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On the Spectrum of the Equivariant
Cohomology Ring

Mark Goresky and Robert MacPherson

Abstract. If an algebraic torus T acts on a complex projective algebraic variety X, then the affine

scheme Spec H∗

T (X; C) associated with the equivariant cohomology is often an arrangement of lin-

ear subspaces of the vector space HT
2 (X; C). In many situations the ordinary cohomology ring of X can

be described in terms of this arrangement.

1 Introduction

1.1 Torus Actions and Equivariant Cohomology

Suppose an algebraic torus T acts on a complex projective algebraic variety X. If the

cohomology H∗(X; C) is equivariantly formal (see §2), then knowledge of the equiv-

ariant cohomology H∗
T(X; C) (as a module over H∗

T(pt)) is equivalent to knowledge

of the ordinary cohomology groups, viz.

H∗
T(X) ∼= H∗(X) ⊗C H∗

T(pt),(1.1)

H∗(X) ∼= H∗
T(X) ⊗H∗

T (pt) C.(1.2)

However the equivariant cohomology is often easier to understand as a consequence

of the localization theorem [3]. For example, in [16] the equivariant cohomology

ring H∗
T(X; C) of an equivariantly formal space X was described in terms of the fixed

points and the one-dimensional orbits, provided there are finitely many of each. In

this paper we pursue the link between the equivariant cohomology and the orbit

structure of T by studying the affine scheme Spec H∗
T(X) that is (abstractly) associ-

ated with the equivariant cohomology ring. Under suitable hypotheses, it turns out

(Theorem 3.1) that the associated reduced algebraic variety V is an “arrangement” of

linear subspaces of the vector space HT
2 (X). Many interesting arrangements arise this

way.

The ring structure on the ordinary cohomology H∗(X) can sometimes be recov-

ered from the variety V =
(
Spec H∗

T(X)
)

red
. This variety comes equipped with a

finite linear mapping π∗ : V → t to the Lie algebra of T. For generic t ∈ t the fiber

π−1
∗ (t) consists of finitely many points. If the mapping π is flat and if H∗(X) is gen-

erated by the part in degree ≤ 2, we show (Theorem 4.1) that the filtration by degree

on the coordinate ring At = C(π−1
∗ (t)) induces an isomorphism of rings,

Gr At
∼= H∗(X).
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This simple observation has interesting consequences in many different circum-

stances.

1.2 Schubert Varieties

For (possibly singular) Schubert varieties Xw, equation (1.1) becomes (Theorem 5.1)

a theorem of Akyldiz–Carrell–Lieberman [1]:

H∗(Xw) ∼= Gr C(W≤w · t),

where t ∈ t is regular, which was originally proved using the theory of holomorphic

vector fields.

1.3 Toric Varieties

For non-singular toric varieties X, we show (Theorem 6.1) that the partially ordered

set of cones in the fan Σ defining X coincides with the partially ordered set of flats

(multi-intersections of the component subspaces) in the arrangement of linear spaces

V =
(
Spec H∗

T(X)
)

red
. In other words, it is possible to recover the fan Σ, in a simple

way, from the equivariant cohomology H∗
T(X). From this, we recover a theorem of

Brion–Vergne [9]: the cohomology ring H∗(X) is naturally isomorphic to the ring of

piecewise polynomial functions on the fan Σ.

1.4 Springer Fibers

For Springer fibers Xa in GL(n, C) corresponding to a nilpotent element a ∈ gl(n, C),

we show (in Theorem 7.1) that equation (1.1) gives a theorem of J. Carrell [10] which

identifies the cohomology ring H∗(Xa) with the coordinate ring of the orbit of a cer-

tain point under the Weyl group. This result in turn was used by Carrell to give a

short proof of the theorem of C. DeConcini and C. Procesi [14]: the coordinate ring

of the scheme-theoretic intersection Ca ∩ t is isomorphic to the cohomology ring

H∗(Xa). (Here Ca is the closure of the conjugacy class of a.) Moreover, in Theorem

7.2 we show that the Springer representation of the Weyl group W on H∗(X) lifts

naturally to a representation on the equivariant cohomology. (See also [16], where

a similar result was proved in the case of affine Springer fibers.) The Springer repre-

sentation is somewhat mysterious because W does not act (in an algebraic way) on

X, but rather it acts via deformations of X [20, 21]. However, it turns out that the

action of W on the equivariant cohomology is easy to describe and that, in fact, the

Weyl group can be naturally identified as the group

W = Autπ(V ) = AutC[t] H∗
T(X),

of automorphisms of the arrangement V that preserve the projection π. The Springer

representation on the ordinary cohomology may then be recovered from the isomor-

phism (1.2).
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1.5 Duality

A nilpotent element a ∈ sl(n, C) corresponds to a parabolic subgroup P of G =

SL(n, C) (or rather, to a class of associated parabolic subgroups). A Cartan subgroup

H ⊂ P acts on G/P, so we may consider the reduced affine scheme V (Ĥ∗
H(G/P)),

which is an arrangement of linear subspaces of HH
2 (G/P). (Here Ĥ∗ denotes the part

of the cohomology algebra that is generated by elements of degrees 0, 2.) In Theorem

8.1 we show that this arrangement is isomorphic to the “dual” of the arrangement

V (Xa) ⊂ HT
2 (Xa) that was considered in the preceding paragraph. We do not have

a good explanation for this duality, and it would be interesting to know if there exist

other examples of dual equivariant cohomology schemes.

Note added in proof: In the intervening years since this article was submitted for

publication, a general setting for this duality has been developed by Braden, Licata,

Phan, Proudfoot, and Webster [5].

1.6 Related Articles and Acknowledgements

Although many of the results and applications in this note can be extended to more

general situations, the main object of this paper is to illustrate the use of V =

Spec(H∗
T(X)) as a unifying concept. It was implicitly considered in [2, 3], and ex-

plicitly in [6], [16, p. 27], [7, p. 83], and [8, Theorem 2]. We also wish to draw

attention to the related articles [5, 11, 19, 22–26, 32] and to the unrelated article [27].

Our interest in the scheme V developed from joint work with Robert Kottwitz

[16, 17] to whom we are grateful for many stimulating and rewarding discussions.

We thank Tom Braden, Volker Puppe, Nick Proudfoot, Juliana Tymoczko, and an

anonymous referee for their suggestions. The first author would also like to thank

the Institute for Advanced Study for its support and hospitality.

