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ABSTRACT

We construct the quantized enveloping algebra of any simple Lie algebra of type ADE
as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties.
In particular, the dual canonical basis of a one-half quantum group with respect to
Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up
to rescaling. This paper expands the categorification established by Hernandez and
Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of
Bridgeland’s recent work for type ADE.
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1. Introduction
1.1 History

For any given symmetric Cartan datum, let g be the associated Kac-Moody Lie algebra and Uy(g)
the corresponding quantized enveloping algebra. There have been several different approaches to
the categorical realizations of U(g).

One-half quantum group. The earliest and best-developed theories are categorifications of a
one-half quantum group. Notice that U;(g) has the triangular decomposition U;(g) = Uy(n™) @
Uy(h) ® Uy(n™). Let @ denote a quiver associated with g which has no oriented cycles. For any
field k, let £Q denote the path algebra associated with Q.

(1) In 1990, Ringel showed in [Rin90] that the positive (respectively negative) one-half
quantum group U(n™) (respectively Uy(n~)) can be realized as a subalgebra of the Hall
algebra of the abelian category F,) — mod, where [, is any finite field and F,Q) — mod the
category of the left modules of the path algebra F (). Let us call this Hall algebra approach an
additive categorification of Ug(n™), because the product of any Chevalley generator with itself
is translated into the direct sum of a simple F,()-module with itself.

(2) Lusztig has given a geometric construction of U(n™) (cf. [Lus90, Lus91]), by considering
the Grothendieck ring arising from certain perverse sheaves over the varieties of CQ-modules.
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This geometric approach is very powerful. In particular, the perverse sheaves provide us with
a positive basis' of Uy(n'), which is called the canonical basis; cf. also [Kas91] for the crystal
basis. We can view Lusztig’s construction as a monoidal categorification of Uy(n™), because the
addition and the multiplication in Uy(n™) are translated into the direct sum and the derived
tensor of perverse sheaves.

We recommend to the reader the survey papers of Schiffmann [Sch06, Rou09] for the results
(1) and (2).

(3) Recently, the quiver Hecke algebras (or KLR~algebras; cf. [KL09, Rou08]) provide us with
a monoidal categorification of the one-half quantum group U;(n™). A link between Lusztig’s
approach and the quiver Hecke algebras has been established in [VV11].

(4) Finally, assume that g is of type ADE. Hernandez and Leclerc showed that a certain
subcategory of finite-dimensional representations of the quantum affine algebra U,(g) provides
a monoidal categorification of Uy(n™); cf. [HL15]. By [Nak01] and [HL15, § 9], their construction
can be understood in terms of graded quiver varieties and then be compared with the work of
Lusztig.

We remark that the categorifications in (3) and (4) are compatible with the (dual) canonical
basis obtained in (2). Moreover, by (4), the categorification in the present paper is compatible
with the dual canonical basis.

Whole quantum group. We can define the algebra INJt (g) as a variant of the whole quantum
group Uy(g), cf. §2.1, which has the triangle decomposition Uy(n™) @ Uy(h) ® Uy(n~). This
variant plays a crucial role in Bridgeland’s work [Bri13], which we shall briefly recall. The whole
quantum group Uy (g) is obtained from Uy(g) by a reduction at the Cartan part Uy(h).

There have been various attempts to make a Hall algebra construction of the whole quantum
group; cf. for example [Kap98, PX97, PX00, XXZ06]. The complete result was obtained in the
recent work of Bridgeland.

THEOREM [Bril3]. Fix a finite field F,. Let ﬁﬁ(g)[(Ki)*l, (K!)"Yier denote the localization of

U ﬁ(g) at the Cartan part. Then it is isomorphic to the localization of the Ringel Hall algebra
of the 2-periodic complexes of projective Fq(Q)-modules at the contractible complexes.

The usual quantum group Uy(g) can be obtained from the above construction as the natural
quotient of Uy(g)[(K;) ™1, (K)) ™ Yier-

In the work of Bridgeland, the realizations of the half-quantum groups Ug(n*) and Ug(n™)
can be identified with those in Ringel’s approach. The Cartan part Us(h) is generated by certain
complexes homotopic to zero, which are redundant information in the study of the corresponding
triangulated category. In the sense of §1.1, this Hall algebra approach can be viewed as an
additive categorification of U(g).

Also, by the works of Khovanov, Lauda, Rouquier, and Webster, cf. [KL10, Rou08, Web10,
Web13], the quiver Hecke algebras provide a monoidal categorification of the modified quantum
group Uy (g), which is a different variant of the whole quantum group U,(g) [Lus93].

Finally, we notice that Fang and Rosso have constructed the whole quantum group in the
spirit of quantum shuffle algebras; cf. [FR12].

1.2 Main construction and result
In this paper, we give a geometric construction of the whole quantum group for the Lie algebra
g of Dynkin type A, D, E, inspired by the following papers.

! By a positive basis, we mean a basis whose structure constants are non-negative.
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Inspired by [KS13, Theorem 2.7], we use some cyclic quiver varieties associated with roots
of unity to replace the abelian category of 2-periodic complexes in [Bril3].

Then, the work of Hernandez and Leclerc [HL15, § 9] establishes a construction of the half-
quantum groups U;(n™) and Ug(n~), which can be compared with Lusztig’s work by [HL15, §9].
The techniques developed in [HL15] and [LP13] will be crucial in our proofs.

We construct the Cartan part I~Jt(f)) from certain strata of cyclic quiver varieties, which
are identified with the stratum {0} in Nakajima’s transverse slice theorem [NakO1, 3.3.2]. The
analog of these strata for graded quiver varieties provides redundant information in the study of
quantum affine algebras [Nak01]. So, our construction of the Cartan part shares the same spirit
as that of Bridgeland’s work:

The Cartan part is categorified by redundant information.

In the sense of our previous discussion in categorification (2), this geometric construction
can be viewed as a monoidal categorification of ﬁt(g), which contains the Hernandez—Leclerc
categorification of Uy (n). In particular, we obtain a positive basis of ﬁt(g), which, up to rescaling,
contains the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear
form.

We refer the reader to §3.1 for the detailed construction and Theorems 3.1.6 and 3.1.7 for
the rigorous statements of the results.

1.3 Remarks

This paper could be viewed as a geometric counterpart of Bridgeland’s work for the type ADE.
It is natural to compare this geometric construction with the Hall algebra construction of
Bridgeland. The details might appear elsewhere.

On the other hand, by choosing the shifted simple modules in derived categories as in
[HL15, §8.2], the analogous construction in the present paper remains effective over graded
quiver varieties associated with a generic g. Details might appear elsewhere. The corresponding
Grothendieck ring should then be compared with the semi-derived Hall algebra associated with
the quiver @ in the sense of Gorsky [Gorl3]. However, this straightforward generalization is not
a unique approach. A completely different construction might appear in Gorsky’s future work.

In this paper, the twisted product defined for the Grothendieck ring is different from those
used by [Nak04] or by [Her04a, HL.15]. It is worth mentioning that our twisted product agrees with
the non-commutative multiplication of [Her04a, HL15] on the one-half quantum group U(n™),
as we shall prove in the last section. We refer the reader to Example 3.2.3 for a comparison of
various products.

Our Grothendieck ring ﬁt(g) is defined over some cyclic quiver varieties, which are closely
related to the Grothendieck ring of finite-dimensional representations of the quantum affine
algebra U,(g) at the root of unity ¢. In particular, in [Nak04], Nakajima has used these cyclic
quiver varieties to study the t-analog of the g-characters on the latter Grothendieck ring. However,
to the best knowledge of the author, there exists no twisted product in the literature such that
the Cartan part of ﬁt(g) consists of center elements, which prevents a direct reduction of ﬁt(g)
to the t-deformed Grothendieck ring of representations of U,(g) considered in [Nak04, Her04b].

Finally, the present paper is just a first step of this geometric approach. In particular, the
reduction of the Cartan part discussed here follows a straightforward algebraic approach, which
was used by Bridgeland. We shall use the corresponding geometric realization to study quantum
groups in a future work.
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2. Preliminaries

2.1 Quantum groups

We recall the basic facts concerning the quantum groups and refer the reader to Schiffmann’s
paper [Sch06] or Lusztig’s book [Lus93] for more details. We shall follow the notation used in
[KQ14, Kim12].

Let n be any given positive integer and define the index set I = {1,...,n}. Fix a symmetric
root datum. Denote the Cartan matrix by C' = (ai;); jer and the positive simple roots by {c,
i € I}. Let g be the corresponding Kac—-Moody Lie algebra.

