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Abstract

We construct the quantized enveloping algebra of any simple Lie algebra of type ADE
as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties.
In particular, the dual canonical basis of a one-half quantum group with respect to
Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up
to rescaling. This paper expands the categorification established by Hernandez and
Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of
Bridgeland’s recent work for type ADE.
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1. Introduction

1.1 History
For any given symmetric Cartan datum, let g be the associated Kac–Moody Lie algebra and Ut(g)
the corresponding quantized enveloping algebra. There have been several different approaches to
the categorical realizations of Ut(g).

One-half quantum group. The earliest and best-developed theories are categorifications of a
one-half quantum group. Notice that Ut(g) has the triangular decomposition Ut(g) = Ut(n

+)⊗
Ut(h)⊗Ut(n

−). Let Q denote a quiver associated with g which has no oriented cycles. For any
field k, let kQ denote the path algebra associated with Q.

(1) In 1990, Ringel showed in [Rin90] that the positive (respectively negative) one-half
quantum group Ut(n

+) (respectively Ut(n
−)) can be realized as a subalgebra of the Hall

algebra of the abelian category FqQ − mod, where Fq is any finite field and FqQ − mod the
category of the left modules of the path algebra FqQ. Let us call this Hall algebra approach an
additive categorification of Ut(n

+), because the product of any Chevalley generator with itself
is translated into the direct sum of a simple FqQ-module with itself.

(2) Lusztig has given a geometric construction of Ut(n
+) (cf. [Lus90, Lus91]), by considering

the Grothendieck ring arising from certain perverse sheaves over the varieties of CQ-modules.
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This geometric approach is very powerful. In particular, the perverse sheaves provide us with
a positive basis1 of Ut(n

+), which is called the canonical basis; cf. also [Kas91] for the crystal
basis. We can view Lusztig’s construction as a monoidal categorification of Ut(n

+), because the
addition and the multiplication in Ut(n

+) are translated into the direct sum and the derived
tensor of perverse sheaves.

We recommend to the reader the survey papers of Schiffmann [Sch06, Rou09] for the results
(1) and (2).

(3) Recently, the quiver Hecke algebras (or KLR-algebras; cf. [KL09, Rou08]) provide us with
a monoidal categorification of the one-half quantum group Ut(n

+). A link between Lusztig’s
approach and the quiver Hecke algebras has been established in [VV11].

(4) Finally, assume that g is of type ADE. Hernandez and Leclerc showed that a certain
subcategory of finite-dimensional representations of the quantum affine algebra Uq(ĝ) provides
a monoidal categorification of Ut(n

+); cf. [HL15]. By [Nak01] and [HL15, § 9], their construction
can be understood in terms of graded quiver varieties and then be compared with the work of
Lusztig.

We remark that the categorifications in (3) and (4) are compatible with the (dual) canonical
basis obtained in (2). Moreover, by (4), the categorification in the present paper is compatible
with the dual canonical basis.

Whole quantum group. We can define the algebra Ũt(g) as a variant of the whole quantum
group Ut(g), cf. § 2.1, which has the triangle decomposition Ut(n

+) ⊗ Ũt(h) ⊗ Ut(n
−). This

variant plays a crucial role in Bridgeland’s work [Bri13], which we shall briefly recall. The whole
quantum group Ut(g) is obtained from Ũt(g) by a reduction at the Cartan part Ũt(h).

There have been various attempts to make a Hall algebra construction of the whole quantum
group; cf. for example [Kap98, PX97, PX00, XXZ06]. The complete result was obtained in the
recent work of Bridgeland.

Theorem [Bri13]. Fix a finite field Fq. Let Ũ√q(g)[(Ki)
−1, (K ′i)

−1]i∈I denote the localization of

Ũ√q(g) at the Cartan part. Then it is isomorphic to the localization of the Ringel Hall algebra
of the 2-periodic complexes of projective FqQ-modules at the contractible complexes.

The usual quantum group Ut(g) can be obtained from the above construction as the natural
quotient of Ũt(g)[(Ki)

−1, (K ′i)
−1]i∈I .

In the work of Bridgeland, the realizations of the half-quantum groups Ut(n
+) and Ut(n

−)
can be identified with those in Ringel’s approach. The Cartan part Ũt(h) is generated by certain
complexes homotopic to zero, which are redundant information in the study of the corresponding
triangulated category. In the sense of § 1.1, this Hall algebra approach can be viewed as an
additive categorification of Ut(g).

Also, by the works of Khovanov, Lauda, Rouquier, and Webster, cf. [KL10, Rou08, Web10,
Web13], the quiver Hecke algebras provide a monoidal categorification of the modified quantum
group U̇t(g), which is a different variant of the whole quantum group Ut(g) [Lus93].

Finally, we notice that Fang and Rosso have constructed the whole quantum group in the
spirit of quantum shuffle algebras; cf. [FR12].

1.2 Main construction and result
In this paper, we give a geometric construction of the whole quantum group for the Lie algebra
g of Dynkin type A, D, E, inspired by the following papers.

1 By a positive basis, we mean a basis whose structure constants are non-negative.
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Quantum groups via cyclic quiver varieties I

Inspired by [KS13, Theorem 2.7], we use some cyclic quiver varieties associated with roots
of unity to replace the abelian category of 2-periodic complexes in [Bri13].

Then, the work of Hernandez and Leclerc [HL15, § 9] establishes a construction of the half-
quantum groups Ut(n

+) and Ut(n
−), which can be compared with Lusztig’s work by [HL15, § 9].

The techniques developed in [HL15] and [LP13] will be crucial in our proofs.

We construct the Cartan part Ũt(h) from certain strata of cyclic quiver varieties, which
are identified with the stratum {0} in Nakajima’s transverse slice theorem [Nak01, 3.3.2]. The
analog of these strata for graded quiver varieties provides redundant information in the study of
quantum affine algebras [Nak01]. So, our construction of the Cartan part shares the same spirit
as that of Bridgeland’s work:

The Cartan part is categorified by redundant information.

In the sense of our previous discussion in categorification (2), this geometric construction
can be viewed as a monoidal categorification of Ũt(g), which contains the Hernandez–Leclerc
categorification of Ut(n). In particular, we obtain a positive basis of Ũt(g), which, up to rescaling,
contains the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear
form.

We refer the reader to § 3.1 for the detailed construction and Theorems 3.1.6 and 3.1.7 for
the rigorous statements of the results.

1.3 Remarks

This paper could be viewed as a geometric counterpart of Bridgeland’s work for the type ADE.
It is natural to compare this geometric construction with the Hall algebra construction of
Bridgeland. The details might appear elsewhere.

On the other hand, by choosing the shifted simple modules in derived categories as in
[HL15, § 8.2], the analogous construction in the present paper remains effective over graded
quiver varieties associated with a generic q. Details might appear elsewhere. The corresponding
Grothendieck ring should then be compared with the semi-derived Hall algebra associated with
the quiver Q in the sense of Gorsky [Gor13]. However, this straightforward generalization is not
a unique approach. A completely different construction might appear in Gorsky’s future work.

In this paper, the twisted product defined for the Grothendieck ring is different from those
used by [Nak04] or by [Her04a, HL15]. It is worth mentioning that our twisted product agrees with
the non-commutative multiplication of [Her04a, HL15] on the one-half quantum group Ut(n

+),
as we shall prove in the last section. We refer the reader to Example 3.2.3 for a comparison of
various products.

Our Grothendieck ring Ũt(g) is defined over some cyclic quiver varieties, which are closely
related to the Grothendieck ring of finite-dimensional representations of the quantum affine
algebra Uq(ĝ) at the root of unity q. In particular, in [Nak04], Nakajima has used these cyclic
quiver varieties to study the t-analog of the q-characters on the latter Grothendieck ring. However,
to the best knowledge of the author, there exists no twisted product in the literature such that
the Cartan part of Ũt(g) consists of center elements, which prevents a direct reduction of Ũt(g)
to the t-deformed Grothendieck ring of representations of Uq(ĝ) considered in [Nak04, Her04b].

Finally, the present paper is just a first step of this geometric approach. In particular, the
reduction of the Cartan part discussed here follows a straightforward algebraic approach, which
was used by Bridgeland. We shall use the corresponding geometric realization to study quantum
groups in a future work.
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2. Preliminaries

2.1 Quantum groups
We recall the basic facts concerning the quantum groups and refer the reader to Schiffmann’s
paper [Sch06] or Lusztig’s book [Lus93] for more details. We shall follow the notation used in
[KQ14, Kim12].

Let n be any given positive integer and define the index set I = {1, . . . , n}. Fix a symmetric
root datum. Denote the Cartan matrix by C = (aij)i,j∈I and the positive simple roots by {αi,
i ∈ I}. Let g be the corresponding Kac–Moody Lie algebra.

Let t be an indeterminate. We define [n]t = (tn − t−n)/(t − t−1), [n]t! = [1]t · [2]t · . . . · [n]t.
Let Ũt(g) be the Q(t)-algebra generated by the Chevalley generators Ei,Ki,K

′
i, Fi, i ∈ I, which

are subject to the following relations:
1−aij∑
k=0

(−1)kE
(k)
i EjE

(1−aij−k)
i = 0,

1−aij∑
k=0

(−1)kF
(k)
i FjF

(1−aij−k)
i = 0,

[Ei, Fj ] = δij
Ki −K ′i
t− t−1

,

[Ki,Kj ] = [Ki,K
′
j ] = [K ′i,K

′
j ] = 0,

KiEj = taijEjKi,

KiFj = t−aijFjKi,

K ′iEj = t−aijEjK
′
i,

K ′iFj = taijFjK
′
i,

where E
(k)
i = Eki /[k]t! and F

(k)
i = F ki /[k]t!.

The quantum group Ut(g) is defined as the quotient algebra of Ũt(g) with respect to the
ideal generated by the elements Ki ∗K ′i − 1, i ∈ I.