2 Definitions

In this note, unless otherwise specified, all homology and cohomology groups will be

taken with complex coefficients. The coordinate ring of an affine scheme W over C

is denoted C[W ]. Throughout this paper we fix an algebraic torus T ∼= (C×)n acting

algebraically on a connected complex projective algebraic variety X that is equivari-

antly embedded in some complex projective space. Let ET → BT be the universal

principal T bundle over the classifying space and let H∗
T(X; Z) = H∗(ET ×T X; Z)

and HT
∗ (X; Z) = H∗(ET ×T X; Z) denote the equivariant cohomology and equivari-

ant homology (respectively) of X with coefficients in the integers Z.

Let χ∗(T) and χ∗(T) be the character and cocharacter groups, respectively, of T.

The natural isomorphism

χ∗(T) ∼= H2(BT; Z) = H2
T(pt; Z)

associates with each character λ : T → C× the first Chern class of the corresponding

line bundle Lλ on BT. We obtain an isomorphism

t ∼= χ∗(T) ⊗Z C ∼= HT
2 (pt; C)
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between the Lie algebra t and the (second) equivariant homology of a point, as well

as a degree-doubling isomorphism

C[t] ∼= H∗(BT; C) = H∗
T(pt; C)

between the graded ring of complex valued polynomials on t and the equivariant

cohomology ring of a point. (This isomorphism is in fact defined over Q .)

The inclusion {pt} →֒ BT induces an augmentation

ǫ : C[t] = H∗(BT; C) → H∗(pt; C) = C

whose kernel I ⊂ C[t] is the augmentation ideal consisting of all polynomials whose

constant term is 0. A choice of basepoint in ET determines a mapping

ι : X → X × ET → X ×T ET

with resulting homomorphism of C[t]-modules, ι∗ : H∗
T(X; C) → H∗(X; C). The

mapping p : X → {pt} (of X to a point) induces graded C[t]-module homomor-

phisms

p∗ : HT
∗ (X; C) → HT

∗ (pt; C) and p∗ : H∗
T(pt; C) → H∗

T(X; C).

Denote by π∗ : HT
2 (X; C) → t the restriction of p∗ to the degree 2 part.

Recall [16] that the action of T on X is equivariantly formal if the Leray–Serre

spectral sequence

(2.1) E
pq
2 = H p(BT; Hq(X; C)) =⇒ H

p+q
T (X) = H p+q(X ×T ET)

for the fibration h : X ×T ET → BT collapses, where ET → BT is the universal

principal T-bundle. The following results are standard but we include their proofs

for completeness.

Proposition 2.1 Suppose the action of T on X is equivariantly formal. Then the

following statements hold.

(i) There is a (non canonical) isomorphism of graded C[t] modules,

(2.2) H∗
T(X; C) ∼= C[t] ⊗C H∗(X; C).

If the action of T on X is trivial, then this is an isomorphism of rings.

(ii) Regarding C as a C[t]-module by extending scalars ǫ : C[t] → C, ǫ( f ) = f (0),
induces an isomorphism of C-algebras,

(2.3) H∗(X; C) ∼= H∗
T(X; C) ⊗C[t] C = H∗

T(X; C)/IH∗
T(X; C).

(iii) The following sequence of complex vector spaces is exact,

(2.4) 0 // H2(X; C)
ι∗ // HT

2 (X; C)
π∗ // HT

2 (pt; C) ∼= t // 0.

If T acts with finitely many fixed points, then this sequence has a canonical splitting

µ0 : t → HT
2 (X).
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(iv) The following sequence of H∗
T(pt)-modules is exact,

0 // H∗
T(X) // H∗

T(F)
δ // H∗

T(X1, F),

where F = XT is the fixed point set, and X1 ⊂ X denotes the union of the 0- and

1-dimensional orbits of T.

Proof The E∞ page of the spectral sequence (2.1) is the graded group associated

with the filtration

Hm(Y ; C) = F0Hm(Y ; C) ⊃ F1Hm(Y ; C) ⊃ · · · ⊃ Fm+1Hm(Y ; C) = 0,

where Y = X ×T ET and where

FkHm(Y ; C) = ker[Hm(Y ; C) → Hm(h−1(BTk−1; C))].

Here, BTk denotes the k-skeleton of BT (with respect to some triangulation). Thus,

for each p, q there is a short exact sequence

(2.5) 0 // Fp+1H p+q(Y ; C) // FpH p+q(Y ; C)
α // E

p,q
∞

// 0.

Moreover, the cup product takes

FkHm(Y ; C) × Fk ′

Hm ′

(Y ; C) → Fk+k ′

Hm+m ′

(Y ; C)

and induces a product on E∞ that is compatible with that on E2 in the sense that the

following diagram commutes:

Ha(BT) × FpH p+q(Y ) //

I×α

²²

Fp+aH p+q+a(Y )

α

²²

Ha(BT) × H p(BT) ⊗ Hq(X) // Ha+b(BT) ⊗ Hq(X)

For this standard result see, for example, [29, §9.4].

The classifying space BT is simply connected and its cohomology in odd degrees

vanishes, so E
p,q
2

∼= H p(BT; C) ⊗ Hq(X; C) and E
p,q
2 = 0 if p is odd.

Now assume the action is equivariantly formal so that E
pq
∞ = E

pq
2 . A choice of

splitting of each of the sequences (2.5) determines an isomorphism (2.2), which im-

plies (i) and (ii). (If the action of T on X is trivial, then Y ∼= X × BT is a product,

and the Künneth theorem implies that (2.2) is a ring isomorphism.) The filtration

H2
T(X; C) = F0H2(Y ; C) ⊃ F1H2(Y ; C) = F2H2(Y ; C) ⊃ F3H2(Y ; C) = 0
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corresponds to a short exact sequence

0 // H2(BT)
π∗

// H2
T(X) // H2(X) // 0,

F2H2
T(X) = E

2,0
2 F0H2

T(X) E
0,2
2

which implies (iii). If T acts with finitely many fixed points then a canonical splitting

of this sequence is defined in equation (3.2).

Part (iv) is the “topological part” of the localization theorem (see [3, 16, 18]).

Let Ĥ∗(X) (resp. Ĥ∗
T(X) = Ĥ∗(Y )) denote the subring of H∗(X) (resp. of H∗

T(X))

that is generated by the degree 0 and degree 2 part, H0(X) ⊕ H2(X) (resp. H0
T(X) ⊕

H2
T(X)). Similarly let Ĥm

T (X) = Ĥ∗
T(X)∩Hm

T (X), and FpĤa(Y ) = FpHa(Y )∩ Ĥ∗(Y )

etc., where Y = X ×T BT.