Let t be an indeterminate. We define [n]y = (" —t™™)/(t —t™1), [n]ed = [1)¢ - [2]¢ - ... - [n].
Let Uy(g) be the Q(t)-algebra generated by the Chevalley generators E;, K;, K!, F;, i € I, which
are subject to the following relations:

1—a;;
S ()FEPEE! Y =,
k=0
1—a;;
(_l)kFi(k)FjF‘i(lfaij*k) — 07
k=0
/
[EZ’FH =90 i By

I
[Ki, K] = [K;, Kj] = [K;, Kj] =0,
KZ'E]' = t(lijEjKi’
KZ'F]‘ = t_aiijKi,
K/E; =t~ % E;K!,
KiFj = t" Fj G,

where EXF) = E#/[k],! and F¥ = FF/[k],.

The quantum group Uy(g) is defined as the quotient algebra of Uy(g) with respect to the
ideal generated by the elements K; * K[ — 1,1 € I.

Let th(nJr) be the subalgebra of ﬁt(g) generated by F;, 1 € I, ﬁt(h) the subalgebra of ﬁt(g)
generated by K;, K, and U, (n™) the subalgebra of Uy(g) generated by F;. The subalgebras
U,(nh), Uy(h), and Uy(n~) of Uy(g) are defined similarly. Then both U,(g) and Uy(g) have
triangular decompositions:

Ui(g) = Ur(n") @ Us(h) @ Uy(n"),
Uy(g) = Uy(n™) @ Uy(h) @ Uy(n™).

From the definitions, we have Up(nT) = Uy(n™), Up(n~) = Uy(n™), and Uy(h) = Uy(h)/(K; *
K/ —1);.

The Kashiwara bilinear form (, )k on Uy(n™) has the property (E;, Ej)x = d;j; cf. [Kas91,
§3.4]. The Lusztig bilinear form (,)r, on Uy(n™) has the property (E;, Ej) = 8;;(1 — t2)7%; cf.
[Lus93, 1.2.5]. In general, by [Lec04, 2.2], for any homogeneous elements =,y € Uy(nT)s, where
B =>crBici, Bi €N, we have

(2, y)k = (1= )2 (2, y)L. (1)

We let A;(nt) denote the quantum coordinate ring which is the graded dual Q(t)-vector
space of U;(n") endowed with a restricted multiplication; cf. [GLS13, §4] and also [Kim12, § 3].

ProOPOSITION 2.1.1 [GLS13, Proposition 4.1]. There exists an algebra isomorphism ¥ from
U, (n") to Ay(n™) such that any element x is sent to the linear map (z, )k.
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2.2 Graded and cyclic quiver varieties
In this paper, we consider the quivers® Q of type A, D, E.

Choose any ¢ € C* such that g # 1. It generates a cyclic subgroup (g) in the multiplicative
group (C*,*). We assume that either (¢) is an infinite group or its cardinality is divisible by 2.

Because the underlying graph of the Dynkin quiver @) is a tree, we can choose a height
function £ : I — (q) such that £(k) = ¢ * {(i) whenever there is an arrow from k to ¢ in Q.

Define T = {(i,a) € I x (¢)|¢(i) xa™' € (¢®)}. The reader is referred to Example 2.2.1 for an
example.

Let o denote the automorphism of I x (g) such that o(i,a) = (i,q 'a). Then I x {(q) is the
disjoint union of I and 1. We use 7 to denote the automorphism o2 on I x (q).

We always use x to denote the elements in ol. We use v, w to denote the finitely supported
elements in N N7, respectively. Let eiq denote the characteristic function of (¢, a), which is
also viewed as the unit vector supported at (i,a). We have 0%e,(; ) = € 4. For any given v, w,
we denote the associated I x (g)-graded vector spaces by V = @, ,V(i,a) = @ C9) and
W= @, W (i,0) = T,

The ¢-Cartan matriz Cy is a linear map from 7ol , zl , such that for any (i,a) € Jj\, we have

qui,a = €,qa T €iqla + E Aij€j.a- (2)
JEIj#1

A pair (v,w) is called {-dominant if w — Cqv > 0.

We shall define graded/cyclic quiver varieties. Details could be found in [Nak01] (cf. also
[Nak11, Qin14, KQ14]).

Let © denote the set of the arrows of Q. Similarly, let  denote the set of the arrows of
the opposite quiver Q°P. For each arrow h, we let s(h) and ¢(h) denote its source and target,
respectively. Define

Bl Qv,w) = P 4 Hom(V (4,a), V (j,aq™ 1)), (3)

(i,a)eol h€Qs(h)=it(h)=j

Li(w,v) = @ Hom(W (07 x), V ()), (4)
meaf

Li(v,w) = @ Hom(V (z), W (o). (5)
xeaf

Define the vector space Rep?(Q; v, w) to be
Rep?(Q; v, w) = E4(Q;v,w) @ EY(Q; v, w) & L) (w,v) & L (v, w), (6)

whose elements are denoted by

<@ B, ? By, (w)ier, (52‘)1'6])
_ (EB (EB Bh,a> hee% <@ Bh,b> , (@ a) L (@ 5“,) H) _

heQ a

2 The quiver Q used in this paper should be compared with the opposite quiver Q°7 used in [KQ14].
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ha

hi

1

FI1GURE 1. A quiver of type As.

(3,¢%) (3,¢°) (3,44 (3,4°)
(2,9) (2,¢%) (2,¢%) (2,¢%
(1.1) (Lg) <71 (1,¢%) =7~ (1,8%)

FIGURE 2. (Colour online) Vertices I x (g).

The group GL, = [],.,7GLy() naturally acts on Rep?(Q;v,w). We have the map u as the

natural analog of the moment map such that

M((@ By, P By, (@), (51)) = > BB — > By Br+ Y aifi;
h h

heﬂﬁ'eﬁ:s(h):t(ﬁ') hGQ,E/EQZS(EI):t(h) il

cf. [NakO1] for details.

For the GL,-variety p~'(0), we construct Mumford’s GIT? quotient M9(v,w) and the
categorical quotient M¢(v, w). There is a natural proper morphism 7 from the GIT quotient
M(v,w) to the categorical quotient M{ (v, w).

Example 2.2.1. Let the quiver @ be given by Figure 1. We can choose the height function £ such
that £(i) = ¢*~1. Then I x {(q) is given by Figure 2, where the vertices in square boxes belong to
T and the other vertices belong to ol.

Then the vector space Rep?(Q;v,w) is described in Figure 3, whose rows and columns are
indexed by I-degrees (vertices) and (g)-degrees (heights), respectively.

In this example, the analog of the moment map p takes the form

(a181 + By, By,,) © (a2f2 + Bp, By, — By Bp,) @ (asfs — By, Bp,).

3 GIT stands for ‘geometric invariant theory’.
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height =1 q q> ¢ ¢t @

B Q@ B
W(3,q%) + V(3,¢%) < W(3,q%) += V(3,¢)

/X/

w

W(2,q) 4 V(2,¢%) < W(2,¢%) < V(2.qY)
WLD €5 V(g <5 W, ¢?) < V(L ¢

FIGURE 3. (Colour online) Vector space Rep?(Q; v, w).

First, assume that ¢ is not a root of unity. Then the quotients M%(v, w) and M{(v,w)
do not depend on ¢. They will be called the graded quiver varieties and denoted by M®(v,w)
and M®(v,w), respectively. Let Mo®(w) denote the natural union J, Mo®(v,w). This is a
finite-dimensional affine variety with a stratification into the regular strata

Mo*(w) = || Mo* (v, w).

v:iw—Cyv=0

Similarly, assume that ¢ equals €, which is a root of unity. The varieties M¢(v,w) and
Mo (v,w) will be called the cyclic quiver varieties. Let Mo (w) denote the natural union

U, Mo (v, w).

PROPOSITION 2.2.2 [Nak01, §2.5]. Assume that the quiver Q is of Dynkin type A, D, E. Then
the union Mo(w) is finite dimensional with a stratification into the regular strata

Mo‘(w)= ||  M¢"Ev,w). (7)

viw—Cqu=0

The properties of the cyclic quiver varieties are similar to those of the graded quiver varieties,
except for the following two important differences:

e the linear map C, (¢-Cartan matrix) is not injective;
e it is not known if the smooth cyclic quiver variety M€(v, w) is connected or not.

The smooth cyclic quiver variety M€(v,w) is pure dimensional; cf. [Nak01, (4.1.6)]. For
any v, choose a set {a,} such that it parameterizes the connected component of M*(v,w). For
any [-dominant pair (v, w), since the restriction of 7 on the regular stratum My (v, w) is a
homeomorphism, the set {«,} naturally parameterizes the connected components of this regular
stratum:

Mo B (v, w) = | | Mo (v, w). 8)
Qy

Let 1 pe(v,w) denote the perverse sheaf associated with the trivial local system of rank 1 on

M€(v,w). Denote the perverse sheaf m (1 e (y,w)) by 7(v, w).