Let Ũt(n
+) be the subalgebra of Ũt(g) generated by Ei, i ∈ I, Ũt(h) the subalgebra of Ũt(g)

generated by Ki, K
′
i, and Ũt(n

−) the subalgebra of Ũt(g) generated by Fi. The subalgebras

Ut(n
+), Ut(h), and Ut(n

−) of Ut(g) are defined similarly. Then both Ũt(g) and Ut(g) have
triangular decompositions:

Ũt(g) = Ũt(n
+)⊗ Ũt(h)⊗ Ũt(n

−),

Ut(g) = Ut(n
+)⊗Ut(h)⊗Ut(n

−).

From the definitions, we have Ut(n
+) = Ũt(n

+), Ut(n
−) = Ũt(n

−), and Ut(h) = Ũt(h)/(Ki ∗
K ′i − 1)i.

The Kashiwara bilinear form ( , )K on Ut(n
+) has the property (Ei, Ej)K = δij ; cf. [Kas91,

§ 3.4]. The Lusztig bilinear form ( , )L on Ut(n
+) has the property (Ei, Ej)L = δij(1− t2)−1; cf.

[Lus93, 1.2.5]. In general, by [Lec04, 2.2], for any homogeneous elements x, y ∈ Ut(n
+)β, where

β =
∑

i∈I βiαi, βi ∈ N, we have

(x, y)K = (1− t2)
∑
i βi · (x, y)L. (1)

We let At(n
+) denote the quantum coordinate ring which is the graded dual Q(t)-vector

space of Ut(n
+) endowed with a restricted multiplication; cf. [GLS13, § 4] and also [Kim12, § 3].

Proposition 2.1.1 [GLS13, Proposition 4.1]. There exists an algebra isomorphism Ψ from
Ut(n

+) to At(n
+) such that any element x is sent to the linear map (x, )K .
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2.2 Graded and cyclic quiver varieties

In this paper, we consider the quivers2 Q of type A, D, E.

Choose any q ∈ C∗ such that q 6= 1. It generates a cyclic subgroup 〈q〉 in the multiplicative

group (C∗, ∗). We assume that either 〈q〉 is an infinite group or its cardinality is divisible by 2.

Because the underlying graph of the Dynkin quiver Q is a tree, we can choose a height

function ξ : I → 〈q〉 such that ξ(k) = q ∗ ξ(i) whenever there is an arrow from k to i in Q.

Define Î = {(i, a) ∈ I × 〈q〉|ξ(i) ∗ a−1 ∈ 〈q2〉}. The reader is referred to Example 2.2.1 for an

example.

Let σ denote the automorphism of I × 〈q〉 such that σ(i, a) = (i, q−1a). Then I × 〈q〉 is the

disjoint union of Î and σÎ. We use τ to denote the automorphism σ2 on I × 〈q〉.
We always use x to denote the elements in σÎ. We use v, w to denote the finitely supported

elements in NσÎ , NÎ , respectively. Let ei,a denote the characteristic function of (i, a), which is

also viewed as the unit vector supported at (i, a). We have σ∗eσ(i,a) = ei,a. For any given v, w,

we denote the associated I × 〈q〉-graded vector spaces by V =
⊕

i,a V (i, a) =
⊕

Cv(i,a) and

W =
⊕

i,aW (i, a) =
⊕

Cw(i,a).

The q-Cartan matrix Cq is a linear map from ZσÎ , ZÎ , such that for any (i, a) ∈ σÎ, we have

Cqei,a = ei,qa + ei,q−1a +
∑

j∈I,j 6=i
aijej,a. (2)

A pair (v, w) is called l-dominant if w − Cqv > 0.

We shall define graded/cyclic quiver varieties. Details could be found in [Nak01] (cf. also

[Nak11, Qin14, KQ14]).
Let Ω denote the set of the arrows of Q. Similarly, let Ω denote the set of the arrows of

the opposite quiver Qop. For each arrow h, we let s(h) and t(h) denote its source and target,
respectively. Define

Eq(Ω; v, w) =
⊕

(i,a)∈σÎ

⊕
h∈Ω:s(h)=i,t(h)=j

Hom(V (i, a), V (j, aq−1)), (3)

Lq(w, v) =
⊕
x∈σÎ

Hom(W (σ−1x), V (x)), (4)

Lq(v, w) =
⊕
x∈σÎ

Hom(V (x),W (σx)). (5)

Define the vector space Repq(Q; v, w) to be

Repq(Q; v, w) = Eq(Ω; v, w)⊕ Eq(Ω; v, w)⊕ Lq(w, v)⊕ Lq(v, w), (6)

whose elements are denoted by(⊕
h

Bh,
⊕
h

Bh, (αi)i∈I , (βi)i∈I

)
=

(⊕
h∈Ω

(⊕
a

Bh,a

)
,
⊕
h∈Ω

(⊕
b

Bh,b

)
,

(⊕
a

αi,a

)
i∈I
,

(⊕
b

βi,b

)
i∈I

)
.

2 The quiver Q used in this paper should be compared with the opposite quiver Qop used in [KQ14].
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1

2

3

h2

h1

Figure 1. A quiver of type A3.

(1, 1)

(2, q)

(3, q2)

(1, q2)

(2, q3)

(3, q4)

· · ·

· · ·

(1, q)

(2, q2)

(3, q3)

(1, q3)

(2, q4)

(3, q5)

· · ·

· · ·

σ σ

Figure 2. (Colour online) Vertices I × 〈q〉.

The group GLv =
∏
x∈σÎ GLv(x) naturally acts on Repq(Q; v, w). We have the map µ as the

natural analog of the moment map such that

µ

((⊕
h

Bh,
⊕
h

Bh, (αi), (βi)

)
=

∑
h∈Ω,h

′∈Ω:s(h)=t(h
′
)

BhBh′ −
∑

h∈Ω,h
′∈Ω:s(h

′
)=t(h)

B
h
′Bh +

∑
i∈I

αiβi;

cf. [Nak01] for details.
For the GLv-variety µ−1(0), we construct Mumford’s GIT3 quotient Mq(v, w) and the

categorical quotient Mq
0(v, w). There is a natural proper morphism π from the GIT quotient

Mq(v, w) to the categorical quotient Mq
0(v, w).

Example 2.2.1. Let the quiver Q be given by Figure 1. We can choose the height function ξ such
that ξ(i) = qi−1. Then I × 〈q〉 is given by Figure 2, where the vertices in square boxes belong to
Î and the other vertices belong to σÎ.

Then the vector space Repq(Q; v, w) is described in Figure 3, whose rows and columns are
indexed by I-degrees (vertices) and 〈q〉-degrees (heights), respectively.

In this example, the analog of the moment map µ takes the form

(α1β1 +Bh1Bh1
)⊕ (α2β2 +Bh2Bh2

−Bh1
Bh1)⊕ (α3β3 −Bh2

Bh2).

3 GIT stands for ‘geometric invariant theory’.
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W (1, 1)

W (2, q)

W (3, q2)

W (1, q2)

W (2, q3)

W (3, q4)

· · ·

· · ·

V (1, q)

V (2, q2)

V (3, q3)

V (1, q3)

V (2, q4)

V (3, q5)

· · ·

· · ·

height = 1 q q2 q3 q4 q5

α1

α2

α3

β1β1

β2β2

β3β3

h1h1

h2h2

h1

h2

Figure 3. (Colour online) Vector space Repq(Q; v, w).

First, assume that q is not a root of unity. Then the quotients Mq(v, w) and Mq
0(v, w)

do not depend on q. They will be called the graded quiver varieties and denoted by M•(v, w)
and M0

•(v, w), respectively. Let M0
•(w) denote the natural union

⋃
vM0

•(v, w). This is a
finite-dimensional affine variety with a stratification into the regular strata

M0
•(w) =

⊔
v:w−Cqv>0

M0
•reg(v, w).

Similarly, assume that q equals ε, which is a root of unity. The varieties Mε(v, w) and
M0

ε(v, w) will be called the cyclic quiver varieties. Let M0
ε(w) denote the natural union⋃

vM0
ε(v, w).

Proposition 2.2.2 [Nak01, § 2.5]. Assume that the quiver Q is of Dynkin type A, D, E. Then
the union M0

ε(w) is finite dimensional with a stratification into the regular strata

M0
ε(w) =

⊔
v:w−Cqv>0

M0
εreg(v, w). (7)

The properties of the cyclic quiver varieties are similar to those of the graded quiver varieties,
except for the following two important differences:

• the linear map Cq (q-Cartan matrix) is not injective;

• it is not known if the smooth cyclic quiver variety Mε(v, w) is connected or not.

The smooth cyclic quiver variety Mε(v, w) is pure dimensional; cf. [Nak01, (4.1.6)]. For
any v, choose a set {αv} such that it parameterizes the connected component of Mε(v, w). For
any l-dominant pair (v, w), since the restriction of π on the regular stratum M0

εreg(v, w) is a
homeomorphism, the set {αv} naturally parameterizes the connected components of this regular
stratum:

M0
εreg(v, w) =

⊔
αv

M0
εreg;αv(v, w). (8)

Let 1Mε(v,w) denote the perverse sheaf associated with the trivial local system of rank 1 on
Mε(v, w). Denote the perverse sheaf π!(1Mε(v,w)) by π(v, w).
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Using the transverse slice theorem (cf. [Nak01]), we can simplify the decomposition of π(v, w)
as follows (cf. the proof of Theorem 8.6 in [Nak04]):

π(v, w) =
∑

v′:w−Cqv′>0,v′6v

av,v′;w(t)L(v′, w), (9)

where we denote F [d]⊕m by mtdF for any sheaf F and m ∈ N, d ∈ Z, and we define

L(v′, w) = IC(M0
εreg(v′, w)) =

⊕
αv′

IC(M0
εreg;αv′ (v′, w)). (10)

Notice that we have av,v′;w(t) ∈ N[t±], av,v′;w(t−1) = av,v′;w(t), and av,v;w = 1. We do not know
if L(v′, w) is a simple perverse sheaf or not.