Proposition 2.2 (see also [23, p. 14]) Suppose H∗(X) = Ĥ∗(X). Then the action of

T is equivariantly formal and H∗
T(X) = Ĥ∗

T(X).

Proof Assume H∗(X) = Ĥ∗(X). Then the cohomology of X vanishes in odd de-

grees. Since the same is true for H∗(BT), the spectral sequence (2.1) collapses and

E
p,q
∞

∼= H p(BT) ⊗ Hq(X). The filtration (2.5) is then given by

(2.6) FpHm(Y ) =
⊕

a+b=m
a≥p

Ha(BT) ⊗ Hb(X)

for any choice of splitting of (2.5).

The mapping φ : C[H2(Y )] → Ĥ∗(Y ) associates with any monomial on H2(Y ) the

corresponding product of cohomology classes in H∗(Y ). We claim this is surjective.

Let C[H2(Y )]m denote the subspace of homogeneous polynomials of degree m. A

choice of splitting of (2.4) gives an isomorphism

C[H2(Y )]m ∼=
⊕

a+b=m

C[t]a ⊗ C[H2(X)]b.

Let

Fp
C[H2(Y )]m

=
⊕

a+b=m
a≥p

C[t]a ⊗ C[H2(X)]b.

We will show by induction on p that the mapping φ takes FpC[H2(Y )]m surjectively
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to FpHm(Y ). Using (2.6), we have exact sequences

0 // FpC[H2(Y )]m //

²²

C[H2(Y )]m //

²²

⊕
a+b=m
a≥p+1

C[t]a ⊗ C[H2(X)]b //

²²

0

0 // FpHm(Y ) // Hm(Y ) //
⊕

a+b=m
a≥p+1

Ha(BT) ⊗ Hb(X) // 0.

S

which shows that φ takes FpC[H2(Y )]m into FpHm(Y ). Let us assume by descend-

ing induction on p that this mapping is surjective (with the case p = m + 1 being

trivial), and consider the exact sequences,

0 // Fp+1C[H2(Y )]m //

²²
²²

FpC[H2(Y )]m //

²²

C[t]p ⊗ C[H2(X)]m−p //

²²
²²

0

0 // Fp+1Hm(Y ) // FpHm(Y ) // H p(BT) ⊗ Hm−p(X) // 0

The right-hand vertical mapping is surjective by assumption. It follows that the mid-

dle vertical mapping is also surjective.

One might ask whether Ĥ∗
T(X) ∼= C[t] ⊗ Ĥ∗(X) for equivariantly formal actions,

but this statement is false for the Grassmannian G2(C4).

3 Fixed Points and the Schemes V and W

As in Section 2, let T be a complex algebraic torus acting on a complex algebraic

variety X that is T-equivariantly embedded in some projective space PN . Assume the

fixed point set F consists of finitely many connected components F1, F2, . . . , Fk ∈ X.

For each i, choose a point xi ∈ Fi . Each inclusion {xi} → X induces a splitting of

(2.4),

(3.1) µi : HT
2 ({xi}) ∼= t → HT

2 (X; C)

whose image is a linear subspace ti ⊂ HT
2 (X; C). The mapping µi is independent of

the choice of point xi ∈ Fi , however if i 6= j, then ti 6= t j : the subspaces ti ∈ HT
2 (X)

are all distinct. (In fact, even the images of the ti in HT
2 (PN ; C) are disjoint, as may be

seen by a direct calculation.) The average of the mappings µi determines a canonical

splitting,

(3.2) µ0 =
1

k

k∑

i=1

µi : t → HT
2 (X).
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Denote by V =
⋃k

i=1 ti the resulting arrangement of linear subspaces of the vector

space HT
2 (X; C). (It is defined over Q .) We may consider V to be a reduced affine

scheme. Let

φi = µ∗
i : C[HT

2 (X)] → C[ti] ∼= H∗
T({xi})

be the resulting (surjective) map on functions. Then I(ti) = ker(φi) is the ideal

of functions that vanish on ti and I(V ) =
⋂k

i=1 I(ti) is the (homogeneous) ideal of

functions that vanish on V .

The identifications H0
T(X; C) ∼= C and H2

T(X; C) ∼= Hom(HT
2 (X; C), C) determine

a degree-doubling homomorphism of graded C[t]-algebras,

C[HT
2 (X; C)] → H∗

T(X; C)

whose image is Ĥ∗
T(X). Denote this surjection by θ : C[HT

2 (X; C)] → Ĥ∗
T(X; C). Sim-

ilarly, let ψi be the composition

C[HT
2 (X; C)] // Ĥ∗

T(X; C) // Ĥ∗
T(Fi ; C)

and let Ri be the image of ψi . Let Wi = Spec(Ri). In summary we have the diagram

I(Wi) //

²²

C[HT
2 (X)]

ψi //

φi %% %%LLLLLLLLLL

Ĥ∗
T(Fi)

τi
²²
²²

I(ti)

::uuuuuuuuu

H∗
T({xi}) .

Let W =
⋃k

i=1 Wi ⊂ C[HT
2 (X)] be the resulting affine scheme. It is defined by the

ideal I(W ) in the following exact sequence:

0 // I(W ) // C[HT
2 (X; C)]

Σψi //
k⊕

i=1

Ri .

The projection π : X → {pt} induces a mapping π∗ : W → t as the composition

W ⊂ HT
2 (X) → HT

2 ({pt}) ∼= t.

For t ∈ t, denote the scheme-theoretic intersection π−1
∗ (t) ∩W by Wt . Let

(3.3) At = C[Wt ] = C[HT
2 (X)]/It

be the coordinate ring of Wt , where It = I(W ) + I(π−1
∗ (t)). If t = 0, then It is a

homogeneous ideal.
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Theorem 3.1 Suppose the algebraic torus T acts on the projective variety X with a

fixed point set consisting of finitely many connected components F1, F2, . . . , Fk ⊂ X. Let

V =

k⋃
i=1

ti ⊂ W =

k⋃
i=1

Wi ⊂ HT
2 (X)

be the resulting affine schemes. Then the following statements hold.

(i) The variety V is the support of W, that is, V = (W )red.

(ii) If the fixed points are isolated then W is reduced (so V = W ).