305

https://doi.org/10.1112/50010437X15007551 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007551

F. QIN

Using the transverse slice theorem (cf. [Nak01]), we can simplify the decomposition of 7(v, w)
as follows (cf. the proof of Theorem 8.6 in [Nak04]):

(v, w) = > 0t () LV, 0), (9)

v'iw—Cgv’ 200" <v
where we denote F[d]®™ by mt?F for any sheaf 7 and m € N, d € Z, and we define

L w) = IC(MpTE0  w)) = @IC’(Mogreg;av’ (v, w)). (10)

Qyr

Notice that we have a, ., (t) € N[, Ay (1) = @y (t), and ay . = 1. We do not know
if £(v',w) is a simple perverse sheaf or not.

For any decomposition w = w' 4+ w?, we have the restriction functor between the derived
category of constructible sheaves

f{\GJSZ17w2 : DC(MOE('LU)) — 'DC(M(f(wl) X ./\/l(f(wz)).

w

By [VV03], ﬁe/swlwz (m(v,w)) equals

D 0" wh) B w)d((v? w?), (!, w')) — d((vh,wh), (0%, w?))], (11)

vl4v2=vp
where the bilinear form d(,) is given by
d((v', wh), (v, w?)) = (w' — Cp') - o*v? + o' - o w? (12)

For each w, the Grothendieck group K, is defined as the free abelian group generated
by the perverse sheaves £(v,w) appearing in (9). It has two Z[t*]-bases: {7 (v, w)|w — Cqv > 0,
Mo (v, w) # @} and {L(v, w)}. Then its dual R, = Homz (K, Z[t*]) has the corresponding
dual bases {x (v, w)|w — Cqv = 0, My“"®(v,w) # @} and {L(v,w)}. Notice that, throughout this
paper, we only define £(v, w), L(v, ) for the I-dominant pairs (v, w) such that Mo (v, w) # 9.

The restriction functors induce an N/-graded coassociative comultiplication on the N/-graded
Grothendieck group €,, Ky, which we denote by Res.

2.3 Quiver varieties and quiver representations

Let Rep(Q) denote the category of left CQ-modules. Let D?(Q) denote the bounded derived
category of Rep(Q) with the shift functor ¥. In D?(Q), we have Auslander-Reiten triangles.
Also, let v denote the derived tensor with the bimodule Homcg(CQ, C). Then we have

D Hompe () (@, y) = Homps oy (y, vx) Va,y € DY(Q).

By abuse of notation, we use 7 to denote the Auslander—Reiten translation, which is defined as
Yy,

Let IndD*(Q) be a full subcategory of D°(Q) whose objects form a set of representatives of
the isoclasses of the indecomposable objects of DP (Q) such that it is stable under 7 and X. Its
subcategory Ind Rep(Q) is naturally defined.

Assume that ¢ is not a root of unity; then we can choose a natural identification of ol with
(the objects of) IndD?(Q) such that it commutes with 7.
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FIGURE 4. Auslander-Reiten quiver of IndD%(Q).

W (oPs) HV <—W0281 %VZSl

/\/..

O’P2 HVPQ 47WO'IQ HVIQ

W(JSl HVSl HWO’SQ HVSQ %WUS?,

FIGURE 5. (Colour online) Vector space Rep?(Q; v, w).

Define

W+ = @ Neaam

z€Ind Rep(Q)

V= D Neg, (13)

z€Ind Rep(Q), x is not injective

we = @ Negg.

$E{Si,i61}

Ezample 2.3.1 (Quiver type As). Let us continue Example 2.2.1. The vertices in ol take the
form (i,q"*?%), d € Z; cf. Figure 2. On the other hand, the Auslander-Reiten quiver of IndD%(Q)
is given in Figure 4. Notice that the projective CQ-module P; is also the simple module 5.

So, we can identify ol with the objects of IndD?(Q) by sending the vertex (i,¢"*2¢) to the
object 77¢P;. Then Figure 3 becomes Figure 5. It follows that the dimension vectors in W
concentrate at the vertices oz, v € Ind CQ-mod, those in VT concentrate at Si, P, S, and
those in W¥ at ¢S;, i = 1,2, 3.

Recall that a pair (v, w) is called [-dominant if w— Cyv > 0. The vector spaces W+, V+ W9
are defined in (13). We shall use the following combinatorial property of the I-dominant pairs.

THEOREM 2.3.2 [LP13]. Assume that q is not a root of unity. Then, for any w € W, there
exists a unique I-dominant pair (v,w) € VT x W* such that w — Cqv = w.
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3. Grothendieck rings arising from cyclic quiver varieties

3.1 Constructions and main results
We follow the conventions in §2. Let h denote the Coxeter number of the Dynkin type of the
quiver (). We make the following convention from now on:

Fix € to be a (2h)th primitive root of unity and, by default, take g to be e.

It follows that the automorphism 7 on I x (€) equals 1. The subset o of I x () has the
cardinality nh. R

Let us choose the natural covering map 7 from the set IndD?(Q) to oI which sends the ith
projective P; to (i,€&;) and commutes with 7, namely, 77(M) = 7(7M). R

Choose a section M- of this covering map 7 such that 7M, = x for any z € oI. We further
require that the image of oI under M- is contained in (Ind Rep(Q)) U (X(Ind Rep(®))). When the
context is clear, we simply denote M, by x and omit the notation of the covering map .

Notice that the image of the section map M- is not closed under 7 nor X.

Ezample 3.1.1. In Example 2.2.1, we can take ¢ = € to be a primitive 8th root of unity. Then the
vertices o take the form (1, qi“d), i€l,de{0,1,2,3}. We can construct the section map from
o1 to IndD*(Q) which sends (i, ¢"+2?) to 7-%P; (these are the objects already drawn in Figure 4).

The shift functor ¥ induces an automorphism ¥ on the set IndD%(Q). It is inherited by ol.
We extend this automorphism ¥ to I x {(€) by requiring Yo = oX. It follows that X2 = 1.
Let W+, V*+, W¥ be defined as in (13). We also define

W~ =W,
Vo =%V, (14)
WS = 2w,

For any i € I, we define

wfz = €s8; + €oXS;

WO — @wai’
iel
vfi = Z dim Home(Q)(Siasz)eﬂca

. (15)
zeol
vt — E*Ufi7
Vo= @(Nvﬁ ® No»/o),
el

Following §2.2, we consider the Grothendieck group K = @, cyysapyss Kuw- Its N -graded

dual R =@, ciysgwss Fw has the multiplication ® induced by the comultiplication Res of K.
It follows from [VV03] that we have

L', w") ®L* w?) = »t)L(v,w' + w?) (16)
v
such that ¢}, »(t) € N[#F], Coip2e = 0 whenever v < vl + % and cZiIgz =

td((UQ,wQ)»(vl,wl))*d((vl,wl)v(vz,wQ))' The term CZiJ;gQ(t)L(’Ul + vg,wl + w2) is called the leading
term of the right-hand side of (16).
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PROPOSITION 3.1.2 [HL15, Theorem 7.3]. (1) Rt = @, cyys Rw is the Z[t*]-algebra generated
by {L(0, ess,),7 € I} with respect to the product ®.

(2) R~ = @, cw=s R is the Z[tE)-algebra generated by {L(0, e,xs,),i € I} with respect to
the product ®.

We also define R° to be the algebra generated by
{L(vfi, wh), L(v®i wfi),i e T} (17)

We will call L(0, e5s,), L(v/i, wf?), L(v>fi, wf), L(0,e,xs,), i € I, the Chevalley generators of
the Grothendieck ring R.

Remark 3.1.3. The generators L(0, ess,), L(0, es5s,) should be compared with the generators
Y0, ¥i,1 in [HL15, Theorem 7.3] for derived categories, respectively. We shall show that the
relation (R1) in [HL15, Theorem 7.3| holds for our generators. But the relation (R2) does not
hold in our case. See Example 3.2.3 for more details.

Let us use ();/2 and ()gqu/2) to denote the extensions () ® Z(tY?) and () ® Q(t'/?),
respectively. R

Let ® be the linear map from N’ to the Grothendieck group Ko(Rep(Q)) @ Ko(X(Rep(Q)))
such that ®(ey,) = 2. For any elements z = (z!, 2%), y = (y',3?) € Ko(Rep(Q)) @ Ko((X Rep(Q))),
define the following bilinear forms as combinations of the Euler forms:

<x,y)a = <x17y1> - <y1,$1> + <x27y2> - <y2,$2>, (18)
(z,9) = (&' y") + (' 2h) + (@2 0%) + (4P, 27). (19)

Following the convention in §2.2, for any w = w' + w?, f%il,wz is a homomorphism
from (Kuy)u/e to (Kuw)pz Qgpea/2)(Kw)p/e- Define* its deformation Res”; . to be Res,,

(/2@ 2(w)a Then we obtain a (coassociative) comultiplication Res on K12 and
correspondingly a multiplication ® on R;12. We compare it with the twisted products in
[HerO4a, HL15, NakO1] in Example 3.2.3.