For any decomposition w = w1 + w2, we have the restriction functor between the derived
category of constructible sheaves

R̃es
w

w1,w2 : Dc(M0
ε(w))→ Dc(M0

ε(w1)×M0
ε(w2)).

By [VV03], R̃es
w

w1,w2(π(v, w)) equals⊕
v1+v2=v

π(v1, w1)� π(v2, w2)[d((v2, w2), (v1, w1))− d((v1, w1), (v2, w2))], (11)

where the bilinear form d( , ) is given by

d((v1, w1), (v2, w2)) = (w1 − Cqv1) · σ∗v2 + v1 · σ∗w2. (12)

For each w, the Grothendieck group Kw is defined as the free abelian group generated
by the perverse sheaves L(v, w) appearing in (9). It has two Z[t±]-bases: {π(v, w)|w − Cqv > 0,
M0

εreg(v, w) 6= ∅} and {L(v, w)}. Then its dual Rw = HomZ[t±](Kw,Z[t±]) has the corresponding
dual bases {χ(v, w)|w−Cqv > 0,M0

εreg(v, w) 6= ∅} and {L(v, w)}. Notice that, throughout this
paper, we only define L(v, w), L(v, w) for the l-dominant pairs (v, w) such thatM0

εreg(v, w) 6= ∅.
The restriction functors induce an NÎ -graded coassociative comultiplication on the NÎ -graded

Grothendieck group
⊕

wKw, which we denote by R̃es.

2.3 Quiver varieties and quiver representations
Let Rep(Q) denote the category of left CQ-modules. Let Db(Q) denote the bounded derived
category of Rep(Q) with the shift functor Σ. In Db(Q), we have Auslander–Reiten triangles.
Also, let ν denote the derived tensor with the bimodule HomCQ(CQ,C). Then we have

DHomDb(Q)(x, y) = HomDb(Q)(y, νx) ∀x, y ∈ Db(Q).

By abuse of notation, we use τ to denote the Auslander–Reiten translation, which is defined as
Σ−1ν.

Let IndDb(Q) be a full subcategory of Db(Q) whose objects form a set of representatives of
the isoclasses of the indecomposable objects of Db(Q) such that it is stable under τ and Σ. Its
subcategory Ind Rep(Q) is naturally defined.

Assume that q is not a root of unity; then we can choose a natural identification of σÎ with
(the objects of) IndDb(Q) such that it commutes with τ .
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P1

P2

P3

S2

I2

ΣP1

S3

ΣP2

ΣS2

ΣP3

ΣI2

ΣS3

· · · · · ·

τ τ τ

Figure 4. Auslander–Reiten quiver of IndDb(Q).

W (σS1)

W (σP2)

W (σP3)

W (σS2)

W (σI2)
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Figure 5. (Colour online) Vector space Repq(Q; v, w).

Define

W+ =
⊕

x∈Ind Rep(Q)

Neσx,

V + =
⊕

x∈Ind Rep(Q), x is not injective

Nex,

WS =
⊕

x∈{Si,i∈I}

Neσx.

(13)

Example 2.3.1 (Quiver type A3). Let us continue Example 2.2.1. The vertices in σÎ take the

form (i, qi+2d), d ∈ Z; cf. Figure 2. On the other hand, the Auslander–Reiten quiver of IndDb(Q)

is given in Figure 4. Notice that the projective CQ-module P1 is also the simple module S1.

So, we can identify σÎ with the objects of IndDb(Q) by sending the vertex (i, qi+2d) to the

object τ−dPi. Then Figure 3 becomes Figure 5. It follows that the dimension vectors in W+

concentrate at the vertices σx, x ∈ IndCQ-mod, those in V + concentrate at S1, P2, S2, and

those in WS at σSi, i = 1, 2, 3.

Recall that a pair (v, w) is called l-dominant if w−Cqv > 0. The vector spaces W+, V +, WS

are defined in (13). We shall use the following combinatorial property of the l-dominant pairs.

Theorem 2.3.2 [LP13]. Assume that q is not a root of unity. Then, for any w̃ ∈ W+, there

exists a unique l-dominant pair (v, w) ∈ V + ×WS such that w − Cqv = w̃.
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3. Grothendieck rings arising from cyclic quiver varieties

3.1 Constructions and main results
We follow the conventions in § 2. Let h denote the Coxeter number of the Dynkin type of the
quiver Q. We make the following convention from now on:

Fix ε to be a (2h)th primitive root of unity and, by default, take q to be ε.

It follows that the automorphism τh on I × 〈ε〉 equals 1. The subset σÎ of I × 〈ε〉 has the
cardinality nh.

Let us choose the natural covering map π from the set IndDb(Q) to σÎ which sends the ith
projective Pi to (i, εξi) and commutes with τ , namely, τπ(M) = π(τM).

Choose a section M? of this covering map π such that πMx = x for any x ∈ σÎ. We further
require that the image of σÎ under M? is contained in (Ind Rep(Q))t (Σ(Ind Rep(Q))). When the
context is clear, we simply denote Mx by x and omit the notation of the covering map π.

Notice that the image of the section map M? is not closed under τ nor Σ.

Example 3.1.1. In Example 2.2.1, we can take q = ε to be a primitive 8th root of unity. Then the
vertices σÎ take the form (i, qi+2d), i ∈ I, d ∈ {0, 1, 2, 3}. We can construct the section map from
σÎ to IndDb(Q) which sends (i, qi+2d) to τ−dPi (these are the objects already drawn in Figure 4).

The shift functor Σ induces an automorphism Σ on the set IndDb(Q). It is inherited by σÎ.
We extend this automorphism Σ to I × 〈ε〉 by requiring Σσ = σΣ. It follows that Σ2 = 1.

Let W+, V +, WS be defined as in (13). We also define

W− = Σ∗W+,

V − = Σ∗V −,

WΣS = Σ∗WS .

(14)

For any i ∈ I, we define

wfi = eσSi + eσΣSi ,

W 0 =
⊕
i∈I

Nwfi ,

vfi =
∑
x∈σÎ

dimHomDb(Q)(Si,Mx)ex,

vΣfi = Σ∗vfi ,

V 0 =
⊕
i∈I

(Nvfi ⊕ NvΣfi).

(15)

Following § 2.2, we consider the Grothendieck group K =
⊕

w∈WS⊕WΣS Kw. Its NÎ -graded

dual R =
⊕

w∈WS⊕WΣS Rw has the multiplication ⊗̃ induced by the comultiplication R̃es of K.
It follows from [VV03] that we have

L(v1, w1) ⊗̃L(v2, w2) =
∑
v

cvv1,v2(t)L(v, w1 + w2) (16)

such that cvv1,v2(t) ∈ N[t±], cvv1,v2 = 0 whenever v < v1 + v2, and cv
1+v2

v1,v2 =

td((v2,w2),(v1,w1))−d((v1,w1),(v2,w2)). The term cv1+v2

v1,v2 (t)L(v1 + v2, w
1 + w2) is called the leading

term of the right-hand side of (16).
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Proposition 3.1.2 [HL15, Theorem 7.3]. (1) R+ =
⊕

w∈WS Rw is the Z[t±]-algebra generated
by {L(0, eσSi), i ∈ I} with respect to the product ⊗̃.

(2) R− =
⊕

w∈WΣS Rw is the Z[t±]-algebra generated by {L(0, eσΣSi), i ∈ I} with respect to
the product ⊗̃.

We also define R0 to be the algebra generated by

{L(vfi , wfi),L(vΣfi , wfi), i ∈ I}. (17)

We will call L(0, eσSi), L(vfi , wfi), L(vΣfi , wfi), L(0, eσΣSi), i ∈ I, the Chevalley generators of
the Grothendieck ring R.

Remark 3.1.3. The generators L(0, eσSi), L(0, eσΣSi) should be compared with the generators
yi,0, yi,1 in [HL15, Theorem 7.3] for derived categories, respectively. We shall show that the
relation (R1) in [HL15, Theorem 7.3] holds for our generators. But the relation (R2) does not
hold in our case. See Example 3.2.3 for more details.

Let us use ( )t1/2 and ( )Q(t1/2) to denote the extensions ( ) ⊗ Z(t1/2) and ( ) ⊗ Q(t1/2),
respectively.

Let Φ be the linear map from NÎ to the Grothendieck group K0(Rep(Q))⊕K0(Σ(Rep(Q)))
such that Φ(eσx) = x. For any elements x= (x1, x2), y = (y1, y2) ∈K0(Rep(Q))⊕K0((ΣRep(Q))),
define the following bilinear forms as combinations of the Euler forms:

〈x, y〉a = 〈x1, y1〉 − 〈y1, x1〉+ 〈x2, y2〉 − 〈y2, x2〉, (18)

(x, y) = 〈x1, y1〉+ 〈y1, x1〉+ 〈x2, y2〉+ 〈y2, x2〉. (19)

Following the convention in § 2.2, for any w = w1 + w2, R̃es
w

w1,w2 is a homomorphism

from (Kw)t1/2 to (Kw)t1/2
⊗

Z[t±(1/2)](Kw)t1/2 . Define4 its deformation Resww1,w2 to be R̃es
w

w1,w2

t−(1/2)〈Φ(w1),Φ(w2)〉a . Then we obtain a (coassociative) comultiplication Res on Kt1/2 and
correspondingly a multiplication ⊗ on Rt1/2 . We compare it with the twisted products in
[Her04a, HL15, Nak01] in Example 3.2.3.