(iii) If the action of T on X is equivariantly formal, then

(a) the homomorphism θ induces an identification

W ∼= Spec Ĥ∗
T(X; C)

or equivalently, the following sequence is exact

(3.4) 0 // I(W ) // C[HT
2 (X; C)]

θ // Ĥ∗
T(X; C) // 0,

(b) the scheme W is not contained in any proper subspace of HT
2 (X), and

(c) there is a canonical isomorphism of rings,

(3.5) A0 = C[W0] ∼= Ĥ∗
T(X) ⊗C[t] C.

(iv) If H∗(X) = Ĥ∗(X), then the action of T is equivariantly formal, the mapping

π∗ : W → t is flat, and the isomorphism (3.5) becomes A0
∼= H∗(X).

(v) In particular, if H∗(X) = Ĥ∗(X) and the fixed points of T are isolated, then

V = Spec H∗
T(X) is reduced; it is an arrangement of linear spaces, and H∗

T(X) is

canonically identified with the algebra of functions on this arrangement.

Proof For part (i) it suffices to show that ti = (Wi)red , that is, for any f ∈ I(Vi) =

ker φi there exists N > 0 such that f N ∈ I(Wi) = ker ψi . Given f ∈ I(Vi), let

g = ψi( f ). Since T acts trivially on Fi , we have an isomorphism of rings

Ĥ∗
T(Fi) ∼= Ĥ∗(Fi) ⊗ H∗

T

(
{pt}

)
.

The element g lies in the augmentation ideal, ker(τi), that is, g =
∑

j u j ⊗ v j where

u j ∈ Ĥ∗(Fi) has degree ≥ 2 and v j ∈ H∗
T({pt}). Therefore gdim(Fi )+1 = 0, which is

to say that f dim(Fi )+1 ∈ I(Wi), proving (i). Part(ii) follows immediately.

Now suppose the action of T is equivariantly formal. By Proposition 2.1(iv), the

restriction mapping H∗
T(X; C) → H∗

T(F; C) is injective. It follows that Ĥ∗
T(X; C) be-

comes canonically identified with the image of ψ in the following diagram,

0 // I(W ) =

k⋂
i=1

I(Wi) // C[HT
2 (X)]

ψ
// Ĥ∗

T(F) =

k⊕
i=1

Ĥ∗
T(Fi)
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which proves (3.4). If W were contained in some proper subspace L ⊂ HT
2 (X), then

there would exist a non zero linear function α : HT
2 (X) → C which vanishes on W

so the (homogeneous part of degree one in the) coordinate ring C[W ] would fail to

surject to H2
T(X). This proves (iii)(b).

Observe that I(π−1
∗ (0)) = IC[HT

2 (X; C)] (where I denotes the augmentation

ideal in C[t]). So by equation (3.3) and (3.4),

A0
∼= Ĥ∗

T(X)/IĤ∗
T(X) ∼= Ĥ∗

T(X) ⊗C[t] C,

which proves (iii)(c). Now assume that H∗(X) = Ĥ∗(X). By Proposition 2.2 the

action is equivariantly formal and H∗
T(X) = Ĥ∗

T(X), so W = Spec H∗
T(X) which, by

equation (2.2), is flat over t. Using (2.3), this gives a canonical isomorphism A0
∼=

H∗(X).

Remark If T acts with finitely many fixed points x1, . . . , xk and finitely many one-

dimensional orbits E1, . . . , Er, then Theorem 7.2 of [16] identifies Spec(H∗
T(X; C))

as the topological space obtained from the disjoint union
∐k

i=1 t by identifying, for

each one-dimensional orbit E j , the subspace t j in the two copies of t that correspond

to the two “end points” of this orbit, where t j is the Lie algebra of the stabilizer of

any point in the orbit E j . (See also [6, 7].) Theorem 3.1 goes one step further and

identifies this union as a particular affine scheme in HT
2 (X).

4 Specialization of the Coordinate Ring

As in the preceding section, suppose the algebraic torus T acts on the complex pro-

jective variety X with isolated fixed points. Let

(4.1) W // HT
2 (X) π∗

// t

be the resulting scheme, supported on the arrangement V of linear spaces, and its

projection to t. Fix t ∈ t and let Wt = W ∩ π−1
∗ (t) be the scheme-theoretic intersec-

tion with the coordinate ring At = C[Wt ].

Let A0
t ⊂ A≤1

t ⊂ · · · be the filtration of At by degree, that is, A≤k
t consists of the

restrictions to Vt of the polynomials of degree ≤ k. Let µ : HT
2 (X; C) → H2(X; C) be

a choice of splitting of (2.4). (A canonical such splitting µ0 is given in §3.)

Theorem 4.1 (see also [11] and [25, p. 131]) Suppose the map (4.1) is flat. Then the

splitting µ induces an isomorphism,

Gr(At ) ∼= A0,

and different splittings give rise to the same isomorphism. If Ĥ∗(X) = H∗(X), then

Corollary 3.1 gives an isomorphism of rings,

Gr(At ) ∼= H∗(X).
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Proof (This result is probably standard but we were not able to find a simple refer-

ence.) We may assume t 6= 0. Because the mapping π∗ is flat, by restricting to the

line spanned by t ∈ t we may reduce to the case that t is one-dimensional. Choose an

isomorphism of complex vector spaces t ∼= C. The splitting µ determines a splitting

HT
2 (X; C) ∼= H2(X; C) ⊕ C.

By further choosing a basis of H2(X; C), we may consider each polynomial function

f = f (x, b) ∈ C[HT
2 (X; C)] to be a function of variables x = (x1, x2, . . . , xr) ∈

H2(X; C) and b ∈ C, and we will sometimes write C[HT
2 (X; C)] = C[x, b]. Special-

izing b = 0 or b = t gives two ring homomorphism C[HT
2 (X; C)] → C[H2(X; C)]

and we denote the image of I(W ) by I0, It , respectively, in C[H2(X; C)] = C[x]. Then

At = C[x]/It and A0 = C[x]/I0. The ideal I0 is homogeneous and graded by degree,

I0 =
⊕

j I
j
0 , while the ideal It is filtered by degree, I0

t ⊂ I≤1
t ⊂ · · · . Therefore for

each k,

Ik
0 = {p(x) ∈ C[x] : deg(p) = k and ∃q(x, b) ∈ C[x, b] with p + bq ∈ I(W )k}

I≤k
t =

{
p(x) ∈ C[x] : deg(p) ≤ k and ∃q(x, b) ∈ C[x, b]

with p + (b − t)q ∈ I(W )≤k
}

.

Observe that if p ∈ I≤k
t , then its homogeneous part pk of degree k satisfies pk ∈ Ik

0 .