For any w € W7, ®(w) can be viewed as a CQ-module. We define deg ®(w) to be the total
dimension of ®(w) and the bilinear form

wl,w?

N(®(w)) = (B(w), (w)) — deg (w). (20)

Let By = {Bj(w)lw € W'} denote the dual canonical basis of Uy(n™) with respect to
Kashiwara’s linear form (,)g. Define the rescaled dual canonical basis E}} to be {E}k((w)\w €
W} such that Bj (w) = t(/2N@W) Bx ().

The following was the main result of [HL15] for graded quiver varieties with a generic choice
of q.

THEOREM 3.1.4 (One-half quantum group [HL15, Theorem 6.1]). (1) There exists an algebra
isomorphism K from the Grothendieck ring (R& 1/2); ®) to the one-half quantum group
Ui (n") g2y such that

RL(0,eps,) = B; Vie I

(2) This isomorphism identifies the basis {L(v,w), w € W} with the rescaled dual canonical
basis E}'} such that k(L(v,w)) = g’}}(w — Cyv).

4 This choice of the degree arises from the comparison of the equations in Proposition 4.4.1 with the defining
relations of Uy(g). It is also an anti-symmetrized version of the twist used by [Bril3].
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THEOREM 3.1.5 (Triangular decomposition). The ring (R, ®) (respectively (R, ®)) decomposes
into the tensor product of its subalgebras:

R=R" QR QR
i I
THEOREM 3.1.6. (i) There exists an algebra isomorphism r from (Rg/2), ®) to ﬁt(g)(@(tl/2)
such that we have Ut(n+)Q(t1/2) = “R(&tlmy Ut(h)@(tl/Q) = fiR?Q(tl/Q), Ut(n_)Q(tuz) = ﬁRé(tl/Q),
and, for any i € I,
/i(tl/z) _ t1/2,
1—12
t

kL(0, es5,) =
mL(vzf",wfi) =K;
kL(vfi, wf) = K,

21
t

Ei7

kL(0, epxs,) = F;.

(ii) Let I be the ideal of (R,®) generated by the center elements L(v/i + v=/i 2w/i) — 1,
i € I. Then the map k induces an isomorphism between the quotient ring R/I and the quantum
group U,(g).

Finally, we consider the dual canonical basis of U;(n™) with respect to Lusztig’s bilinear
form (, )z, which is denoted by

B, = {Bp(w)lw € W},
Define the rescaled dual canonical basis to be Ez = {Ez(w)|w € W} such that
B (w) = t(1/AN(@(w))—deg @(w) g (4, (21)

It is not obvious to see that on the Grothendieck ring R™, our twisted product ® agrees with
the non-commutative multiplication % defined in [HL15], which we will show in the last section.
Once we see that they coincide on the subalgebra R, [HL15, Theorem 6.1] is translated as the
following.

THEOREM 3.1.7 [HL15, Theorem 6.1]. The isomorphism & identifies {L(v,w), w € W} with Ez
such that kL(v,w) = B} (w — Cyv).

3.2 Examples
Ezample 3.2.1 (Type sly). Assume that the quiver @ consists of a single point. Then h equals 2.
Also, € is a 4th primitive root of unity. The vector space Rep(Q; v, w) for cyclic quiver varieties
is given by Figure 6.

The Chevalley generators of the Grothendieck ring (R, ®) are given by

L(O, 605)7 L(eSa eaS—i-aZ‘S)a L(625'7 eO’S+O’ES)7 L(07 eaZS)-

Theorem 3.1.6 identifies R /2y with U, (sl2)g(s1/2y and the above generators with E, K K, F,
respectively.
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height = 1 € €2 €3 =1
ﬁ [0 6 (04
W(cS) «—V(S) «— W(cXS) « V(XS) «— W(o5)

FIGURE 6. (Colour online) Rep®(Q;v,w) for cyclic quiver varieties of type sla.

helght =1 € 62 63 64 65 66 =1

ZSQ <7WO'P2 HVPQ %WUZSl %VESl ‘*WO'ZSQ %VESQ

NN N

W(081) 4 V(1) < W(08y) 4 V(Sy) <2 W(onPy) 4= V(SPy) <2 W(08))

FIGURE 7. (Colour online) Rep®(Q; v, w) for cyclic quiver varieties of type sls.

Ezample 3.2.2 (Type sl3). Assume that the quiver @ takes the form (2 LY 1). Then h equals 3.
Also, € is a 6th root of unity. The vector space Rep®(Q;v,w) for cyclic quiver varieties is given
by Figure 7.

The Chevalley generators of the Grothendieck ring (R, ®) are given by

L(0,e5s,), i=1,2,
L(esl + €p,, 60514-0'251)7 L(€S2 + €¥S15 6052+0252)7

L(eES1 + €¥ Py, 60’31+0'ES1)7 L(€ESQ + €51, eUSQJrO'ESQ)u
L(O7 eaESi)v L= 1>2

Theorem 3.1.6 identifies Rg;1/2) with ﬁt(slg)(@(tl/g) and the above generators with E;, K/, KJ,
K1, Ko, F;, respectively.

Ezample 3.2.3. We continue Example 3.2.2 and compare various twisted products.
Let us take Chevalley generators from the positive part and the negative part of the quantum
group, respectively. Our twisted product ® satisfies

L(0, ers,) ® L(0, esxs,) = L(0, esxs,) ® L(0, €55, ).

On the other hand, the twisted product in [HL15, Theorem 7.3(R2)] and [Her0O4al, if defined
over the pairs (v, w), would demand the following relation:

L(0, ers,) ® L(0, ep5s,) = t~@12L(0, ey55,) @ L(0, egs, ).

Therefore, ® is not the same as the product used in [HL15, Her04a].

Also, ® is not the twisted product in [Nak04] either. Recall that our geometrical restriction
functor is twisted by the Euler form in (18). But [Nak04] twisted the geometrical restriction
functor by a different bilinear form dyy for generic ¢, which takes different values. For ¢ a root of
unity, [Nak04] (cf. also [Her04b, Theorem 3.5]) used the different twisted product ® associated
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with the anti-symmetrized version of the bilinear form d(, ), which gives us

d((o) 60’52)7 (07 60'51)) - d((o) 60’5127 (07 60'52)) = 07
L(0,es5,) ®L(0, e55,) = t'L(0, €sS, + €55,) + other terms.

On the other hand, our product ® would twist the above leading t-power by @/ 2)<fl’SQ>.

In fact, our twisted product ® is defined for the pair (v, w), where v € N°/ w € N’ while the
twisted products in [Nak04] (for generic ¢) and [HL15, Her0O4a] are defined over the dimension
vectors w. In order to compare our ® with the latter two products, we have to reduce the pair
(v, w) to the dimension w—Cyv. This would demand the Cartan elements L(egs, +ep,, €55, +o55, )

L(es, + exs,,€s5+055,): L(ess, +esp,, €s5,+055,); L(ess, + s, €s5,4055,) to be center with
respect to ®, which is not true. The author does not know any non-trivial twisted product
defined over cyclic quiver varieties such that these Cartan elements become center elements.
The incompatibility of our product ® and the twisted products in [Nak04] (for generic ¢) and
[HL15, Her04a] could be expected, because abelian categories of 2-periodic complexes are not
subcategories of derived categories.

Nevertheless, the restriction of the twisted product @ on L(0, ess,), L(0,e55;), 1,5 = 1,2,
agrees with that of [HL15, Theorem 7.3(R1)] for the corresponding elements; cf. § 5.

4. Proofs

For simplicity, we shall often denote Homps(qg)(,) by Hom(,).

4.1 lI-dominant pairs
LEMMA 4.1.1. For any = € IndRep(Q), y € Uf, we have

Homps ) (2, 7My) = Homps g (@, M7y).

Proof. Notice that 7" = 1 and o7 is identified with Ind Rep(Q) U XInd Rep(Q). The statement
obviously holds if M, is not a projective CQ)-module. On the other hand, assume that M, is a
projective CQ-module. Then E_lMTy is an injective C@Q-module and both sides vanish. O

LEMMA 4.1.2. For any i € I, wfi — C’qvfi vanishes.
Proof. For any = € o1, we have an almost split triangle in D°(Q)
™My, - E — M, — X7M,.

For simplicity, we denote Hompu () by Hom(,). Applying the functor Hom(S;, ) to this
triangle, we get a long exact sequence

Hom (S, £~ M,) > Hom(S;, 7M,)
— Hom(S;, E) — Hom(S;, M,,) w—2> Hom(S;, X7 M,,).

By Lemma 4.1.1 and (15), the coordinate of C,v/i at the vertex oz is
(Cyv¥1)p = dim Hom(S;, 7M,) — dim Hom(S;, E) + dim Hom(S;, M).

