thank R. O. Davies, G. Petruska and the referee 
for their helpful suggestions. 
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