(For there exists q ∈ C[x, b] of degree ≤ k−1 such that p+(b−t)q ∈ I(W ). But I(W )

is homogeneous, so the degree k homogeneous part pk + bqk−1 of this polynomial is

also in I(W ), hence pk ∈ Ik
0 .) From this it follows that

(4.2) Ik
0 = {p ∈ C[x]k : ∃q ∈ C[x]≤k−1 with p + q ∈ I≤k

t }.

We now construct the required isomorphism

Grk At

φ
// GrkA0 = Ak

0

C[x]≤k/
(

I≤k
t + C[x]≤k−1

)
// C[x]≤k/

(
I≤k

0 + C[x]≤k−1
)

as follows. The identity mapping C[x]≤k → C[x]≤k takes I≤k
t to I≤k

0 + C[x]≤k−1, for

if p ∈ I≤k
t , then p = pk + p≤k−1 and (by the above observation), pk ∈ I≤k

0 . This

gives a well-defined surjective homomorphism

C[x]≤k/I≤k
t → C[x]≤k/

(
I≤k

0 + C[x]≤k−1
)

and hence also a surjective homomorphism φ above. To show that φ is injective,

suppose p ∈ C[x]≤k is in the kernel of φ. Then either deg(p) < k (in which case

p = 0 in Grk(At )) or else pk ∈ Ik
0 . From equation (4.2) it follows that there exists

q ∈ C[x]≤k−1 such that pk +q ∈ I≤k
t . Thus, p+q = (pk +q)+ p≤k−1 ∈ I≤k

t +C[x]≤k−1

as needed.
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Theorem 4.1 is most useful when T acts with finitely many fixed points and t ∈ t

is generic, for in this case Wt = Vt is reduced and consists of k isolated points in the

vector space HT
2 (X). In the next few sections we will see what this says in the case of

Springer fibers, Schubert varieties, and toric varieties, recovering results of [1, 10].

5 Schubert Varieties

Let G be a complex semi-simple algebraic group. Let B be a Borel subgroup, and set

X = G/B. The Schubert variety Xw is the closure of the Bruhat cell BwB/B ⊂ X cor-

responding to an element w ∈ W of the Weyl group. It is the disjoint union of Bruhat

cells Xw =
∐

τ BτB/B, over those τ ∈ W≤w = {τ ∈ W : τ ≤ w} (with respect to

the strong Bruhat order on W ). Hence Xw is equivariantly formal with respect to any

torus action, and H∗(X) → H∗(Xw) is surjective, so Ĥ∗(Xw) = H∗(Xw).

The Cartan subgroup H ⊂ B acts on Xw with a single fixed point in each of the

Bruhat cells contained in Xw. Let

V ⊂ HH
2 (Xw)

π∗−→ HH
2 (pt) = h

be the resulting union of linear subspaces. Then, according to Theorem 4.1,

V ∼= Spec H∗
H(Xw)

is a reduced affine scheme, and for any t ∈ h = lie(H) there is a canonical isomor-

phism

Gr(At ) ∼= H∗(Xw)

where At = A(Vt ) is the coordinate ring of the scheme theoretic intersection V ∩
π−1
∗ (t). This gives a theorem of [1].

Theorem 5.1 Let t ∈ h be a generic point. Then

(5.1) Vt =
⋃

τ∈W≤w

w · t ⊂ H2(Xw)

is a reduced affine scheme consisting of finitely many points. The filtration by degree on

its coordinate ring At = C[H2(Xw)]/I(Vt ) induces an isomorphism of rings

Gr At
∼= H∗(Xw).

Proof The action of H on Xw is equivariantly formal, it has isolated fixed points, and

Ĥ∗(Xw) = H∗(Xw). So by Theorem 3.1 the corresponding scheme

V = Spec H∗
H(Xw) ⊂ H2

H(Xw)

is reduced and the projection π : V → h is flat. Therefore Theorem 7.1 will follow

immediately from Theorem 4.1, provided we can establish the identification of Vt

with the collection of points (5.1).
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In the commutative diagram

0 // H2(Xw) //
Ä _

²²

HH
2 (Xw) //

Ä _

²²

HH
2 (pt) // 0

0 // H2(X) // HH
2 (X) // HH

2 (pt) // 0

0 // h // h ⊕ h // h // 0

the splitting µτ : HH
2 (pt) → HH

2 (X) corresponding to a fixed point τx0 ∈ X (τ ∈ W )

is given by

(τt, t) ← t

(as the result of a calculation that we omit). Therefore, as a subset of h ⊕ h, V =

{(τa, a) : a ∈ h and τ ∈ W≤w}. In fact, V is contained in the smaller vector space

HH
2 (Xw) and Vt ⊂ H2(Xw), but its coordinate ring is independent of the embedding.

6 Toric Varieties

As in Section 2, let T ∼= (C×)n be a complex algebraic torus with Lie algebra t. Let

K ∼= (S1)n be the maximal compact sub-torus, with Lie algebra k. The natural identi-

fication of character groups

χ∗(K) ∼= χ∗(T) ∼= H2
T(pt; Z)

determines canonical isomorphisms

k = χ∗(K) ⊗Z R ∼= HT
2 (pt; R).

As in Section 2, if T acts on a topological space X, then the mapping π : X → pt

induces a homomorphism

HT
2 (X; R) → HT

2 (pt; R) ∼= k,

which we denote by π∗.

Suppose X is a normal projective torus embedding or “toric variety” correspond-

ing to a complex algebraic torus T and a (finite) rational polyhedral cone decompo-

sition Σ of χ∗(T) ⊗Z R ∼= k, as in [4, 15].

There is a simple relationship between the cone decomposition Σ and the affine

variety V = Spec(H∗
T(X; C)). Using the canonical identification k ∼= χ∗(T) ⊗Z

R, we obtain a rational polyhedral cone decomposition, which we also denote by

Σ, of k. Define a section Φ : k → HT
2 (X; R) which is linear on each cone as fol-

lows. The top dimensional (open) cones C1, . . . ,Ck correspond to the fixed points
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F1, . . . , Fk of the torus action. For each of these (1 ≤ j ≤ k), there is a splitting (3.1)

µ j : k → HT
2 (X; R) of equation (2.4), whose image we denote by k j . Let

VR =

k⋃
i=1

k j ⊂ HK
2 (X; R) = HT

2 (X; R)

denote the resulting real arrangement of linear subspaces. It is stratified into “flats”

by the multi-intersections of the subspaces ki .