(i) Assume z € Ind Rep(Q). Then Hom(S;, ¥~ M,,) vanishes.
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If  # S;, we get w? = 0 by the universal property of Auslander-Reiten triangles and
consequently

(Cyv7") g = dim Hom(S;, 7M,) — dim Hom(S;, E) + dim Hom(S;, M) = 0.
For z = S;, we get Kerw? = 0 and
(Cyv'1)ps, = dim Hom(S;, S;) = 1.

(ii) Assume = € XInd Rep(Q). Then Hom(S;, ¥7M,) vanishes.
If z # XS;, we get w! = 0 by the universal property of Auslander-Reiten triangles and
consequently

(Cyvf)pr = dim Hom(S;, 7M,) — dim Hom(S;, E) + dim Hom(S;, M) = 0.
For z = ©5;, we get Cokw! = 0 and consequently

(Cyvf) o, = dim Hom(S;, 75;) = 1. O

4.2 Proof of the one-half quantum group
We prove Proposition 4.2.1 in this subsection, which tells us that the study of cyclic quiver
varieties Mo(w), w € W, can be reduced to the study of the graded quiver varieties M®(w)
for a generic choice of q. More precisely, we show that these cyclic quiver varieties are free of
‘wrapping paths’; cf. Example 4.2.2.

Proposition 4.2.1 allows us to translate the results obtained in [HL15, LP13] for the latter
varieties into Proposition 3.1.2 and Theorem 3.1.4. For completeness, we give a sketch of the
proofs.

PROPOSITION 4.2.1. For any w € W, the cyclic quiver variety Mg®(w) is isomorphic to the
graded quiver variety My®(w).

We have studied the graded quiver varieties Mo®(w) for w € w™. By Proposition 4.2.1, their
results can be used for the cyclic quiver variety Mo(w), w € WT.
We give an example to show how a ‘wrapping path’ vanishes.

Ezample 4.2.2. Let us look at Figure 7. For any given w € W, take any composition of
irreducible morphisms which only passes through the vertices x € ol or ¢5;, ¢ € I, with the
ending points of the type ¢.5;.

For example, we can take a composition p such that the sequence of the vertices it passes
through is (052, 1,051, X P, 351, S2,0S52). Then p horizontally wraps the figure, in the sense
that the heights of these vertices occupy the whole cyclic group (e).

Take the factor p’ of p corresponding to the subsequence (X Py, ¥.51,52). Because of the
relation p = 0 and since w is concentrated on ¢S;, i € I, p’ corresponds to a morphism from X P,
to Sy in (D?(Q))°P. But such a morphism must vanish. Therefore, p’ and p vanish.

Proof of Proposition 4.2.1. We shall use the notions of Nakajima categories in the sense of
[KS13]. Let R be the mesh category associated with a generic ¢ € C* and R€ the mesh category
associated with €. Let S denote the singular Nakajima category which is generated by the objects
ox, x € Ind Rep(Q), in the mesh category R. Similarly, define the singular Nakajima category S¢
as a subcategory of R€.
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By our convention, an S-module is a functor from S to the category of complex vector spaces.
Then the variety of w-dimensional S-modules, denoted by Rep(S,w), is isomorphic to My®(w),
cf. [KS13, LP13], and M(“(w) is a closed subvariety in Rep(S€¢, w). Notice that we can naturally
embed M®(w) into Mo“(w). Therefore, to verify the proposition, it suffices to show that S and
S€ are equivalent. Its proof consists of the following two steps.

(i) For any two modules z,y € Ind Rep(Q), let p be any composition of irreducible morphisms
in R€ such that p starts from ox, ends at oy, and does not pass any object oz € R with
z € YInd Rep(Q) in its definition. Let (i,a) = ((ig,a0),- - ., (ir,a,)) denote the sequence of the
objects that p passes through, where (ig, ag) = oz, (ir, a,) = oy, r € N. Notice that our convention
of R implies a1 = az * €~ ! for all 0 <t < r — 1. By abuse of notation, let a also denote the set
{at]O < t < T}.

Assume that the sequence (i,a) contains some object outside Ind Rep(Q). We want to show
that the morphism p factors through some object in oXInd Rep(Q).

First, notice that the sequence (i,a) must contain a consecutive subsequence (i',a’) from
Y2’ to y/, where 2,1y’ are some indecomposable injective Rep(Q). We can require (i',a’) to be
small in the sense that a’ # (€). The factor of p associated with the small subsequence (i, a’) is
denoted by p'.

Define the subcategory X€ of R¢ such that its set of objects is {I;,i € I'} LI ¥Ind Rep(Q) U
oXInd Rep(Q) and its morphisms are generated by the irreducible morphism among these objects
in the mesh category R¢. Define the subcategory X of R similarly. By comparing the mesh
relations, we see that the two subcategories are equivalent. Associate to these categories their
quotients X and X€ by sending all the morphisms factoring through oXInd Rep(Q) to 0. Then
the quotient categories are still equivalent.

Notice that X is equivalent to a subcategory of (D°(Q))°%. Therefore, all morphisms in X'
from X’ to v/, o',y € {I;,i € I}, vanish. Because the subsequence (7', a’) is small, the morphism
p’ is well defined on X€. It follows that p’ = 0 in X¢. Therefore, in the category R¢, p’ and p
factor through the objects of oXInd Rep(Q).

(i) By (i), we deduce that the singular category S° is the subcategory of R whose
set of objects is ol and whose morphisms are linear combinations of compositions of the
irreducible maps among the elements in ol U ind CQ. By comparing the mesh relations, we
see that S€ is equivalent to S. |

PROPOSITION 4.2.3 [HL15, LP13]. For any w € W9, M®(w) is isomorphic to Rep(Q, >_; wys,€;).-
Moreover, the non-empty regular strata are in bijection with the orbits of Rep(Q, ", w,g,€;) and,
consequently, in bijection with the dual canonical basis elements of Uy(n™) with the homogeneous
degree ), Wy, 0.

Proof of Proposition 3.1.2 and Theorem 3.1.4. (i) We first prove Proposition 3.1.2(1) and
Theorem 3.1.4(1).

Notice that RT is generated by L(0, e,s,), i € I. We will show that these generators satisfy
the quantum Serre relations in Proposition 4.4.5. Then the identification between the Chevalley
generators induces a surjective map from Ut(n—‘r)(@(tl /2y to R(& 1/2)" It remains to check that the

two W¥-graded algebras have the same graded dimension, which follows from Propositions 4.2.1
and 4.2.3.

(ii) The proof of Proposition 3.1.2(2) is the same as in (i).

(iii) The claim of Theorem 3.1.4(2) is a consequence of Theorem 3.1.4(1). More details can
be found in the proof of [HL15, Theorem 6.1(2)]). O
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Remark 4.2.4. One can also obtain Theorem 3.1.4 by identifying ® on the subalgebra R* with
the multiplication of the deformed Grothendieck ring in [Her04a, HL.15] and applying the result
of [HL15]. The identification will be discussed in the last section.

4.3 Proof of the triangular decomposition
Denote the extension () ®y Z by ()z.
For any i,5 € I, we have

(/Ufi)lj — (szi)mj = dij,

i — (2t —
(vf )EI]- (1} f )]]. =0.
The following lemma follows as a consequence.

LeEMMA 4.3.1. N7 is a subset of V¥ & V0@ V.

Proof. For any v € N"f, we define v° = 3" b;vfi + 3 blo*/i such that b; = v(I;) and b, = v(XI;).
Define v to be the restriction of v—v® on V" and v~ the restriction of v—0v? on V. Equation (22)
guarantees that v = v+ + v 4+ v~ is our desired decomposition. O

Denote the projections of NI to the three summands in Lemma 4.3.1 by prt, pr?, pr—,
respectively. The following result is essentially known by [LP13].

PROPOSITION 4.3.2. For any w € W5, v € V7, ifw — Cqv > 0, thenv € VT, w € W5.

Proof. To verify the statement, by Proposition 4.2.1, we can work in the case where ¢ is not a
root of unity instead. We then prove it by using Theorem 2.3.2 and [LP13, Theorem 3.14].

Let A denote the repetitive algebra of A = CQ. By using Syzygy functors in mod A
(the category ofA left ﬁ—modules), we can identify the sets W9, V't with subsets of N¥(Proid),

N¥(Indmod A—proj4) gty died in [LP13, §3.1]; cf. [LP13, Remark 3.17]. From now on, we work in
the context of [LP13].

Denote w = w — Cyv. By Theorem 2.3.2, there exists a unique l-dominant pair (v, w’),
v € VE w' € W9, such that w' — Cpo' = w.

To any A-module N of dimension w" , we associate the module EA defined in [LPlAS,
Lemma 3.12]. Tts dimension will be denoted by (vV,w?) € N¥(ndmodA=projd) . N (proj4),
Moreover, the pair (vV,w") is I-dominant. Notice that we always have w — quP = 0 for any
projective P in proj A. Let us take some projective P with its dimension big enough such that
v+vf =0, w+w? = 0. Then (v+v”, w+w’) is an I-dominant pair. By [LP13, Theorem 3.14], it
determines the isoclass of an A module N of dimension w such that (N, wh) = (v+of wrwh).

