LARGE SETS NOT CONTAINING IMAGES OF A GIVEN SEQUENCE

BY
PÉTER KOMJÁTH

Abstract

In the first part we construct a subset H of positive measure in the unit interval and a zero-sequence $\left\{a_{n}\right\}$ so that H contains no homothetic copy of $\left\{a_{n}\right\}$. In Theorem 2 we prove that if $\varepsilon>0$ and a zero-sequence $\left\{a_{n}\right\}$ are given then there exists a set A of measure less than ε so that $\bigcup_{n=1}^{\infty}\left(A+a_{n}\right)$ covers the interval. An application of this result is Theorem 3: for any sequence $\left\{a_{n}\right\}$ and $\varepsilon>0$ there is a set H of measure $1-\varepsilon$ such that for no N and c is $\left\{a_{n}+c\right\}_{n \geq N}$ contained by H.

1. Introduction. The aim of this paper is to give two generalizations of the following theorem of D. Borwein and S. Z. Ditor [1]: there exists a set $H \subseteq[0,1]$ of positive measure and a sequence $\left\{a_{n}\right\}$ converging to 0 such that if $x \in[0,1]$ then $x+a_{n} \notin H$ for infinitely many n. We prove that there even exists a set H working simultaneously for all of the $\left\{\lambda a_{n}\right\}$'s, where $\left\{a_{n}\right\}$ is a certain specified sequence. We then prove that for any given $\left\{a_{n}\right\}$ we can actually construct a set H with the original property. A common generalization of these two theorems would give the solution of an old and quite challenging problem of P. Erdős [2]: for any given $\left\{a_{n}\right\}$ there is a set of positive measure not containing a subset similar to our sequence.

2. Similarities

Proposition. Assume that n is a natural number $n \geq 2, \varepsilon>1 / n$. Put $A=$ $[0,1-\varepsilon], B=[1+\varepsilon, 2]$. If S is an $n+1$-term arithmetical progression in $A \cup B$ then either $S \subseteq A$ or $S \subseteq B$.

Proof. Assume otherwise. As there is a gap of length 2ε between A and B, the difference of S is at least 2ε. The total length of S i.e. the difference between its last and first member is at least $2 \varepsilon n>2$, a contradiction.

Theorem 1. For any given $\varepsilon>0$ there exist a set $H \subseteq[0,1]$ of measure $1-\varepsilon$ and a sequence $\left\{a_{n}\right\}$ converging to 0 such that for any given $x \in[0,1]$ and $\lambda \neq 0$, $x+\lambda a_{n} \notin H$ for infinitely many n.

Proof. Let us define $K_{0}=[0,1]$ and for every n omit a central subinterval of relative length ε_{n} of every interval from K_{n}. Clearly K_{n+1} will be the union of

Received by the editors April 22, 1981 and, in revised form, October 6, 1981.
AMS subject classification: primary: 28A05; secondary: 54G20, 51M25.
Key words: real sequences, measurable sets.
(C) Canadian Mathematical Society, 1983.
2^{n+1} intervals of equal length and $\lambda\left(K_{n+1}\right)=\left(1-\varepsilon_{0}\right) \cdots\left(1-\varepsilon_{n}\right)$. Our set will be of form $H=\bigcap_{n=0}^{\infty} K_{n}$ for a suitably chosen sequence $\varepsilon_{n} \searrow 0$.

For $k=1,2, \ldots$ construct an arithmetic progression of n_{k} terms S_{k} of length 2^{-k} in $\left(0,2^{-k+1}\right)$, where $n_{k}>1 / \varepsilon_{2 k}$. Clearly $\bigcup_{k=1}^{\infty} S_{k}$ is a zero-sequence. If λS_{k} is a subset of H then by repeated application of the proposition, λS_{k} is in one of the intervals of $K_{2 k}$ which has length $<2^{-2 k}$; so $\lambda<2^{-k}$. Thus, if $x \in[0,1]$, $\lambda \neq 0$ are given, and k is big enough, $x+\lambda S_{k}$ has a point missing from H.

Theorem 2. If $\varepsilon>0$ and $a_{n} \searrow 0$ are given, there is a finite subsequence $a_{\mathrm{j}_{1}}>a_{\mathrm{i}_{2}}>\cdots>a_{\mathrm{j}_{\mathrm{s}}}$ and a set $H \subset[0,1]$ with $\lambda(H) \leq \varepsilon$ and

$$
[0,1] \subseteq H \cup \bigcup_{i=1}^{s}\left(H+a_{\mathrm{j}_{\mathrm{i}}}\right)
$$

(Here $H+a$ denotes $\{x+a: x \in H\}$.)
Proof. Note first that by the well-known properties of Lebesgue-measure the statement of the theorem is equivalent to: there is, for any given $\varepsilon>0$, a set H of measure less then ε for which

$$
[0,1] \subseteq H \cup \bigcup_{i=1}^{\infty}\left(H+a_{i}\right) .
$$

We shall prove, however, the finite version.
Our strategy will be the following: for $\varepsilon=\varepsilon_{0}=1$ the statement is clear. Then we shall inductively define $1>\varepsilon_{1}>\varepsilon_{2}>\cdots$ and so on, and prove that if the statement holds for ε_{k} (and for every sequence) it is true for ε_{k+1}. As $\varepsilon_{k} \searrow 0$ this "infinite descent" gives the desired result.