Let L1, L2, . . . , Lm denote the one-dimensional cones in Σ, and, for each i, choose

a non-zero vector vi ∈ Li . Define Φ(x) = µ j(x) for all x ∈ C j (the closure of the

cone C j).

Theorem 6.1 The mapping Φ : k → HT
2 (X; R) is continuous and linear on each cone.

For each maximal cone Ci the linear span of Φ(Ci) is the linear space ki . If X is ratio-

nally nonsingular, then the vectors Φ(v1), . . . ,Φ(vm) form a basis of HT
2 (X; R), and the

partially ordered set of flats in the arrangement VR coincides with the partially ordered

set of cones in Σ.

Proof First we verify the continuity of Φ. We will show, for any codimension one

cone τ in Σ, that

φa|τ = φb|τ ,

where Ca and Cb are the two open cones such that τ = Ca ∩ Cb. Such a cone τ
corresponds to a one-dimensional orbit Eτ ⊂ X whose endpoints Fa, Fb ∈ F are the

fixed points corresponding to the open cones Ca and Cb. Let kτ ⊂ k be the Lie algebra

of the stabilizer in K of any point in Eτ . Define the mapping

ψτ : kτ → H2(F; R) ∼=
k⊕

i=1

k

by ψτ (h) = (0, . . . , h, . . . ,−h, . . . , 0), where the h,−h occur at the coordinates a

and b corresponding to the fixed points Fa, Fb ∈ F at the two ends of the orbit Eτ .

(Reversing the order of Fa, Fb changes ψt by a sign, but it does not affect the argument

which follows.)

After translating it to homology by dualizing, Proposition 2.1(iv) says (among

other things) that the following sequence is exact:

⊕
τ

kτ
Στ ψτ // HT

2 (F; R) ∼=
k⊕

j=1

k

P

j φ j
// HT

2 (X) // 0.

In the first sum, τ varies over the one-dimensional orbits in X or equivalently, over

the codimension one cones in Σ and the second sum is indexed by the fixed points

F j ∈ F. If τ = Ca ∩ Cb is a codimension one cone and if h ∈ kτ , then exactness of

this sequence implies that φa(h) + φb(−h) = 0 as claimed.

Now suppose X is rationally non-singular. Then X is equivariantly formal,

Ĥ∗(C) = H∗(X), and each cone C in Σ is simplicial. Moreover, the number of
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one-dimensional cones in Σ coincides with the dimension β2 of HT
2 (X). In fact the

Poincaré polynomial of X is given [12] by

P(q) =

2n∑

j=1

β j
√

q
j
=

n∑

j=1

cn− j(q − 1) j ,

where cn− j denotes the number of n− j-dimensional cones in Σ. By Poincaré duality,

β2 = β2n−2 = c1 − n as claimed.

On the other hand, the vectors Φ(v1), . . . ,Φ(vm) ⊂ HT
2 (X; R) cannot lie in a

proper subspace, otherwise Φ(C) would also lie in this subspace, for every cone C in

Σ, which implies that VR is also contained in this subspace. This contradicts Theorem

3.1. So we have shown that the vectors Φ(v1), . . . ,Φ(vm) form a basis of HT
2 (X; R).

Let Σ1 denote the collection of all the one-dimensional cones in Σ and let S

denote the collection of all subsets S ⊂ Σ1 with the following property: if S =

{σ1, σ2, . . . , σr}, then there exists an n-dimensional cone C ∈ Σn such that C con-

tains the one-dimensional cones σ1, . . . , σr. Because the fan Σ is simplicial, every

collection S ∈ S of one-dimensional cones spans (the closure of) a unique cone

C = span(S) ∈ Σ. The mapping span: S → Σ is a bijection of partially ordered sets.

There is also a mapping Θ from S to the set of all subspaces of HT
2 (X; R) which

associates with any collection S = {σ1, . . . , σr} of one-dimensional cones, the sub-

space spanned by Φ(v1), . . . ,Φ(vr). Because these vectors are linearly independent,

this mapping commutes with intersection, Θ(S1 ∩ S2) = Θ(S1) ∩ Θ(S2), and it is

compatible with the partial ordering defined by containment. We claim that the im-

age of Θ is precisely the partially ordered set of flats in the arrangement V . For if

S ∈ S is such a collection of one-dimensional cones, then

span(S) =
⋂{Ci ∈ Σn : span(S) ⊂ C i},

where Σn is the collection of top-dimensional cones in Σ. (In other words, each cone

is the intersection of the maximal cones containing it.) Therefore, the subspace Θ(S)

is the intersection of the corresponding maximal subspaces ki .

We remark that together with Theorem 3.1(v), this gives an alternate proof of

the theorem of Brion–Vergne [9] that the equivariant cohomology H∗
T(X; R) of any

rationally smooth toric variety is naturally isomorphic to the algebra of continu-

ous, piecewise polynomial (real-valued) functions on the corresponding fan Σ. (For,

each equivariant cohomology class corresponds to a polynomial function on the

arrangement V , which gives a continuous piecewise polynomial function on Σ by

composing with Φ : k → V ⊂ HT
2 (X; R). Conversely, every continuous piecewise

polynomial function on Σ is determined by its values on the one-dimensional rays

Φ(L1), . . . ,Φ(Lm).)

7 Springer Fibers for SL(n, C)

7.1 Recollections on Springer fibers

Let G = SL(n, C). Let B ⊂ G be a Borel subgroup. Each element a ∈ g of the Lie

algebra of G determines a vector field Va on the flag manifold X = G/B whose zero
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set we denote by Xa. If a ∈ g is nilpotent, then Xa is referred to as a “Springer fiber”.

T. A. Springer [30, 31] constructed a surprising representation of the Weyl group W

of G on the cohomology H∗(Xa) of each Springer fiber. This representation has since

been constructed by other means [20, 21] and it has been thoroughly analyzed. Each

Springer fiber Xa admits an action of a certain algebraic torus T. In this section we

will show that Springer’s representation has a canonical lift to a representation of W

on the equivariant cohomology H∗
T(Xa). (See [16] for analogous results in the case

of affine Springer fibers.)

Let us first recall some standard facts concerning the flag manifold and Springer

fibers for SL(n, C). If H ⊂ B is a Cartan subalgebra with Lie algebra h, then there is a

natural identification h ∼= H2(X; C) whose dual h∗ ∼= H2(X; C) associates with each

character χ : T → C× the first Chern class c1(Lχ) ∈ H2(X; C) of the corresponding

line bundle Lχ on X = G/B.