Since both w’ and w® are contained in N¥®P954) and w' — Cpo’ = w? — Cw?, by [LP13,
§4.3], there exist some projective A-modules P, P2 such that (v/ +oF",w’' +w?") = (0N + 0,
wN + wP?). Then we have (v, w') = (v + vF + v — " w + wP + wP* — wP"). Notice that
wP + wP® — wP" is not contained in W ® Z unless it vanishes (in other words, P @ P? = P1).
Because w’ and w are contained in W* ® Z, it follows that w’ + w? * _wP" vanishes. Therefore,
we obtain (v, w') = (v, w). O

PROPOSITION 4.3.3. For any w € WS W%, v € N°! | assume that the pair (v, w) is I-dominant;
then we have a unique decomposition of (v, w) into I-dominant pairs (v, w"), (v9,w°), (v=,w™)
such that vt e VT, 00 e VO v~ e V=, wh e WS, w® e W0, w™ € W™, vt + 00 + v~ =0,
wt +w +w” =w, and w® — Cp° = 0.
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Proof. Denote the projections of Z! onto Wg and W, by 7T and 7, respectively.

We first take v0 = pr® V0 and denote the natural decomposition of v° in V0 by v° = > bivfi+
>, bloEfi. Further define w® = 3°,(b; + b)w/i. Define vt = prt v, v~ = prv.

We have 77 Cyv~ = 0. Therefore, C,v* equals 7+ C, (v —1°). Because w® — C,v° = 0, we have
7w —w’) — Cpt = 7H(w — w®) — 7+ Cy(v — %) = 7F(w — Cyv) > 0. By Proposition 4.3.2,
(vt 7t (w — w)) is an [-dominant pair with v+ € V¥, 7t (w — w®) € W¥. Similarly, we obtain
the I-dominant pair (v, 7~ (w — w?)) with v~ € V~, 7~ (w — w®) € W>5.

Define wt = 7 (w — w®) and w~ = 7~ (w — w"). Then the decomposition (v, w) = (v, w™)
+ (¥, w?) 4 (v, w™) satisfies the conditions we impose.

Finally, let us prove the uniqueness. Lemma 4.3.1 implies that the decomposition v = v+ +v°+
v~ is unique. Then w? is determined by . It follows that the decomposition w = wt 4+w° +w™
is unique. O

Proof of Theorem 3.1.5. As a consequence of Proposition 4.3.3, cf. also Proposition 2.2.2, for
any w € W* @ W>9, there exist finitely many v such that (v,w) is I-dominant. Combining
Proposition 4.3.3 and (16), we get Theorem 3.1.5 by induction on v. O

4.4 Proof of the main results
We explicitly calculate some relations of the generators of (R, Q).

PROPOSITION 4.4.1. For any i,j € I, we have

L(0, egs,) @ L(vfi, wfi) = 2SS0 Lol w/i) @ L(0, e4s,), (23)
L(0, egs,) @ L(v>fi wfi) = 725090 L(w™i  wfi) R L(0, eqs,, ) (24)
L(0, egxs,) @ L(vfi, wfi) = 7259080 L(v/i w/) @ L(0, epxs,). (25)

L(0, egxs,) ® L(v>fi wli) = 205 L(wPfi whi) Q L(0, epxs, ). (26)
5

Proof. We shall further prove that for each relation, either side consists of only the leading term
when it decomposes via (16).

(i) We start by verifying the first relation.

By Proposition 4.3.3, any I-dominant pair (v, egs, + wf7) decomposes into the sum of three
l-dominant pairs (v, w"), (v°,w°), (v, w™). Applying (16) to the left-hand side of the first
relation, we see that the term L(v, eqs, + wf7) has non-zero coefficients only if v > vfi. So, we
obtain v° > vfi and, consequently, w® > w/i. It follows that the only possible decomposition

of wis wt = e,g;, w® = wfi, w™ = 0. Consequently, v has only one possible decomposition:
vt = v~ =0, v° = v/i. Therefore, both sides are just multiples of the leading term L(vfj,
ers; +wli).

The claim follows from the calculation of the t-power for the coefficients of the leading terms:

d((0,ess,), (vi, whi)) = €sS; * o*vfi = i (028;) = dim Homps () (S, 75:)
= dim Home(Q)(Si, ESj),

d((v17,w9), (0, eg5,)) = vFi % 0¥ ey, = vfi % eg,
= dim Home(Q)(Sj, Sl) = dim Home(Q) (SZ, Sj)

(ii) The verification of the second relation is similar.

By Proposition 4.3.3, any I-dominant pair (v,eys, + w’i) decomposes into the sum of three

l-dominant pairs (v, w™), (v°,w?), (v=,w™). Applying (16) to the left-hand side of the second

5 This situation is usually called special or affine-minuscule.
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relation, we see that the term L(v, e,5, + w//) has non-zero coefficients only if v > v>fi. So, we
obtain v? > v>%i and, consequently, w® > wfi. It follows that the only possible decomposition of
wiswt = eyg;, w® = wfi, w™ = 0. Consequently, v has only one possible decomposition: v+ =
v~ =0, v = v¥/i. Therefore, both sides are just multiples of the leading term L(v>/i, e, g, +wf?).

The claim follows from the calculation of the t-power for the coeflicients of the leading terms:

d((0, eCTSi)? (szj ) wfj)) = vl (X7S;)

= dim Home(Q)(Si, SJ) = dim HOme(Q)(SZ’, Sj),
d((v™15,w91),(0, e45,)) = B 0l % 0% egyg,

= dim Home(Q) (Sj, ESz)

(iii), (iv) The automorphism ¥* on the dimension vectors v, w induces isomorphisms of cyclic
quiver varieties, which are compatible with the (twisted) restriction functors Res 12, Resy)

as well as the bilinear form d(, ). Therefore, the first two relations imply v
L(0, S eys,) @ L(Z¥0fi, S*wli) = 20090 1(2*0fi | 5% whi) @ L(0, B¥eqs,),
L(0, ¥ eys,) @ L(Z*0 0 Srwli) = =SSO (0™ 25 wfi) @ L(0, S¥eqs,).
These are just the fourth and third relations, respectively. O
PROPOSITION 4.4.2. In (R, ®), for any i,j € I, we have
[L(0, €5s,), L(0, esxs; )] = 0ij(t — (LT, wh) — L™ w™h)). (27)

Proof. (i) Assume ¢ # j. We deduce from Proposition 4.3.3 that the only I-dominant pair
(v, €05, + €oxs,) is given by v = 0. Let us calculate the bilinear forms:

d((07 eO'Si)7 (07 eUZSj)) = 07
d((o, 6025]')’ (0, eUSi)) =0
The statement follows.

(ii) Assume i = j. By Proposition 4.3.3, the only /-dominant pairs (v,wf) are given by
v =0, vl v>fi. Then we have

7(0,e0s,) = L(0, €0s,),
m(0, es5s,) = L(0, €535,),
(o wlt) = £(0, wfz)
m(wli wlt) = LT w0 + ays g5 £(0,w77), (28)
(v Efz Jwl) =L Efz wf’) + ay2h; i £(0, 7). (29)

Notice that, by the definition of the GIT quotient and the dimension vector v/¢, the GIT
quotient Me(vfi,eggi) is a point; cf. Example 4.4.3. Therefore, it is isomorphic to the variety
Mo(eqs;) = Mo(0, e55,). So, we get m(vfi eys,) = Loy = £(0, e55,). Similarly, we obtain

ﬂ.(vzfi7 60&-) — 71'(’[)10'”.7 €O—Si) - £(07 eo‘Si)')
W(szia GJESZ‘) = ﬂ-(vfiv eU‘ESi) = [’(0’ ecrESl')‘

Notice that, for any v € V', M (v, e,xs,) is empty unless v = 0. Therefore, by applying the
restriction functor to the left-hand side of (28), we obtain
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—wfi

Res m(vfi, wht)

€0S5;,€o%S;
= @ 7[-(1)17 eUSi) D 7T(’U2, eUZSi)[d((U27 €o%S:), (vlv eO'Si)) - d((vl7 €sS:), (027 eUZSi))]
vl v2
= 7(v/i, ep5,) B 7(0, eoxs,)[1]
= E((), €ggi) X E(O, eagsi)[l].

In other words, the external tensor £(0, e,s,) X £(0, e5x5,) will have coefficient ¢ when we apply
the restriction functor to the left-hand side of (28).
The following relation is obvious by definition:

—wfi

Res 0, wfi) =7(0,e55,) ®7(0, erns,)

= E(O, egsi) & ,C(O, 60251.).