For any w ∈ W+, Φ(w) can be viewed as a CQ-module. We define degΦ(w) to be the total
dimension of Φ(w) and the bilinear form

N(Φ(w)) = (Φ(w),Φ(w))− degΦ(w). (20)

Let B∗K = {B∗K(w)|w ∈ W+} denote the dual canonical basis of Ut(n
+) with respect to

Kashiwara’s linear form ( , )K . Define the rescaled dual canonical basis B̃∗K to be {B̃∗K(w)|w ∈
W+} such that B̃∗K(w) = t(1/2)N(Φ(w))B∗K(w).

The following was the main result of [HL15] for graded quiver varieties with a generic choice
of q.

Theorem 3.1.4 (One-half quantum group [HL15, Theorem 6.1]). (1) There exists an algebra
isomorphism κ̃ from the Grothendieck ring (R+

Q(t1/2)
,⊗) to the one-half quantum group

Ut(n
+)Q(t1/2) such that

κ̃L(0, eσSi) = Ei ∀i ∈ I.

(2) This isomorphism identifies the basis {L(v, w), w ∈WS} with the rescaled dual canonical
basis B̃∗K such that κ̃(L(v, w)) = B̃∗K(w − Cqv).

4 This choice of the degree arises from the comparison of the equations in Proposition 4.4.1 with the defining
relations of Ũt(g). It is also an anti-symmetrized version of the twist used by [Bri13].

309

https://doi.org/10.1112/S0010437X15007551 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007551


F. Qin

Theorem 3.1.5 (Triangular decomposition). The ring (R,⊗) (respectively (R, ⊗̃)) decomposes
into the tensor product of its subalgebras:

R = R+
⊗
Z[t±]

R0
⊗
Z[t±]

R−.

Theorem 3.1.6. (i) There exists an algebra isomorphism κ from (RQ(t1/2),⊗) to Ũt(g)Q(t1/2)

such that we have Ũt(n
+)Q(t1/2) = κR+

Q(t1/2)
, Ũt(h)Q(t1/2) = κR0

Q(t1/2)
, Ũt(n

−)Q(t1/2) = κR−Q(t1/2)
,

and, for any i ∈ I,

κ(t1/2) = t1/2,

κL(0, eσSi) =
1− t2

t
Ei,

κL(vΣfi , wfi) = Ki,

κL(vfi , wfi) = K ′i,

κL(0, eσΣSi) =
t2 − 1

t
Fi.

(ii) Let I be the ideal of (R,⊗) generated by the center elements L(vfi + vΣfi , 2wfi) − 1,
i ∈ I. Then the map κ induces an isomorphism between the quotient ring R/I and the quantum
group Ut(g).

Finally, we consider the dual canonical basis of Ut(n
+) with respect to Lusztig’s bilinear

form ( , )L, which is denoted by

B∗L = {B∗L(w)|w ∈W+}.

Define the rescaled dual canonical basis to be B̃∗L = {B̃∗L(w)|w ∈W+} such that

B̃∗L(w) = t(1/2)N(Φ(w))−degΦ(w)B∗L(w). (21)

It is not obvious to see that on the Grothendieck ring R+, our twisted product ⊗ agrees with
the non-commutative multiplication ∗ defined in [HL15], which we will show in the last section.
Once we see that they coincide on the subalgebra R+, [HL15, Theorem 6.1] is translated as the
following.

Theorem 3.1.7 [HL15, Theorem 6.1]. The isomorphism κ identifies {L(v, w), w ∈WS} with B̃∗L
such that κL(v, w) = B̃∗L(w − Cqv).

3.2 Examples
Example 3.2.1 (Type sl2). Assume that the quiver Q consists of a single point. Then h equals 2.
Also, ε is a 4th primitive root of unity. The vector space Repε(Q; v, w) for cyclic quiver varieties
is given by Figure 6.

The Chevalley generators of the Grothendieck ring (R,⊗) are given by

L(0, eσS), L(eS , eσS+σΣS), L(eΣS , eσS+σΣS), L(0, eσΣS).

Theorem 3.1.6 identifies RQ(t1/2) with Ũt(sl2)Q(t1/2) and the above generators with E, K ′, K, F ,
respectively.
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W (σS) W (σΣS) W (σS)V (S) V (ΣS)

height = 1 ε ε2 ε3 ε4 = 1

αα ββ

Figure 6. (Colour online) Repε(Q; v, w) for cyclic quiver varieties of type sl2.

W (σS1)

W (σP2)

W (σS2)

W (σΣS1)

W (σΣP2)

W (σΣS2)

V (S1)

V (P2)

V (S2)

V (ΣS1)

W (σS1)

V (ΣS2)

V (ΣP2)

V (ΣS2)

height = 1 ε ε2 ε3 ε4 ε5 ε6 = 1

α1α1α1

α2α2α2

β1β1β1

β2β2β2

hhh hhh

Figure 7. (Colour online) Repε(Q; v, w) for cyclic quiver varieties of type sl3.

Example 3.2.2 (Type sl3). Assume that the quiver Q takes the form (2
h−→ 1). Then h equals 3.

Also, ε is a 6th root of unity. The vector space Repε(Q; v, w) for cyclic quiver varieties is given

by Figure 7.
The Chevalley generators of the Grothendieck ring (R,⊗) are given by

L(0, eσSi), i = 1, 2,

L(eS1 + eP2 , eσS1+σΣS1), L(eS2 + eΣS1 , eσS2+σΣS2),

L(eΣS1 + eΣP2 , eσS1+σΣS1), L(eΣS2 + eS1 , eσS2+σΣS2),

L(0, eσΣSi), i = 1, 2.

Theorem 3.1.6 identifies RQ(t1/2) with Ũt(sl3)Q(t1/2) and the above generators with Ei, K
′
1, K ′2,

K1, K2, Fi, respectively.

Example 3.2.3. We continue Example 3.2.2 and compare various twisted products.
Let us take Chevalley generators from the positive part and the negative part of the quantum

group, respectively. Our twisted product ⊗ satisfies

L(0, eσS1)⊗ L(0, eσΣS2) = L(0, eσΣS2)⊗ L(0, eσS1).

On the other hand, the twisted product in [HL15, Theorem 7.3(R2)] and [Her04a], if defined
over the pairs (v, w), would demand the following relation:

L(0, eσS1)⊗ L(0, eσΣS2) = t−(α1,α2)L(0, eσΣS2)⊗ L(0, eσS1).

Therefore, ⊗ is not the same as the product used in [HL15, Her04a].
Also, ⊗ is not the twisted product in [Nak04] either. Recall that our geometrical restriction

functor is twisted by the Euler form in (18). But [Nak04] twisted the geometrical restriction
functor by a different bilinear form dW for generic q, which takes different values. For q a root of
unity, [Nak04] (cf. also [Her04b, Theorem 3.5]) used the different twisted product ⊗̃ associated
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with the anti-symmetrized version of the bilinear form d( , ), which gives us

d((0, eσS2), (0, eσS1))− d((0, eσS1), (0, eσS2)) = 0,

L(0, eσS1) ⊗̃L(0, eσS2) = t0L(0, eσS2 + eσS1) + other terms.

On the other hand, our product ⊗ would twist the above leading t-power by t−(1/2)〈S1,S2〉.

In fact, our twisted product ⊗ is defined for the pair (v, w), where v ∈ NσÎ , w ∈ NÎ , while the
twisted products in [Nak04] (for generic q) and [HL15, Her04a] are defined over the dimension
vectors w. In order to compare our ⊗ with the latter two products, we have to reduce the pair
(v, w) to the dimension w−Cqv. This would demand the Cartan elements L(eS1 +eP2 , eσS1+σΣS1),
L(eS2 + eΣS1 , eσS2+σΣS2), L(eΣS1 + eΣP2 , eσS1+σΣS1), L(eΣS2 + eS1 , eσS2+σΣS2) to be center with
respect to ⊗, which is not true. The author does not know any non-trivial twisted product
defined over cyclic quiver varieties such that these Cartan elements become center elements.
The incompatibility of our product ⊗ and the twisted products in [Nak04] (for generic q) and
[HL15, Her04a] could be expected, because abelian categories of 2-periodic complexes are not
subcategories of derived categories.

Nevertheless, the restriction of the twisted product ⊗ on L(0, eσSi), L(0, eσSj ), i, j = 1, 2,
agrees with that of [HL15, Theorem 7.3(R1)] for the corresponding elements; cf. § 5.

4. Proofs

For simplicity, we shall often denote HomDb(Q)( , ) by Hom( , ).

4.1 l-dominant pairs

Lemma 4.1.1. For any x ∈ Ind Rep(Q), y ∈ σÎ, we have

HomDb(Q)(x, τMy) = HomDb(Q)(x,Mτy).

Proof. Notice that τh = 1 and σÎ is identified with Ind Rep(Q) t ΣInd Rep(Q). The statement
obviously holds if My is not a projective CQ-module. On the other hand, assume that My is a
projective CQ-module. Then Σ−1Mτy is an injective CQ-module and both sides vanish. 2

Lemma 4.1.2. For any i ∈ I, wfi − Cqvfi vanishes.

Proof. For any x ∈ σÎ, we have an almost split triangle in Db(Q)

τMx→ E →Mx→ ΣτMx.

For simplicity, we denote HomDb(Q)( , ) by Hom( , ). Applying the functor Hom(Si, ) to this
triangle, we get a long exact sequence

Hom(Si,Σ
−1Mx)

ω1

−→ Hom(Si, τMx)

→ Hom(Si, E)→ Hom(Si,Mx)
ω2

−→ Hom(Si,ΣτMx).

By Lemma 4.1.1 and (15), the coordinate of Cqv
fi at the vertex σx is

(Cqv
fi)σx = dimHom(Si, τMx)− dimHom(Si, E) + dimHom(Si,M).