For any nilpotent a ∈ g = sl(n, C), there exists [13, 28] a paving of the flag

manifold X by affine spaces so that the Springer fiber Xa is a closed union of affines.

It follows that Hi(Xa) → Hi(X) is injective and Hi(X) → Hi(Xa) is surjective for all

i. In particular, Ĥ∗(Xa) = H∗(Xa) (since the same is true for X). Moreover, provided

a is not regular, the mapping induced by inclusion

H2(Xa) → H2(X) ∼= h

is an isomorphism. This is because the mapping is injective and W -equivariant (with

respect to Springer’s action on H2(Xa)), but W acts irreducibly on h.

Every nilpotent element a ∈ g = sl(n, C) is a Richardson nilpotent. In other words,

there exists a Levi subgroup L of a parabolic subgroup P ⊂ G such that a ∈ l = Lie(L)

is a regular nilpotent element, i.e., a lies in the largest nilpotent conjugacy class in l.

Then the center T of L is a torus in G which acts on the Springer fiber Xa with finitely

many fixed points. In fact (see [10]), the fixed point set XT (of the action of T on the

flag manifold X) consists of [W :WL] copies of the flag manifold XL, each of which

intersects the Springer fiber Xa in a single point. (Here WL is the Weyl group for L

and, if B is chosen so that T ⊂ B ⊂ P, then XL = L/L ∩ B.)

Now consider the arrangement of linear spaces V ⊂ HT
2 (X) → t. Using the

canonical splitting (3.2), we obtain a commutative diagram,

(7.1) 0 // H2(Xa) // HT
2 (Xa) // HT

2 (pt) // 0

0 // h // h ⊕ t // t // 0.

In this case, Theorem 4.1 is a theorem of Carrell [10].

Theorem 7.1 Let a ∈ g be a non-regular nilpotent element with Springer fiber Xa.

Let T ⊂ L be the associated Richardson data. Let t ∈ t be a generic element. Then the

scheme Vt ⊂ H2(X) is reduced and it consists of the [W :WL] points W ·t. The filtration
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by degree on the coordinate ring At = C[W · t] of this Weyl group orbit induces an

isomorphism of rings,

GrAt
∼= H∗(Xa; C).

Proof The action of T on Xa is equivariantly formal, has isolated fixed points, and

Ĥ∗(Xa) = H∗(Xa). So by Theorem 3.1, the corresponding scheme

V = Spec H∗
T(Xa) ⊂ H2

T(Xa)

is reduced and the projection π : V → t is flat. Therefore, Theorem 7.1 will fol-

low immediately from Theorem 4.1, provided that we can establish the identifica-

tion Vt = W · t . This is most directly accomplished by first considering the case of

X = G/B. Let us take B to be the group of upper triangular matrices and H to be the

Cartan subgroup of diagonal matrices of determinant 1. The Weyl group W ∼= Sn

may be realized as the subgroup of permutation matrices in G and also as the group

of permutations of the set {1, 2, . . . , n}. It acts linearly on Cn by permuting the co-

ordinate axes so we obtain an induced action on the flag manifold X. For any λ ∈ H

we have

w · (λ · x) = (wλw−1) · (w · x)

for any x ∈ X. But wλw−1 is the reflection action of W on H. So induced action on

H∗(X) is trivial, but the induced action on HH
∗ (X) is non-trivial and the projection

π∗ : HH
2 (X) → HH

2 (pt) ∼= h is W -equivariant with respect to the reflection represen-

tation on h.

A second action (the Springer action) of W on X may be defined by first choosing

a Hermitian metric on Cn that is invariant under W and also under the maximal

compact (connected) subtorus K ⊂ H. Then each flag

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = C
n

gives rise to an orthogonal decomposition Cn = M1 ⊕ · · · ⊕ Mn such that

Pk =
⊕k

j=1 Mk. Let W act by permuting the M’s. This determines an action from

the right on X by Pk · w =
⊕k

j=1 Mwk for each permutation w. This action is not

algebraic, but it commutes with the action of H so it also determines an action (from

the right) on H2(X) ∼= h which turns out to be the right-reflection representation,

that is, a · w = w−1a for a ∈ h, w ∈ W .

The fixed points of the action of H on X are the coordinate flags. If x0 ∈ X denotes

the standard coordinate flag 0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn then the other fixed points are

τx0 for τ ∈ W . Using the canonical splitting (3.2), we obtain a commutative diagram

0 // H2(X) // HH
2 (X)

π∗ // HH
2 (pt) // 0

0 // h // h ⊕ h // h // 0
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such that W acts on the first factor (and on H2(X)) via the right action, and W acts

on the second factor (and on HH
2 (pt) via the left action. If x1 ∈ G/B denotes the base

point (that is, the standard flag in Cn), then (following a calculation which we omit)

the splitting corresponding to this point turns out to be

(b, b) ← b.

The arrangement of linear spaces V ⊂ HH
2 (X) is clearly preserved under both actions

of W , so it follows that

(7.2) V =
⋃

τ∈W

{(τb, b) : b ∈ h}.

Consequently the fiber of π∗ is

(7.3) π−1
∗ (t) = {(τt, t) : τ ∈ W}.

For the Springer fiber Xa ⊂ X the diagram (7.1) consists of subspaces of the dia-

gram 7.1, so if t ∈ t, then Vt = π−1
∗ (t) is still described by (7.3). (The only change is

that the subgroup WL acts trivially on t.)

We see from the preceding proof that, in fact, we have a commutative diagram

Spec H∗
H(X)

×

Ä _

²²

⊃ Spec H∗
T(X)
Ä _

²²

⊃ Spec H∗
T(Xa)

²²

HH
2 (X)

×

²²

HT
2 (X)? _oo

²²

= HT
2 (Xa)

²²

HH
2 (pt) HT

2 (pt)? _oo = HT
2 (pt),

where the squares marked × are fiber squares. In other words, Spec H∗
T(G/B) is the

scheme-theoretic pullback of the scheme Spec H∗
H(G/B) under the inclusion t → h. The

scheme Spec H∗
T(G/B) is not necessarily reduced.

Theorem 7.2 Let X denote the variety of complete flags in Cn. Let a ∈ sl(n, C) be a

non-zero nilpotent, let T ⊂ L be the associated Richardson torus in the centralizer of a,

and let Xa be the associated Springer fiber. (It determines the element a up to conjugacy.)