€55,:,€055; 7T(

Therefore, by applying the restriction functor to the right-hand side of (28), the second term will

contribute an external tensor £(0, e5g,) X L(0, e,xs,) with the bar-invariant coefficient a, O

Because the coefficients appearing under the restriction functor are non-negative, in order for this

external product to have coefficient ¢ as in the left-hand side of (28), we must have ¢ a, fi owti = 0.
Similarly, we have a,»y; o.,s =0 and

—wli

Res 7= wl) = £(0, ep5,) K L(0, epxs,)[—1].

€5S,;:,€0%5;

By taking the dual of the restriction functor, we obtain the following equation:
L(0, es5,) ® L(0, egxs,) = L(0, w'?) + tL(v/i, w/i) + t L™ wh). (30)

Similarly, by using the isomorphisms of cyclic quiver varieties induced by the automorphism >*
on the dimension vectors v, w, we obtain

L(0, esxs,) @ L(0, e55,) = L(0, w'?) + tL(v™ w/t) 4 7 L(v/i, w'). (31)
The proposition follows. O

Example 4.4.3. Let us continue Example 3.2.1 and verify Proposition 4.4.2 for the case sls.
In this case, since I = {1}, we drop the subscript i for simplicity.
We first consider the decompositions of perverse sheaves (and their shifts)

(v wl) = L0 w!) + ays s £0,07), (32)
(v wh) = L™ w!) + aUnyo;wa’(O,wf). (33)

In fact, we can compute the coefficients directly as follows. The smooth quiver variety M€ (v/, w/)

is the C*-quotient of the variety {(5, «)|C Z C <& Cker 8 = 0}, where the torus C* naturally
acts on 3. Therefore, it is simply the vector space C. The quiver variety Mo¢(v/,w/) is simply
the vector space C. The projection map from M¢€(v/, wf) to Mo¢(vf,w/) sending (8, ) to fa
is an isomorphism. Therefore, the coefficient a,r ¢.,,s vanishes and we have

61t might be possible to verify this statement by studying the fiber of M¢(v/#,w’?) over the origin of Mo (w'?);
cf. Example 4.4.3.
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The automorphism X* on the dimension vectors v, w induces isomorphisms of quiver varieties.
So, we similarly have a,sy ¢.,,s = 0 and

(™ wl) = L® w).

Also notice that, because the GIT quotient M€(v7, e,5) is simply a point, we have 7(v/, e,g)
= 10y = L(0, e55). Similarly, 1(v* eys) = Lioy = L(0, e55).
Therefore, we obtain
;

Rfl\e;ewo'S7ea'ES7T(Uf7 ’L[)f)
= P (0!, ers) B (0%, €08 [A((12, ), (0, o)) — (0", ), (12, ess))]
vl v2

=71(v/, e5) B 7(0, e455)[1]
= L(0,e,5) X L(0, e455)[1]
and, similarly,
!
Reseas,eagsﬂ-(vzfa wf) = ﬁ((), eo‘S) X £(07 60'25)[_1]'

By isomorphisms of quiver varieties induced by the automorphism X*, the above relations

imply
!
Reseozs,egsﬂ(Uva wf) = E(O’ 6025) X E(O: eoS)[l]a
w!
ReseoESaeo‘STr(vf’ wf) = £(0’ GO'ES) x ’6(07 eUS)[_]']

The following equations are obvious by definition.

!
R‘eSeUSyeo'ESW(O? wf) = £(07 eo‘S) IX £<07 60—25)7
ol
Reszjazs,egsﬂ-(ov wf) = L(0,e555) K L0, €55).
!
Equatfions (30) and (31) are obtained by taking the dual of the restriction functors Res:i S reons
and fR\e—é:;ESueo'S'
PROPOSITION 4.4.4. For any i,j € I, we have
L(vl, wf) @ L(vfi ,wfi) = 0550 = S0, (vfi 4 /3wl + wli), (34)
L(v7, wf) @ L(v™F wfi) = ¢S =SS0, (ofi 4 o¥Fi whi 4 whi), (35)
L(szi,wfi) R L(szj ’ wfj) - t(Si,Sﬁ—(Sj,Si)L(UEfi 4 =T , wli 4+ wfj). (36)

Proof. We deduce from 4.3.3 that there exists no I-dominant pair (v, wf: + wfi) such that v >
vfi +ufi or v > vfi + 0% or v > v™fi +vli or v > v¥Fi 4 v=fi. Therefore, the products in the
statements consist only of the leading terms in (16).

We only check the first product. The verifications for the other products are similar. It is
straightforward to check that

d((vi, wft), (vfi wlh)) = vl g*wli = ofi . es; + vfi . ess;
= dim Hom(\S;, S;) + dim Ext(S;, S;)

and similarly
d((v'i,wli), (vfi,w)) = dim Hom(S;, S;) + dim Ext(S;, S;).

The statement follows. O
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The following relations have already been proved in [HL15]. We compute them for
completeness.

PROPOSITION 4.4.5. (i) For any i,j € I such that Ext(lcQ(Sj, S;) = C, we have

(L(0, e55,)%%) @ L(0, e05;) — (t + 171 )L(0, e05,) © L(0, e55,) ® L(0, e4s,)
+L(0, €55,) ® (L(0,e5)5:)%* = 0.

(ii) For any i,j € I such that Ext(lcQ(SZ-, S;j) = C, we have

(L(O, GUS¢)®2) ® L(0, eUSj) —(t+ t_l)L(()? 6051') ® L(0, eUSj) ® L(0, 605«;)
+L(0, e55,) ® (L(0, €5)5;)®* = 0.

(iii) In (R, ®), for any i,j € I such that Ext(lcQ(Sj, S;) = 0, we have
[L(0, e5s,), L(0, e(,gj)] = 0.

Proof. (i), (ii) Notice that 7 # j. Denote 6,5, s, by § and (S;, S;)s by x. Then the situations (i)
and (ii) correspond to the cases (J,x) = (1,1) and (d,x) = (0, —1), respectively. For any pairs
(vh,wh), (v, w?), we define ((v!, w!), (v?,w?)), to be (w!, w?),. Let us denote
w' = €sS; T €S,
w = 2€58; + €58;-
We need the following coefficients, because the multiplication & is replaced by the twisted
multiplication ®:
A = ¢~ /2D((0e0s,;),(005;))a
B — t_(1/2)<(es €05, ) (0 eo‘S )>
<(0760'Si)7(07w ))a
(
(

Y

= (1/2) 7
D = t=(1/2)(es;eas) 0.
B — 1 (/2(Oos,).(es, )0

It follows that A=B=C =D =E =t 1/2x,
First, compute the following bilinear forms:
d((es;, €ss,), (0, €qs;
d((0, easj) (es;, €qs;

(

(0,w'), (63”605
(0,¢08,), (es;,w'
(es;,w'), (0, e05,)) =

Similar to the proof of Proposition 4.4.2, we have the following decompositions:
= AL(0,w') + Bt’L(egs,, w'),

ATIL(0,w') + B~ L(es,, w'),
CL(0,w) + Dt*'L(es,, w),
C7'L(0,w) + D1 OL(eg,, w),

L(0, e5s;) ® L(0, €55,
L(0, e55;) @ L(0, ey,
L(0, ers,) ® L(0, 0/
L(0,w") ® L(0, ey,

~— — ~— —
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L(0,e,5,) ® L(es,, w') = EtL(es,, w),
L(es,,w') @ L(0, e,5,) = E~ 't ' L(es,, w).

The proposition follows from direct calculation.
(iii) The statement is obvious. O

Proof of Theorem 3.1.6. (i) We replace @ by ® in R. The relations in Propositions 4.4.1, 4.4.2,
and 4.4.4 now become

L(0,e55,) ® L(vfi, wli

L(0, ess,) ® L(vZfi, wli

L(0,er5s,) ® L(vff,wa

) = t%L(v1 whi) @ L(0, eys,),

)

)
L(0,esxs;) ® L(v AN

]

)

)=

)

t U L(v™ wli) @ L(0, e,s,),
t= L(v%7, w’) @ L(0, e0xs,),
4 L(v>i wli) @ L0, egxs,),
st — ) (L(F, wh) — L™, w™h)),
L(v fi+vfj7wfi +wfj)’
L(v/i + 0% wli 4 wli),
L(v Zfi+vzfj’wfi+wfj)'

W W
oo

w
Ne)

N
(an)

—_
—_— — — ~— — — "

[L(0, 605) L(0, esss;)
L(v/i, wf) @ L(vfi, w’i
L(vfz,w 1) @ L(v Efﬂ,wfﬂ
L(vzfi7wfi) ® L(szj’wfj

N
o

AN N N N N N N N
=~
w

N
=

Notice that the relations in Proposition 4.4.5 remain unchanged.
Comparing the above relations with those of the Chevalley generators of Ut( ), we can define

a surjective algebra homomorphism ¢ from Ut( )Q(tl/Z) to the Grothendieck ring (Kta(tl /2y ®)
such that
ot =112,
—t
O(E:) = 5= L(0,e5s,)
O(I;) = L(v™ wh),
O(K]) = L(v, wh)
t
¢(F1) = 57 L0, eoxs;)

This map is an isomorphism by Theorems 3.1.4 and 3.1.5. We define x = ¢~ L.