(i) Assume x ∈ Ind Rep(Q). Then Hom(Si,Σ
−1Mx) vanishes.
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If x 6= Si, we get ω2 = 0 by the universal property of Auslander–Reiten triangles and
consequently

(Cqv
fi)σx = dimHom(Si, τMx)− dimHom(Si, E) + dimHom(Si,M) = 0.

For x = Si, we get Kerw2 = 0 and

(Cqv
fi)σSi = dimHom(Si, Si) = 1.

(ii) Assume x ∈ ΣInd Rep(Q). Then Hom(Si,ΣτMx) vanishes.
If x 6= ΣSi, we get ω1 = 0 by the universal property of Auslander–Reiten triangles and

consequently

(Cqv
fi)σx = dimHom(Si, τMx)− dimHom(Si, E) + dimHom(Si,M) = 0.

For x = ΣSi, we get Cokw1 = 0 and consequently

(Cqv
fi)σΣSi = dimHom(Si, τΣSi) = 1. 2

4.2 Proof of the one-half quantum group
We prove Proposition 4.2.1 in this subsection, which tells us that the study of cyclic quiver
varieties M0

ε(w), w ∈W+, can be reduced to the study of the graded quiver varieties M0
•(w)

for a generic choice of q. More precisely, we show that these cyclic quiver varieties are free of
‘wrapping paths’; cf. Example 4.2.2.

Proposition 4.2.1 allows us to translate the results obtained in [HL15, LP13] for the latter
varieties into Proposition 3.1.2 and Theorem 3.1.4. For completeness, we give a sketch of the
proofs.

Proposition 4.2.1. For any w ∈ W+, the cyclic quiver variety M0
ε(w) is isomorphic to the

graded quiver variety M0
•(w).

We have studied the graded quiver varietiesM0
•(w) for w ∈ w+. By Proposition 4.2.1, their

results can be used for the cyclic quiver variety M0
ε(w), w ∈W+.

We give an example to show how a ‘wrapping path’ vanishes.

Example 4.2.2. Let us look at Figure 7. For any given w ∈ W+, take any composition of
irreducible morphisms which only passes through the vertices x ∈ σÎ or σSi, i ∈ I, with the
ending points of the type σSi.

For example, we can take a composition p such that the sequence of the vertices it passes
through is (σS2, S1, σS1,ΣP2,ΣS1, S2, σS2). Then p horizontally wraps the figure, in the sense
that the heights of these vertices occupy the whole cyclic group 〈ε〉.

Take the factor p′ of p corresponding to the subsequence (ΣP2,ΣS1, S2). Because of the
relation µ = 0 and since w is concentrated on σSi, i ∈ I, p′ corresponds to a morphism from ΣP2

to S2 in (Db(Q))op. But such a morphism must vanish. Therefore, p′ and p vanish.

Proof of Proposition 4.2.1. We shall use the notions of Nakajima categories in the sense of
[KS13]. Let R be the mesh category associated with a generic q ∈ C∗ and Rε the mesh category
associated with ε. Let S denote the singular Nakajima category which is generated by the objects
σx, x ∈ Ind Rep(Q), in the mesh category R. Similarly, define the singular Nakajima category Sε
as a subcategory of Rε.
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By our convention, an S-module is a functor from S to the category of complex vector spaces.
Then the variety of w-dimensional S-modules, denoted by Rep(S, w), is isomorphic to M0

•(w),
cf. [KS13, LP13], andM0

ε(w) is a closed subvariety in Rep(Sε, w). Notice that we can naturally
embedM0

•(w) intoM0
ε(w). Therefore, to verify the proposition, it suffices to show that S and

Sε are equivalent. Its proof consists of the following two steps.
(i) For any two modules x, y ∈ Ind Rep(Q), let p be any composition of irreducible morphisms

in Rε such that p starts from σx, ends at σy, and does not pass any object σz ∈ Rε with
z ∈ ΣInd Rep(Q) in its definition. Let (i, a) = ((i0, a0), . . . , (ir, ar)) denote the sequence of the
objects that p passes through, where (i0, a0) = σx, (ir, ar) = σy, r ∈ N. Notice that our convention
of Rε implies at+1 = at ∗ ε−1 for all 0 6 t 6 r− 1. By abuse of notation, let a also denote the set
{at|0 6 t 6 r}.

Assume that the sequence (i, a) contains some object outside Ind Rep(Q). We want to show
that the morphism p factors through some object in σΣInd Rep(Q).

First, notice that the sequence (i, a) must contain a consecutive subsequence (i′, a′) from
Σx′ to y′, where x′, y′ are some indecomposable injective Rep(Q). We can require (i′, a′) to be
small in the sense that a′ 6= 〈ε〉. The factor of p associated with the small subsequence (i′, a′) is
denoted by p′.

Define the subcategory X ε of Rε such that its set of objects is {Ii, i ∈ I} t ΣInd Rep(Q) t
σΣInd Rep(Q) and its morphisms are generated by the irreducible morphism among these objects
in the mesh category Rε. Define the subcategory X of R similarly. By comparing the mesh
relations, we see that the two subcategories are equivalent. Associate to these categories their
quotients X and X ε by sending all the morphisms factoring through σΣInd Rep(Q) to 0. Then
the quotient categories are still equivalent.

Notice that X is equivalent to a subcategory of (Db(Q))op. Therefore, all morphisms in X
from Σx′ to y′, x′, y′ ∈ {Ii, i ∈ I}, vanish. Because the subsequence (i′, a′) is small, the morphism
p′ is well defined on X ε. It follows that p′ = 0 in X ε. Therefore, in the category Rε, p′ and p
factor through the objects of σΣInd Rep(Q).

(ii) By (i), we deduce that the singular category Sε is the subcategory of Rε whose
set of objects is σÎ and whose morphisms are linear combinations of compositions of the
irreducible maps among the elements in σÎ ∪ indCQ. By comparing the mesh relations, we
see that Sε is equivalent to S. 2

Proposition 4.2.3 [HL15, LP13]. For any w ∈WS ,M0
•(w) is isomorphic to Rep(Q,

∑
iwσSiei).

Moreover, the non-empty regular strata are in bijection with the orbits of Rep(Q,
∑

iwσSiei) and,
consequently, in bijection with the dual canonical basis elements of Ut(n

+) with the homogeneous
degree

∑
iwσSiαi.

Proof of Proposition 3.1.2 and Theorem 3.1.4. (i) We first prove Proposition 3.1.2(1) and
Theorem 3.1.4(1).

Notice that R+ is generated by L(0, eσSi), i ∈ I. We will show that these generators satisfy
the quantum Serre relations in Proposition 4.4.5. Then the identification between the Chevalley
generators induces a surjective map from Ut(n

+)Q(t1/2) to R+
Q(t1/2)

. It remains to check that the

two WS-graded algebras have the same graded dimension, which follows from Propositions 4.2.1
and 4.2.3.

(ii) The proof of Proposition 3.1.2(2) is the same as in (i).
(iii) The claim of Theorem 3.1.4(2) is a consequence of Theorem 3.1.4(1). More details can

be found in the proof of [HL15, Theorem 6.1(2)]). 2
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Remark 4.2.4. One can also obtain Theorem 3.1.4 by identifying ⊗ on the subalgebra R+ with
the multiplication of the deformed Grothendieck ring in [Her04a, HL15] and applying the result
of [HL15]. The identification will be discussed in the last section.

4.3 Proof of the triangular decomposition
Denote the extension ( )⊗N Z by ( )Z.

For any i, j ∈ I, we have

(vfi)Ij = (vΣfi)ΣIj = δij ,

(vfi)ΣIj = (vΣfi)Ij = 0.
(22)

The following lemma follows as a consequence.

Lemma 4.3.1. NσÎ is a subset of V +
Z ⊕ V 0 ⊕ V −Z .

Proof. For any v ∈ NσÎ , we define v0 =
∑
biv

fi +
∑
b′iv

Σfi such that bi = v(Ii) and b′i = v(ΣIi).
Define v+ to be the restriction of v−v0 on V +

Z and v− the restriction of v−v0 on V −Z . Equation (22)
guarantees that v = v+ + v0 + v− is our desired decomposition. 2

Denote the projections of NσÎ to the three summands in Lemma 4.3.1 by pr+, pr0, pr−,
respectively. The following result is essentially known by [LP13].

Proposition 4.3.2. For any w ∈WS
Z , v ∈ V +

Z , if w − Cqv > 0, then v ∈ V +, w ∈WS .

Proof. To verify the statement, by Proposition 4.2.1, we can work in the case where q is not a
root of unity instead. We then prove it by using Theorem 2.3.2 and [LP13, Theorem 3.14].

Let Â denote the repetitive algebra of A = CQ. By using Syzygy functors in mod Â

(the category of left Â-modules), we can identify the sets WS , V + with subsets of Nψ(proj Â),

Nψ(Indmod Â−proj Â) studied in [LP13, § 3.1]; cf. [LP13, Remark 3.17]. From now on, we work in
the context of [LP13].

Denote w̃ = w − Cqv. By Theorem 2.3.2, there exists a unique l-dominant pair (v′, w′),
v′ ∈ V +, w′ ∈WS , such that w′ − Cqv′ = w̃.

To any Â-module N of dimension wN , we associate the module N defined in [LP13,

Lemma 3.12]. Its dimension will be denoted by (vN , wN ) ∈ Nψ(Indmod Â−proj Â) × Nψ(proj Â).
Moreover, the pair (vN , wN ) is l-dominant. Notice that we always have wP − CqvP = 0 for any

projective P in proj Â. Let us take some projective P with its dimension big enough such that
v+vP > 0, w+wP > 0. Then (v+vP , w+wP ) is an l-dominant pair. By [LP13, Theorem 3.14], it
determines the isoclass of an Â module N of dimension wN such that (vN , wN ) = (v+vP , w+wP ).