Then

(7.4) Spec(H∗
T(Xa)) =

(
Spec H∗

T(X)
)

red

as sub-schemes of HT
2 (X). Moreover, the Springer action on H∗(X) → H∗(Xa) lifts

canonically to an action on the equivariant cohomology H∗
T(X) → H∗

T(Xa), and it de-

termines an identification of the Weyl group,

W ∼= AutC[t] H∗
T(Xa).
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Proof The fixed points of the action of T on X determine an arrangement

V (X) ⊂ h ⊕ h = HT
2 (X) ∼= HT

2 (X). This coincides with the arrangement V (X)

because each connected component of XT intersects Xa in a single fixed point. Con-

sequently the scheme Spec H∗
T(Xa) is reduced and this proves (7.4).

The action of W on HT
2 (X) preserves the reduced variety V = Spec H∗

T(Xa) and

the projection π∗ : HT
2 (X) → t is W -invariant. Hence this action passes to an ac-

tion on H∗
T(Xa) which is compatible with the Springer action on H∗

T(X) according to

the above diagram. In particular, W ⊂ Autπ∗
(V ). Since W acts transitively on the

components ti of V , it also accounts for the full group of automorphisms.

8 An Unusual Duality

8.1 Dual Arrangements

If V is a complex vector space let V∨ = Hom(V, C) be the dual vector space. If

L1, L2, . . . , Lk ⊂ V is a finite collection of linear subspaces, define the dual arrange-

ment (V∨, L⊥
1 , L⊥

2 , . . . , L⊥
k ) by L⊥

i = ker(V∨ → L∨
i ).

Let us say that an arrangement L1, L2, . . . , Lk ⊂ V is fibered by a surjective linear

map π : V → T if each Li is a section of π. Let K = ker(π). The arrangement

L1, . . . , Lk ⊂ V is fibered by π if and only if K is a complement to each Li in V .

This holds if and only if K⊥ ⊂ V∨ is a complement to each L⊥
i ⊂ V∨. Therefore,

the dual arrangement L⊥
1 , L⊥

2 , . . . , L⊥
k ⊂ V∨ is also fibered: use the linear surjection

π∗ : V∨ → T∗ = V∨/K⊥.

An isomorphism of arrangements (V, L1, L2, . . . , Lk) ∼= (V ′, L ′
1, L ′

2, . . . , L ′
k) is a

linear isomorphism φ : V → V ′ which takes Li isomorphically to L ′
i (possibly after

a permutation of the indices). If these arrangements are fibered by linear surjections

π : V → T and π ′ : V ′ → T ′, then the isomorphism is fibration preserving if it also

takes K = ker(π) isomorphically to K ′ = ker(π ′).

8.2 Partial Flag Manifold

As in Section 7.1, let H ⊂ B ⊂ G = SL(n, C) be the standard Borel pair of diagonal

and upper triangular matrices of determinant 1. Let n = n1 + n2 + · · · + nk be an

ordered partition. It corresponds to a partial flag E1 ⊂ E2 ⊂ · · · ⊂ Cn of dimensions

n1, n1 + n2, . . . , n. Let P ⊂ G be the parabolic subgroup of G that fixes this flag and

let L ⊂ G be its Levi subgroup consisting of block-diagonal matrices with block sizes

n1, n2, . . . , nk. Let T = H ∩ L be its center. Let K = SO(n, C) be the (standard)

maximal compact subgroup. The diffeomorphism G/P ∼= (K ∩ L)/(K ∩ T) induces

an isomorphism H2(G/P) ∼= t, so we obtain an exact sequence

0 // H2(G/P) // HH
2 (G/P) // HH

2 (pt) // 0

0 // t // t ⊕ h // h // 0.
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The projection q : G/B → G/P is H equivariant. The induced mapping

q∗ : H2(G/B) → H2(G/P)

is given by orthogonal projection h → t with respect to the Killing form. The result-

ing mapping,

HT
2 (G/B) ∼= h ⊕ h → HT

2 (B/P) ∼= t ⊕ h

takes the arrangement V (G/B) to the arrangement V (G/P) which can therefore be

described as follows,

(8.1) V (G/P) =
⋃

τ∈W

{(q∗(τb), b) ∈ t ⊕ h : b ∈ h}.

The fixed point set (G/P)H is the image under q of the fixed point set (G/B)H ,

so the fixed points are isolated. Hence (Theorem 3.1) the scheme W (G/P) =

Spec Ĥ∗
H(G/P) is reduced. (However the projection V (G/P) → h is not flat, because

H∗(G/P) 6= Ĥ∗(G/P).)

Theorem 8.1 Let a ∈ sl(n, C) be the standard nilpotent element with Jordan blocks

of sizes n1, n2, . . . , nk. Let Xa be the corresponding Springer fiber. Then the fibered

arrangement

Spec H∗
T(Xa) = V (Xa) ⊂ t ⊕ h → t

is isomorphic to the dual of the fibered arrangement

Spec Ĥ∗
H(G/P) = V (G/P) ⊂ h ⊕ t → h.

Proof Let E1 = t ⊕ h and E2 = h ⊕ t. There is a dual pairing E1 × E2 → C given by

〈(t1, h1), (h2, t2)〉E = 〈t1, t2〉 − 〈h1, h2〉

where 〈 · , · 〉 denotes the Killing form on h (and its restriction to t). With respect

to this pairing, the dual to t ⊕ 0 ⊂ E1 is h ⊕ 0 ⊂ E2, and the dual to 0 ⊕ h ⊂ E1

is 0 ⊕ t ⊂ E2. We claim that the dual to V (Xa) ⊂ E1 is V (G/B) ⊂ E2. The two

arrangements contain the same number of subspaces and they have complementary

dimensions. We must show that each subspace in the first arrangement is the dual of

a particular subspace in the second arrangement. From equations (7.2) and (8.1) it

suffices to show that for any w ∈ W , the dual of the subspace

L = {(q∗(wb), b) : b ∈ h} ⊂ E1

is the subspace L ′ = {(w−1t, t) : t ∈ t} ⊂ E2. Since q∗ is the orthogonal projection

to t, for any t ∈ t and any x ∈ h we have 〈q∗(x), t〉 = 〈x, t〉. Therefore a point

(h, t) ∈ E2 is in {(q∗(wb), b) : b ∈ h}⊥ if and only if

0 = 〈(q∗(wb), b), (h, t)〉E = 〈q∗(wb), t〉 − 〈b, h〉 = 〈wb, t〉 − 〈b, h〉

for all b ∈ h. Since the action of W preserves the Killing form, this is equivalent to

〈b, w−1t〉 = 〈b, h〉 or h = w−1t , which is the subspace L ′ ⊂ E2.
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