(ii) Notice that, for any i € I, L(v/',w’) ® L(v™, wf) = L(vfi +v™F 2wh) is a center
element in (R, ®). The statement follows from (i). O

Proof of Theorem 3.1.7. The claim follows from [HL15] by Proposition 5.2.4. O

5. Comparison of products

To conclude the paper, we show that the twisted product ® of the Grothendieck ring R™ agrees
with the non-commutative multiplication * defined in [HL15, Her04a] via the reduction from
(v,w) to w — Cyqu. Notice that the twisted products do not agree in general and, usually, such
reduction is impossible because Cartan elements are not center elements; cf. Example 3.2.3.
Recall that the restriction of the twisted product ® on R is determined by the bilinear
form N:
N(mb,m?) = d(m? m') +d(m',m?) + L(®(w?), &(w)), (45)

for any m! = (v', w'),m? = (v?,w?) € NI"dRePQ=INiQ@ » 1175 \where we use Inj@Q to denote the
injectives in Ind Rep Q. On the other hand, the non-commutative multiplication in [HL15] for the

321

https://doi.org/10.1112/50010437X15007551 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007551

F. QIN

corresponding Grothendieck ring is determined by the bilinear form .4 defined on W+ x W . For
the rest of this section, we will show that these two products agree by proving Proposition 5.2.4.
Remark 3.3 of [HL15] should imply Proposition 5.2.4, which is the main result of this section.
We give an alternative approach to this result by considering the ‘lift’ of w € W into I-dominant
pairs.
For any N € Ind Rep(Q), denote by [N] = > N;S; the class of N in Ky(Rep Q). For simplicity,
we denote Hompu (g ( ;) by Hom(, ).

5.1 l-dominant pairs
For our purpose, we want to lift any [-dominant (0,w), w € W, to an l-dominant pair (v,
w) € VT x W9, whose existence is guaranteed by [LP13].

Inspired by [LP13, Corollary 3.15(iii)], we associate to any N € Ind Rep(Q) the pair ¢«(N) =
(ty (N), tw (V) defined by

tw(N) = Z(Nz “€58;),

wi(N) = > (dim Hom(7~*z, [N]) — dim Hom(7 1z, N)) - e,.
z€(Ind Rep(Q)—1nj Q)

(46)

In fact, we can rewrite 1y (€on) = D, cingRep() (dim Hom (7~ !z, [N]) — dim Hom(7 !z, N)) - e,
by taking 7 as the functor defined for D°(Q).
Ezxample 5.1.1. Let us take the example of Figure 7. Then we have

L(Sl) = (07 6051)7

L(SQ) = (07 6032)3

L(PQ) = (65‘1,60—51 + eo‘Sg)-
PROPOSITION 5.1.2. The pair ¢(N) is I-dominant and we have 1y (N) — Cyry (N) = esn.
Proof. The claim should be a translation of the result of [LP13] from repetitive algebras to
representations of (). We give a straightforward proof here.

To simplify the notation, let us denote the pair t(N) by ¢ = (vy, ). For any x € Ind Rep @,
denote the AR-triangle in D*(Q) by 7 — E — xz, where E = @j E;, with each E; an

indecomposable in D?(Q). Then the oz-component of ¢y — Cqiy is given by

(LW - CqLV)aa: = (LW)O'x - (LV)TCL‘ - (LV)x + Z(LV)Ej-

It suffices to verify the following equality:

(LW - CqLV>U$ = 5J1,N~
We have

(['W)O'J? = Z 5x,SiNz'7

(tv)rz = dim Hom(z, [N]) — dim Hom(z, N),
(tv)z = dim Hom (7 z, [N]) — dim Hom(7 1z, N),
> (w)g; =dimHom(77'E, [N]) = > dimHom(7'E, N).
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Applying the contravariant functor Hom( , N) to the AR-triangle z — 77 'E — 771

obtain a long exact sequence

T — Xx, we

1
Hom(z, 2" !N)“>Hom(r !z, N) — Hom(r1E, N)
’UJ3 71)2
“5>Hom(z, N) — Hom(r 'z, ©N).

Notice that Hom(z,X"'N) = 0 and consequently w! = 0. By using the universal property of
AR-triangles, we see that w? is surjective if N # 2 and dim Cokw® = 1 if N = x. Therefore, we
obtain

dim Hom(7 'z, N) — dim Hom(7 ' E, N) 4 dim Hom(z, N) = 6, v

By applying the functors Hom( , S;) for all ¢ € I to this AR-triangle, we obtain

dim Hom (712, [N]) — dim Hom(7 " E, [N]) + dim Hom(z Z 0.5, Ni.

Putting these results together, we obtain the desired equality. O

5.2 Comparison of bilinear forms

For any M, N € Ind Rep(Q), recall that the Euler form (M, N) = dim Hom(M, N) —dim Hom(M,
Y N) depends only on the class [M], [N]. The symmetrized Euler form is given by (M, N) = (M,
N)+ (N, M).

DEFINITION 5.2.1 (g-degree order). For any (i,a), (j,b) € Ind Rep(Q), we can write a = ¢¢®+4,
b= ¢¢W*B for some 0 < A, B < 2h such that £(i) + A—£(j) — B < h. If (i) + A > £(j) + B, we
say that the g-degree of (i,a) is higher (or larger) than that of (j,b) and the g-degree of (4, b) is
lower (or smaller) than that of (i,a).

Ezample 5.2.2. In Figure 7, the ¢g-degree of P, is higher than that of .5;.

PROPOSITION 5.2.3. For any different objects M, N € Ind Rep(Q), assume that the g-degree of
M is not higher than that of N; then we have

d(e(N),u(M)) = d(u(M),e(N)) + 5(N, M)q = 5(M,N). (47)
Proof. By definition, we have

L(M,N) - LN, M), = (M,N),
d((N),u(M)) = eon - 0" 1v (M) + 1y (N) - 0" 1w (M)

= ern - (M) 4w (N) Y Miegs;,
d(t(M),u(N)) =erpr - tv(N) + ey (M) - Z Niess, -
So, we should check that
ern -ty (M) + 0/ (N) - > Miegs, — erar - ty(N) = /(M) - Y~ Niegs, = (M, N).  (48)
First, assume that N and M are not projective. By using the definition of ¢y, we have
(M) - ern = dim Hom(N, [M]) — dim Hom(N, M),
N)-) " Mieos, = dim Hom(r ™! [M], [N]) — dim Hom(r ™' [M], N)
= dim Hom([N], £[M]) — dim Hom(N, X[M]),

323

https://doi.org/10.1112/50010437X15007551 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007551

F. QIN

tv(N) - erpr = dimHom (M, [N]) — dim Hom(M, N),
w(M) Y Niegs, = dim Hom(r ' [N], [M]) — dim Hom(r ' [N], M)
= dim Hom([M], ¥[N]) — dim Hom(M, 3X[N]).

If N is projective, we have e;n - ty(M) = 0. On the other hand, dimHom(N,[M]) —
dim Hom(N, M) vanishes. So, the above expression of e,y -ty (M) remains effective. Similarly,
the above expression of e, -ty (N) remains effective even if M is projective. So, we can remove
the projectivity assumption on M and N.

Because the g-degree of M is no larger than that of N, we have Hom (N, M) = 0. The left-hand
side of (48) becomes

(dim Hom(N, [M]) — dim Hom(N, ¥[M]))
— (dim Hom(M, [N]) — dim Hom(M, X[N]))

+ dim Hom([N], £[M]) — dim([M], £[N]) + dim Hom(M, N)
= (N, [M]) = (M, [N]) + dim Hom([N], X[M]) — dim([M], X[N])
+ dim Hom(M, N).

We can replace N and M by [N] and [M] respectively in the last expression. Then, by using
definition of (), the last expression becomes

dim Hom([N], [M]) — dim Hom([M], [N]) + dim Hom(M, N) = dim Hom(M, N).
As the last step, dim Hom(M, N) = (M, N) because the g-degree of M is no larger than that
of N. O
1 1 2

PROPOSITION 5.2.4. For any dominant pairs m' = (v}, w!), m? = (v, w?) in N'"dRep(@Q)—Inj@
W*, we have

N(m',m?) =L (w— Cp',w— Cpv?), (49)
where the form .4 defined on W+ x W is the bilinear form in [HL15, (5)].

Proof. By [HL15, Proposition 3.2], the right-hand side of (47) is just %JV (eor, €on ). Therefore,
we have N = %JV in the situation of Proposition 5.2.3. Then the claim holds true in general
because N and .4 are anti-symmetrized bilinear forms. |
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