Since both w′ and wN are contained in Nψ(proj Â) and w′ − Cqv′ = wN − CqvN , by [LP13,

§ 4.3], there exist some projective Â-modules P 1, P 2 such that (v′+ vP
1
, w′+wP

1
) = (vN + vP

2
,

wN + wP
2
). Then we have (v′, w′) = (v + vP + vP

2 − vP 1
, w + wP + wP

2 − wP 1
). Notice that

wP + wP
2 − wP 1

is not contained in WS ⊗ Z unless it vanishes (in other words, P ⊕ P 2 = P 1).
Because w′ and w are contained in WS ⊗Z, it follows that wP +wP

2 −wP 1
vanishes. Therefore,

we obtain (v′, w′) = (v, w). 2

Proposition 4.3.3. For any w ∈WS⊕WΣS , v ∈ NσÎ , assume that the pair (v, w) is l-dominant;
then we have a unique decomposition of (v, w) into l-dominant pairs (v+, w+), (v0, w0), (v−, w−)
such that v+ ∈ V +, v0 ∈ V 0, v− ∈ V −, w+ ∈ WS , w0 ∈ W 0, w− ∈ WΣS , v+ + v0 + v− = v,
w+ + w0 + w− = w, and w0 − Cqv0 = 0.
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Proof. Denote the projections of ZÎ onto W+
Z and W−Z by π+ and π−, respectively.

We first take v0 = pr0 V 0 and denote the natural decomposition of v0 in V 0 by v0 =
∑

i biv
fi+∑

i b
′
iv

Σfi . Further define w0 =
∑

i(bi + b′i)w
fi . Define v+ = pr+ v, v− = pr− v.

We have π+Cqv
− = 0. Therefore, Cqv

+ equals π+Cq(v−v0). Because w0−Cqv0 = 0, we have
π+(w − w0) − Cqv+ = π+(w − w0) − π+Cq(v − v0) = π+(w − Cqv) > 0. By Proposition 4.3.2,
(v+, π+(w − w0)) is an l-dominant pair with v+ ∈ V +, π+(w − w0) ∈ WS . Similarly, we obtain
the l-dominant pair (v−, π−(w − w0)) with v− ∈ V −, π−(w − w0) ∈WΣS .

Define w+ = π+(w−w0) and w− = π−(w−w0). Then the decomposition (v, w) = (v+, w+)
+ (v0, w0) + (v−, w−) satisfies the conditions we impose.

Finally, let us prove the uniqueness. Lemma 4.3.1 implies that the decomposition v = v++v0+
v− is unique. Then w0 is determined by v0. It follows that the decomposition w = w+ +w0 +w−

is unique. 2

Proof of Theorem 3.1.5. As a consequence of Proposition 4.3.3, cf. also Proposition 2.2.2, for
any w ∈ WS ⊕ WΣS , there exist finitely many v such that (v, w) is l-dominant. Combining
Proposition 4.3.3 and (16), we get Theorem 3.1.5 by induction on v. 2

4.4 Proof of the main results
We explicitly calculate some relations of the generators of (R, ⊗̃).

Proposition 4.4.1. For any i, j ∈ I, we have

L(0, eσSi) ⊗̃L(vfj , wfj ) = t2〈Si,Sj〉L(vfj , wfj ) ⊗̃L(0, eσSi), (23)

L(0, eσSi) ⊗̃L(vΣfj , wfj ) = t−2〈Sj ,Si〉L(vΣfj , wfj ) ⊗̃L(0, eσSi , ) (24)

L(0, eσΣSi) ⊗̃L(vfj , wfj ) = t−2〈Sj ,Si〉L(vfj , wfj ) ⊗̃L(0, eσΣSi), (25)

L(0, eσΣSi) ⊗̃L(vΣfj , wfj ) = t2〈Si,Sj〉L(vΣfj , wfj ) ⊗̃L(0, eσΣSi). (26)

Proof. We shall further prove that for each relation, either side consists of only the leading term5

when it decomposes via (16).
(i) We start by verifying the first relation.
By Proposition 4.3.3, any l-dominant pair (v, eσSi + wfj ) decomposes into the sum of three

l-dominant pairs (v+, w+), (v0, w0), (v−, w−). Applying (16) to the left-hand side of the first
relation, we see that the term L(v, eσSi + wfj ) has non-zero coefficients only if v > vfj . So, we
obtain v0 > vfj and, consequently, w0 > wfj . It follows that the only possible decomposition
of w is w+ = eσSi , w

0 = wfj , w− = 0. Consequently, v has only one possible decomposition:
v+ = v− = 0, v0 = vfj . Therefore, both sides are just multiples of the leading term L(vfj ,
eσSi + wfj ).

The claim follows from the calculation of the t-power for the coefficients of the leading terms:

d((0, eσSi), (v
fj , wfj )) = eσSi ∗ σ∗vfj = vfj (σ2Si) = dimHomDb(Q)(Sj , τSi)

= dimHomDb(Q)(Si,ΣSj),

d((vfj , wfj ), (0, eσSi)) = vfj ∗ σ∗eσSi = vfj ∗ eSi
= dimHomDb(Q)(Sj , Si) = dimHomDb(Q)(Si, Sj).

(ii) The verification of the second relation is similar.
By Proposition 4.3.3, any l-dominant pair (v, eσSi + wfj ) decomposes into the sum of three

l-dominant pairs (v+, w+), (v0, w0), (v−, w−). Applying (16) to the left-hand side of the second

5 This situation is usually called special or affine-minuscule.
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relation, we see that the term L(v, eσSi + wfj ) has non-zero coefficients only if v > vΣfj . So, we
obtain v0 > vΣfj and, consequently, w0 > wfj . It follows that the only possible decomposition of
w is w+ = eσSi , w

0 = wfj , w− = 0. Consequently, v has only one possible decomposition: v+ =
v− = 0, v0 = vΣfj . Therefore, both sides are just multiples of the leading term L(vΣfj , eσSi+w

fj ).
The claim follows from the calculation of the t-power for the coefficients of the leading terms:

d((0, eσSi), (v
Σfj , wfj )) = vfj (ΣτSi)

= dimHomDb(Q)(Si, Sj) = dimHomDb(Q)(Si, Sj),

d((vΣfj , wfj ), (0, eσSi)) = Σ∗vfj ∗ σ∗eσSi
= dimHomDb(Q)(Sj ,ΣSi).

(iii), (iv) The automorphism Σ∗ on the dimension vectors v, w induces isomorphisms of cyclic

quiver varieties, which are compatible with the (twisted) restriction functors R̃es
w

w1,w2 , Resww1,w2 ,
as well as the bilinear form d( , ). Therefore, the first two relations imply

L(0,Σ∗eσSi) ⊗̃L(Σ∗vfj ,Σ∗wfj ) = t2〈Si,Sj〉L(Σ∗vfj ,Σ∗wfj ) ⊗̃L(0,Σ∗eσSi),

L(0,Σ∗eσSi) ⊗̃L(Σ∗vΣfj ,Σ∗wfj ) = t−2〈Sj ,Si〉L(Σ∗vΣfj ,Σ∗wfj ) ⊗̃L(0,Σ∗eσSi).

These are just the fourth and third relations, respectively. 2

Proposition 4.4.2. In (R, ⊗̃), for any i, j ∈ I, we have

[L(0, eσSi),L(0, eσΣSj )] = δij(t− t−1)(L(vfi , wfi)− L(vΣfi , wΣfi)). (27)

Proof. (i) Assume i 6= j. We deduce from Proposition 4.3.3 that the only l-dominant pair
(v, eσSi + eσΣSj ) is given by v = 0. Let us calculate the bilinear forms:

d((0, eσSi), (0, eσΣSj )) = 0,

d((0, eσΣSj ), (0, eσSi)) = 0.

The statement follows.
(ii) Assume i = j. By Proposition 4.3.3, the only l-dominant pairs (v, wfi) are given by

v = 0, vfi , vΣfi . Then we have

π(0, eσSi) = L(0, eσSi),

π(0, eσΣSi) = L(0, eσΣSi),

π(0, wfi) = L(0, wfi),

π(vfi , wfi) = L(vfi , wfi) + avfi ,0;wfiL(0, wfi), (28)

π(vΣfi , wfi) = L(vΣfi , wfi) + avΣfi ,0;wfiL(0, wfi). (29)

Notice that, by the definition of the GIT quotient and the dimension vector vfi , the GIT
quotient Mε(vfi , eσSi) is a point; cf. Example 4.4.3. Therefore, it is isomorphic to the variety
M0

ε(eσSi) =M0
ε(0, eσSi). So, we get π(vfi , eσSi) = 1{0} = L(0, eσSi). Similarly, we obtain

π(vΣfi , eσSi) = π(vfi , eσSi) = L(0, eσSi),

π(vΣfi , eσΣSi) = π(vfi , eσΣSi) = L(0, eσΣSi).

Notice that, for any v ∈ V +,Mε(v, eσΣSi) is empty unless v = 0. Therefore, by applying the
restriction functor to the left-hand side of (28), we obtain
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R̃es
wfi

eσSi ,eσΣSi
π(vfi , wfi)

=
⊕
v1,v2

π(v1, eσSi)� π(v2, eσΣSi)[d((v2, eσΣSi), (v
1, eσSi))− d((v1, eσSi), (v

2, eσΣSi))]

= π(vfi , eσSi)� π(0, eσΣSi)[1]

= L(0, eσSi)� L(0, eσΣSi)[1].

In other words, the external tensor L(0, eσSi)�L(0, eσΣSi) will have coefficient t when we apply
the restriction functor to the left-hand side of (28).

The following relation is obvious by definition:

R̃es
wfi

eσSi ,eσΣSi
π(0, wfi) = π(0, eσSi)� π(0, eσΣSi)

= L(0, eσSi)� L(0, eσΣSi).