Assume that the theorem is proved for $\varepsilon=\varepsilon_{k}$ and that H is a set witnessing this fact:

$$
[0,1]=H \cup \bigcup_{i=1}^{p}\left(H+a_{i}\right) .
$$

As the construction proceeds we shall see that the set H will be always a finite union of disjoint intervals-not too serious a restriction, in fact. Let δ be a sufficiently small positive number (say $\delta<\varepsilon_{k}^{2} / 12$). If H is the union of N disjoint intervals and $a_{i}<\delta / 2 N p$ then we can divide H into two parts: $H=$ $H^{*} \cup H^{* *}$ where $\lambda\left(H^{* *}\right)<\delta / p$ and H^{*} is the union of disjoint intervals each of length $2 a_{j}$.
Let us define L as the union of the left-halves of these intervals, M as the union of the right-halves. Clearly $H^{*}=L \cup M$ and $M=L+a_{j}$.
Now we are going to estimate the measure of $X=L \cup \bigcup_{i=1}^{i}\left(L+a_{i}\right)(j \geq p$ is assumed throughout). Since $H \cup \bigcup_{i=1}^{P}\left(H+a_{i}\right)$ covers [0,1] and $H^{*} \cup$ $\bigcup_{i=1}^{P}\left(H^{*}+a_{i}\right)$ covers all $[0,1]$ but a set of measure at most δ and $\left[H^{*} \cup\right.$

Figure 1
$\left.\bigcup_{i=1}^{\mathrm{P}}\left(H^{*}+a_{i}\right)\right]-X$ is covered by certain intervals of length a_{i}, for every such interval $J, J-a_{i}$ is in X and neither J nor $J-a_{j}$ is in H^{*}. This gives

$$
\lambda(X)>\frac{1}{2}\left[1-2 p a_{j}+\lambda\left(H^{*}\right)\right]>\frac{1}{2}\left[1+\varepsilon_{k}-\delta\right] .
$$

(Loosely speaking, $X \cup\left(X+a_{j}\right)$ covers almost all of [0,1], almost all of H^{*} twice.)

The set $Y=[0,1]-X$ is a union of finitely many disjoint intervals. Deleting from it a set of measure less than δ we get the union T of disjoint intervals having equal length.

In any one of these intervals, say in K, one can construct a set Q of measure $\varepsilon_{k} \lambda(K)$ and choose an index s such that $K \subseteq Q \cup \bigcup_{i=1}^{s}\left(Q+a_{i}\right)$ because our theorem is valid for $\varepsilon=\varepsilon_{k}$.

The appropriately chosen translated images of Q will give a set R with $\lambda(R)=\varepsilon_{k} \lambda(T)$ and $T=R \cup \bigcup_{i=1}^{\varsigma}\left(R+a_{i}\right)$.

Set $\tilde{H}=H^{* *} \cup L \cup R \cup(Y-T)$.
We can easily deduce $\tilde{H} \cup \bigcup_{i=1}^{s+j}\left(\tilde{H}+a_{i}\right) \supseteq X \cup Y=[0,1]$.
The measure of \tilde{H} is $\lambda(\tilde{H})<2 \delta+\frac{1}{2} \varepsilon_{k}+\varepsilon_{k} \frac{1}{2}\left(1-\varepsilon_{k}+\delta\right)=\varepsilon_{k}-\frac{1}{2} \varepsilon_{k}^{2}+\left(2+\varepsilon_{k} / 2\right) \delta$. We have already chosen δ less than $\frac{1}{12} \varepsilon_{k}^{2}$. Also $\varepsilon_{k+1}<\varepsilon_{k}-\varepsilon_{k}^{2} / 3$. Thus $\varepsilon_{0}, \varepsilon_{1}, \ldots$ is clearly a zero-sequence supporting our claim.

Theorem 3. For any given zero-sequence $a_{n} \searrow 0$ and $\varepsilon>0$ there is a set $A \subset[0,1]$ with $\lambda(A)>1-\varepsilon$ possessing the property: if $x \in[0,1]$ then $\left\{n: x+a_{n} \notin A\right\}$ is infinite.

Proof. We are going to construct the complement of the desired A. Using theorem 2 we inductively construct sets H_{1}, H_{2}, \ldots of measure $\lambda\left(H_{k}\right)=\varepsilon / 2^{k}$ and subsequent strings of elements from the sequence $\left\{a_{j_{k-1}+1}, \ldots, a_{j_{k}}\right\}$ with $[0,1]$ covered by $H_{k} \cup \bigcup_{i_{k-1}+1}^{j_{k}}\left(H_{k}+a_{i}\right)$. So if $x \in A=[0,1]-\left(\bigcup_{k=1}^{\infty} H_{k}\right)$, for every k there is an i with $j_{k-1}<i \leq j_{k}$ and $x-a_{i} \in H_{k} \subseteq[0,1]-A$. This gives a set A of measure $1-\varepsilon$ with the property: if $x \in A$ then $\left\{j: x-a_{j} \notin A\right\}$ is infinite. Taking a closed A with this property, one can remove the condition $x \in A$, and $\{1-x: x \in A\}$ will be a good set.

The author would like to thank R. O. Davies, G. Petruska and the referee for their helpful suggestions.

References

1. D. Borwein and S. Z. Ditor, Translates of sequences in sets of positive measure, Canadian Mathematical Bulletin 21/4 (1978), 497-498.
2. P. Erdős, Set theoretic, measure theoretic, combinatorial, and number theoretic problems concerning point sets in Euclidean space, Real Analysis Exchange 4 (1978-79), 113-138.

R. EÖtvös University

Department of Algebra and Number Theory
Budapest 8,
P.O.B. 323

H-1445
Hungary