Therefore, by applying the restriction functor to the right-hand side of (28), the second term will
contribute an external tensor L(0, eσSi)�L(0, eσΣSi) with the bar-invariant coefficient avfi ,0;wfi .
Because the coefficients appearing under the restriction functor are non-negative, in order for this
external product to have coefficient t as in the left-hand side of (28), we must have 6 avfi ,0;wfi = 0.

Similarly, we have avΣfi ,0;wfi = 0 and

R̃es
wfi

eσSi ,eσΣSi
π(vΣfi , wfi) = L(0, eσSi)� L(0, eσΣSi)[−1].

By taking the dual of the restriction functor, we obtain the following equation:

L(0, eσSi) ⊗̃L(0, eσΣSi) = L(0, wfi) + tL(vfi , wfi) + t−1L(vΣfi , wfi). (30)

Similarly, by using the isomorphisms of cyclic quiver varieties induced by the automorphism Σ∗

on the dimension vectors v, w, we obtain

L(0, eσΣSi) ⊗̃L(0, eσSi) = L(0, wfi) + tL(vΣfi , wfi) + t−1L(vfi , wfi). (31)

The proposition follows. 2

Example 4.4.3. Let us continue Example 3.2.1 and verify Proposition 4.4.2 for the case sl2.
In this case, since I = {1}, we drop the subscript i for simplicity.
We first consider the decompositions of perverse sheaves (and their shifts)

π(vf , wf ) = L(vf , wf ) + avf ,0;wfL(0, wf ), (32)

π(vΣf , wf ) = L(vΣf , wf ) + avΣf ,0;wfL(0, wf ). (33)

In fact, we can compute the coefficients directly as follows. The smooth quiver varietyMε(vf , wf )

is the C∗-quotient of the variety {(β, α)|C β
←− C α

←− C, kerβ = 0}, where the torus C∗ naturally
acts on β. Therefore, it is simply the vector space C. The quiver variety M0

ε(vf , wf ) is simply
the vector space C. The projection map from Mε(vf , wf ) to M0

ε(vf , wf ) sending (β, α) to βα
is an isomorphism. Therefore, the coefficient avf ,0;wf vanishes and we have

π(vf , wf ) = L(vf , wf ).

6 It might be possible to verify this statement by studying the fiber of Mε(vfi , wfi) over the origin of M0
ε(wfi);

cf. Example 4.4.3.
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The automorphism Σ∗ on the dimension vectors v, w induces isomorphisms of quiver varieties.
So, we similarly have avΣf ,0;wf = 0 and

π(vΣf , wf ) = L(vΣf , wf ).

Also notice that, because the GIT quotientMε(vf , eσS) is simply a point, we have π(vf , eσS)
= 1{0} = L(0, eσS). Similarly, π(vΣf , eσS) = 1{0} = L(0, eσS).

Therefore, we obtain

R̃es
wf

eσS ,eσΣS
π(vf , wf )

=
⊕
v1,v2

π(v1, eσS)� π(v2, eσΣS)[d((v2, eσΣS), (v1, eσS))− d((v1, eσS), (v2, eσΣS))]

= π(vf , eσS)� π(0, eσΣS)[1]

= L(0, eσS)� L(0, eσΣS)[1]

and, similarly,

R̃es
wf

eσS ,eσΣS
π(vΣf , wf ) = L(0, eσS)� L(0, eσΣS)[−1].

By isomorphisms of quiver varieties induced by the automorphism Σ∗, the above relations
imply

R̃es
wf

eσΣS ,eσS
π(vΣf , wf ) = L(0, eσΣS)� L(0, eσS)[1],

R̃es
wf

eσΣS ,eσS
π(vf , wf ) = L(0, eσΣS)� L(0, eσS)[−1].

The following equations are obvious by definition.

R̃es
wf

eσS ,eσΣS
π(0, wf ) = L(0, eσS)� L(0, eσΣS),

R̃es
wf

eσΣS ,eσS
π(0, wf ) = L(0, eσΣS)� L(0, eσS).

Equations (30) and (31) are obtained by taking the dual of the restriction functors R̃es
wf

eσS ,eσΣS

and R̃es
wf

eσΣS ,eσS
.

Proposition 4.4.4. For any i, j ∈ I, we have

L(vfi , wfi) ⊗̃L(vfj , wfj ) = t〈Si,Sj〉−〈Sj ,Si〉L(vfi + vfj , wfi + wfj ), (34)

L(vfi , wfi) ⊗̃L(vΣfj , wfj ) = t〈Si,Sj〉−〈Sj ,Si〉L(vfi + vΣfj , wfi + wfj ), (35)

L(vΣfi , wfi) ⊗̃L(vΣfj , wfj ) = t〈Si,Sj〉−〈Sj ,Si〉L(vΣfi + vΣfj , wfi + wfj ). (36)

Proof. We deduce from 4.3.3 that there exists no l-dominant pair (v, wfi + wfj ) such that v >
vfi + vfj or v > vfi + vΣfj or v > vΣfi + vfj or v > vΣfi + vΣfj . Therefore, the products in the
statements consist only of the leading terms in (16).

We only check the first product. The verifications for the other products are similar. It is
straightforward to check that

d((vfi , wfi), (vfj , wfj )) = vfi · σ∗wfj = vfi · eSj + vfi · eΣSj

= dimHom(Si, Sj) + dimExt(Si, Sj)

and similarly
d((vfj , wfj ), (vfi , wfi)) = dimHom(Sj , Si) + dimExt(Sj , Si).

The statement follows. 2
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The following relations have already been proved in [HL15]. We compute them for
completeness.

Proposition 4.4.5. (i) For any i, j ∈ I such that Ext1CQ(Sj , Si) = C, we have

(L(0, eσSi)
⊗2)⊗ L(0, eσSj )− (t+ t−1)L(0, eσSi)⊗ L(0, eσSj )⊗ L(0, eσSi)

+L(0, eσSj )⊗ (L(0, eσ)Si)
⊗2 = 0.

(ii) For any i, j ∈ I such that Ext1CQ(Si, Sj) = C, we have

(L(0, eσSi)
⊗2)⊗ L(0, eσSj )− (t+ t−1)L(0, eσSi)⊗ L(0, eσSj )⊗ L(0, eσSi)

+L(0, eσSj )⊗ (L(0, eσ)Si)
⊗2 = 0.

(iii) In (R,⊗), for any i, j ∈ I such that Ext1CQ(Sj , Si) = 0, we have

[L(0, eσSi),L(0, eσSj )] = 0.

Proof. (i), (ii) Notice that i 6= j. Denote δτSj ,Si by δ and 〈Si, Sj〉a by χ. Then the situations (i)
and (ii) correspond to the cases (δ, χ) = (1, 1) and (δ, χ) = (0,−1), respectively. For any pairs
(v1, w1), (v2, w2), we define 〈(v1, w1), (v2, w2)〉a to be 〈w1, w2〉a. Let us denote

w′ = eσSi + eσSj ,

w = 2eσSi + eσSj .

We need the following coefficients, because the multiplication ⊗̃ is replaced by the twisted
multiplication ⊗:

A= t
−(1/2)〈(0,eσSi ),(0,eσSj )〉a ,

B = t
−(1/2)〈(eSi ,eσSi ),(0,eσSj )〉a ,

C = t−(1/2)〈(0,eσSi ),(0,w
′)〉a ,

D = t−(1/2)〈(eSi ,eσSi ),(0,w
′)〉a ,

E = t−(1/2)〈(0,eσSi ),(eSi ,w
′)〉a .

It follows that A = B = C = D = E = t−(1/2)χ.
First, compute the following bilinear forms:

d((eSi , eσSi), (0, eσSj )) = 0,

d((0, eσSj ), (eSi , eσSi)) = δ,

d((eSi , eσSi), (0, w
′)) = 1,

d((0, w′), (eSi , eσSi)) = δ,

d((0, eσSi), (eSi , w
′)) = 0,

d((eSi , w
′), (0, eσSi)) = 1.

Similar to the proof of Proposition 4.4.2, we have the following decompositions:

L(0, eσSi)⊗ L(0, eσSj ) = AL(0, w′) +BtδL(eSi , w
′),

L(0, eσSj )⊗ L(0, eσSi) = A−1L(0, w′) +B−1t−δL(eSi , w
′),

L(0, eσSi)⊗ L(0, w′) = CL(0, w) +Dtδ−1L(eSi , w),

L(0, w′)⊗ L(0, eσSi) = C−1L(0, w) +D−1t1−δL(eSi , w),
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L(0, eσSi)⊗ L(eSi , w
′) = EtL(eSi , w),

L(eSi , w
′)⊗ L(0, eσSi) = E−1t−1L(eSi , w).

The proposition follows from direct calculation.
(iii) The statement is obvious. 2

Proof of Theorem 3.1.6. (i) We replace ⊗̃ by ⊗ in R. The relations in Propositions 4.4.1, 4.4.2,
and 4.4.4 now become

L(0, eσSi)⊗ L(vfj , wfj ) = taijL(vfj , wfj )⊗ L(0, eσSi), (37)

L(0, eσSi)⊗ L(vΣfj , wfj ) = t−ajiL(vΣfj , wfj )⊗ L(0, eσSi), (38)

L(0, eσΣSi)⊗ L(vfj , wfj ) = t−ajiL(vfj , wfj )⊗ L(0, eσΣSi), (39)

L(0, eσΣSi)⊗ L(vΣfj , wfj ) = taijL(vΣfj , wfj )⊗ L(0, eσΣSi), (40)

[L(0, eσSi),L(0, eσΣSj )] = δij(t− t−1)(L(vfi , wfi)− L(vΣfi , wΣfi)), (41)

L(vfi , wfi)⊗ L(vfj , wfj ) = L(vfi + vfj , wfi + wfj ), (42)

L(vfi , wfi)⊗ L(vΣfj , wfj ) = L(vfi + vΣfj , wfi + wfj ), (43)

L(vΣfi , wfi)⊗ L(vΣfj , wfj ) = L(vΣfi + vΣfj , wfi + wfj ). (44)

Notice that the relations in Proposition 4.4.5 remain unchanged.
Comparing the above relations with those of the Chevalley generators of Ũt(g), we can define

a surjective algebra homomorphism φ from Ũt(g)Q(t1/2) to the Grothendieck ring (K∗Q(t1/2)
,⊗)

such that

φ(t1/2) = t1/2,

φ(Ei) =
−t

t2 − 1
L(0, eσSi),

φ(Ki) = L(vΣfi , wfi),

φ(K ′i) = L(vfi , wfi),

φ(Fi) =
t

t2 − 1
L(0, eσΣSi).

This map is an isomorphism by Theorems 3.1.4 and 3.1.5. We define κ = φ−1.
(ii) Notice that, for any i ∈ I, L(vfi , wfi) ⊗ L(vΣfi , wfi) = L(vfi + vΣfi , 2wfi) is a center

element in (R,⊗). The statement follows from (i). 2

Proof of Theorem 3.1.7. The claim follows from [HL15] by Proposition 5.2.4. 2

5. Comparison of products

To conclude the paper, we show that the twisted product ⊗ of the Grothendieck ring R+ agrees
with the non-commutative multiplication ∗ defined in [HL15, Her04a] via the reduction from
(v, w) to w − Cqv. Notice that the twisted products do not agree in general and, usually, such
reduction is impossible because Cartan elements are not center elements; cf. Example 3.2.3.

Recall that the restriction of the twisted product ⊗ on R+ is determined by the bilinear
form N :

N (m1,m2) = d(m2,m1) + d(m1,m2) + 1
2〈Φ(w2),Φ(w1)〉a (45)

for any m1 = (v1, w1),m2 = (v2, w2) ∈ NInd RepQ−InjQ ×WS , where we use InjQ to denote the
injectives in Ind RepQ. On the other hand, the non-commutative multiplication in [HL15] for the
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corresponding Grothendieck ring is determined by the bilinear form N defined on W+×W+. For
the rest of this section, we will show that these two products agree by proving Proposition 5.2.4.

Remark 3.3 of [HL15] should imply Proposition 5.2.4, which is the main result of this section.
We give an alternative approach to this result by considering the ‘lift’ of w̃ ∈W+ into l-dominant
pairs.

For any N ∈ Ind Rep(Q), denote by [N ] =
∑
NiSi the class of N in K0(RepQ). For simplicity,

we denote HomDb(Q)( , ) by Hom( , ).

5.1 l-dominant pairs
For our purpose, we want to lift any l-dominant (0, w̃), w̃ ∈ W+, to an l-dominant pair (v,
w) ∈ V + ×WS , whose existence is guaranteed by [LP13].

Inspired by [LP13, Corollary 3.15(iii)], we associate to any N ∈ Ind Rep(Q) the pair ι(N) =
(ιV (N), ιW (N)) defined by

ιW (N) =
∑
i

(Ni · eσSi),

ιV (N) =
∑

x∈(Ind Rep(Q)−InjQ)

(dimHom(τ−1x, [N ])− dimHom(τ−1x,N)) · ex.
(46)

In fact, we can rewrite ιV (eσN ) =
∑

x∈Ind Rep(Q)(dimHom(τ−1x, [N ]) − dimHom(τ−1x,N)) · ex
by taking τ as the functor defined for Db(Q).

Example 5.1.1. Let us take the example of Figure 7. Then we have

ι(S1) = (0, eσS1),

ι(S2) = (0, eσS2),

ι(P2) = (eS1 , eσS1 + eσS2).

Proposition 5.1.2. The pair ι(N) is l-dominant and we have ιW (N)− CqιV (N) = eσN .

Proof. The claim should be a translation of the result of [LP13] from repetitive algebras to
representations of Q. We give a straightforward proof here.

To simplify the notation, let us denote the pair ι(N) by ι = (ιV , ιW ). For any x ∈ Ind RepQ,
denote the AR-triangle in Db(Q) by τx → E → x, where E =

⊕
j Ej , with each Ej an

indecomposable in Db(Q). Then the σx-component of ιW − CqιV is given by

(ιW − CqιV )σx = (ιW )σx − (ιV )τx − (ιV )x +
∑
j

(ιV )Ej .

It suffices to verify the following equality:

(ιW − CqιV )σx = δx,N .

We have

(ιW )σx =
∑
i

δx,SiNi,

(ιV )τx = dimHom(x, [N ])− dimHom(x,N),

(ιV )x = dimHom(τ−1x, [N ])− dimHom(τ−1x,N),∑
j

(ιV )Ej = dimHom(τ−1E, [N ])−
∑
j

dimHom(τ−1E,N).
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Applying the contravariant functor Hom( , N) to the AR-triangle x→ τ−1E→ τ−1x→ Σx, we
obtain a long exact sequence

Hom(x,Σ−1N)
w1

−→Hom(τ−1x,N)→ Hom(τ−1E,N)
w3

−→Hom(x,N)
w2

−→ Hom(τ−1x,ΣN).

Notice that Hom(x,Σ−1N) = 0 and consequently w1 = 0. By using the universal property of
AR-triangles, we see that w3 is surjective if N 6= x and dimCokw3 = 1 if N = x. Therefore, we
obtain

dimHom(τ−1x,N)− dimHom(τ−1E,N) + dimHom(x,N) = δx,N .

By applying the functors Hom( , Si) for all i ∈ I to this AR-triangle, we obtain

dimHom(τ−1x, [N ])− dimHom(τ−1E, [N ]) + dimHom(x, [N ]) =
∑
i

δx,SiNi.

Putting these results together, we obtain the desired equality. 2

5.2 Comparison of bilinear forms
For any M,N ∈ Ind Rep(Q), recall that the Euler form 〈M,N〉 = dimHom(M,N)−dimHom(M,
ΣN) depends only on the class [M ], [N ]. The symmetrized Euler form is given by (M,N) = 〈M,
N〉+ 〈N,M〉.

Definition 5.2.1 (q-degree order). For any (i, a), (j, b) ∈ Ind Rep(Q), we can write a = qξ(i)+A,
b = qξ(j)+B for some 0 6 A,B 6 2h such that ξ(i) +A− ξ(j)−B < h. If ξ(i) +A > ξ(j) +B, we
say that the q-degree of (i, a) is higher (or larger) than that of (j, b) and the q-degree of (j, b) is
lower (or smaller) than that of (i, a).

Example 5.2.2. In Figure 7, the q-degree of P2 is higher than that of S1.

Proposition 5.2.3. For any different objects M,N ∈ Ind Rep(Q), assume that the q-degree of
M is not higher than that of N ; then we have

d(ι(N), ι(M))− d(ι(M), ι(N)) + 1
2〈N,M〉a = 1

2(M,N). (47)

Proof. By definition, we have

1
2(M,N)− 1

2〈N,M〉a = 〈M,N〉,
d(ι(N), ι(M)) = eσN · σ∗ιV (M) + ιV (N) · σ∗ιW (M)

= eτN · ιV (M) ·+ιV (N) ·
∑

MieσSi ,

d(ι(M), ι(N)) = eτM · ιV (N) + ιV (M) ·
∑

NieσSi .

So, we should check that

eτN · ιV (M) + ιV (N) ·
∑

MieσSi − eτM · ιV (N)− ιV (M) ·
∑

NieσSi = 〈M,N〉. (48)

First, assume that N and M are not projective. By using the definition of ιV , we have

ιV (M) · eτN = dimHom(N, [M ])− dimHom(N,M),

ιV (N) ·
∑

MieσSi = dimHom(τ−1[M ], [N ])− dimHom(τ−1[M ], N)

= dimHom([N ],Σ[M ])− dimHom(N,Σ[M ]),
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ιV (N) · eτM = dimHom(M, [N ])− dimHom(M,N),

ιV (M) ·
∑

NieσSi = dimHom(τ−1[N ], [M ])− dimHom(τ−1[N ],M)

= dimHom([M ],Σ[N ])− dimHom(M,Σ[N ]).

If N is projective, we have eτN · ιV (M) = 0. On the other hand, dimHom(N, [M ]) −
dimHom(N,M) vanishes. So, the above expression of eτN · ιV (M) remains effective. Similarly,
the above expression of eτM · ιV (N) remains effective even if M is projective. So, we can remove
the projectivity assumption on M and N .

Because the q-degree of M is no larger than that of N , we have Hom(N,M) = 0. The left-hand
side of (48) becomes

(dimHom(N, [M ])− dimHom(N,Σ[M ]))

− (dimHom(M, [N ])− dimHom(M,Σ[N ]))

+ dimHom([N ],Σ[M ])− dim([M ],Σ[N ]) + dimHom(M,N)

= 〈N, [M ]〉 − 〈M, [N ]〉+ dimHom([N ],Σ[M ])− dim([M ],Σ[N ])

+ dimHom(M,N).

We can replace N and M by [N ] and [M ] respectively in the last expression. Then, by using
definition of 〈 , 〉, the last expression becomes

dimHom([N ], [M ])− dimHom([M ], [N ]) + dimHom(M,N) = dimHom(M,N).

As the last step, dimHom(M,N) = 〈M,N〉 because the q-degree of M is no larger than that
of N . 2

Proposition 5.2.4. For any dominant pairs m1 = (v1, w1), m2 = (v2, w2) in NInd Rep(Q)−InjQ ×
WS , we have

N (m1,m2) = 1
2N (w − Cqv1, w − Cqv2), (49)

where the form N defined on W+ ×W+ is the bilinear form in [HL15, (5)].

Proof. By [HL15, Proposition 3.2], the right-hand side of (47) is just 1
2N (eσM , eσN ). Therefore,

we have N = 1
2N in the situation of Proposition 5.2.3. Then the claim holds true in general

because N and N are anti-symmetrized bilinear forms. 2
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