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Abstract

In recent papers, Russell introduced the notions of functions of bounded fcth variation (BVk

functions) and the RSk integral. Das and Lahiri enriched Russell's works along with a convergence
formula of RSk integrals depending on the convergence of integrands. In this paper a convergence
theorem analogous to Arzela's dominated convergence theorem has been presented. An investigation
to the convergence in /fcth variation has been made leading to some convergence theorems of RSk

integrals depending on the convergence of integrators.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 26 A 42; secondary 26 A 45.

1. Preliminaries and definitions

A. M. Russell (1973) obtained the definition of functions of bounded kth
variation (BVk functions) along with certain properties of BVk functions. A. G.
Das and B. K. Lahiri (1980a) introduce the notion of ACk functions and
produce certain relations between ACk- and BVk-functions. Russell (1975)
obtained later the definition of an integral (the RSk integral) together with some
important properties of the integral. Das and Lahiri (1980b) obtained some
other properties of the integral and certain modifications of some results of
Russell (1975). A convergence theorem of RSk integrals appears in Das and
Lahiri (1980b) depending on the convergence of integrals. In the present paper
the authors present a convergence theorem analogous to Arzela's dominated
convergence theorem. The authors also feel that there is an interest in obtaining
convergence theorems of RSk integrals depending on the convergence of integra-
tors. To this end it is desirable to investigate the convergence in fcth variation. In
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164 U. Das and A. G. Das [2 J

the sequel, we shall need the following definitions and results from Das and
Lahiri (1980b), Russell (1973) and Russell (1975).

Let a', a, b, b' be fixed real numbers such that a! <a < b <b' and let k be a
positive integer greater than 1. The real-valued functions that occur are defined
at least in [a, b].

DEFINITION 1. We denote by II(x0, . . . , xn) a subdivision of the closed
interval [a, b] of the form

a < x0 < xx < • • • < xn < b.

DEFINITION 2. We denote by T(_x_k+l, . . ., xn+k_l) a subdivision of the
closed interval [a, b] of the form

a' < x_k+x < • • • < x0 = a < x, < • • • < xn

= t> <*„+! < • • • <*„ + *-! <b'.
The norm of the subdivision T, denoted by ||r||, is the number

max_/t+2<,<n+A_,(jc, — x,_,). The norm of the subdivision II, ||II||, is the
number maxI<(<n(x,. - *,_,).

DEFINITION 3. Let x0, x p . . . , xk be k + 1 distinct points, not necessarily in
the linear order, belonging to [a, b]. Define the kth divided difference of/as

/ ; * o > x v . . . , x k )
k

1 = 0

kn (Xi -
j-o

DEFINITION 4. A function / defined on [a, b] is said to be A:-convex on [a, b] if
and only if Qk(f; x0, x,,..., xk) > 0 for all choices of the distinct points XQ,
xx, . . . , xk in [a, b].

DEFINITION 5. Let x, xu . . . , xk be k + 1 distinct points in [a, b]. Suppose
that hf = xi: - x when / = 1, 2, . . . , k and that 0 < |A,| < \h2\ < • • • < \hk\.
Then define the kth Riemann • derivative by

Dkf(x) = &! lim lim • • • lim Qk(f; x, xx, . . ., xk),

if the iterated limit exists. The right and left Riemann • derivatives are defined
in the obvious way.

When the &th Riemann derivative, in the sense of Bullen (1971), exists for
h0 = 0, it coincides with the A:th Riemann * derivative.

DEFINITION 6. The total kth variation of / in [a, b] is defined by
n-k

Vk[f; a, b] = sup 2 (•*,•+* ~ x,)\QkU> *•> xi+\> • • • • *.•+*)!•
n / = o
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[ 3) Convergence in fcth variation 165

If Vk[f; a, b] < oo, we say t h a t / i s of bounded kth variation on [a, b] and write

/ E BVk[a, b]. The summations over which the supremum is taken are called

approximating sums for Vk[f; a, b].

DEFINITION 7. The total outer kth variation o f / o n [a, b] is defined by

Wk[f;a,b]= sup " 2 (xi+k - x,)\ Qk(f; *„ ..., x i + k ) \ .
r i=-k+\

If Wk[f; a, b] < oo we say t h a t / i s of bounded outer A:th variation on [a, b] and
write/G BWk[a,b\

DEFINITION 8. The integral J* f(x)(dkg(x)/ dxk~*) is the real number / , if it
exists uniquely and if for each e > 0 there is a real number 8(e) > 0 such that
when Xj < £,- < xi+k, i = —k + ! , . . . , « — 1,

n - i

< = - * :+ 1
; x,,. < £

whenever ||r|| < 5(e).
If the integral exists we will write (/, g) E RSk[a, b], and we will refer to the

integral as an RSk integral.

DEFINITION 9. If in Definition 8 we consider only II subdivision of [a, b], so
that we necessarily consider only functions / and g defined on [a, b], then we
obtain an RS} integral, *fb

af(x)(dkg(x)/dxk-i).

The notations and further definitions which are not noted here may be seen in
Russell (1973) and Russell (1975). We simply note the following results from
Das and Lahiri (1980b) for ready references.

THEOREM 1. Suppose that the (k — l)th Riemann * derivatives of g exist at a
and b. A necessary and sufficient condition that (/, g) G RSk[a, b] is that (/, g) G
RS£[a, b]. In either case

THEOREM 2. Let Dk 'g(c) exist where a <c < b. If g is k convex in [a', b'\ and
(/, g) G RSk[a, b], then (/, g) G RSk[a, c] and(f, g) G RSk[c, b], and

dx k~x
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THEOREM 3. Let {fp(x)} be a sequence of junctions which converges uniformly to
f(x) on [a', b']. If g is k-convex in [a', b'\ and for all p, {fp, g) G RSk[a, b], then
(/, g) G RSk[a, b] and

REMARK 1. We remark that Theorems 2 and 3 can also be obtained for RS£
integrals.

2. Convergence in fcth variation

Let {Fp(x)} be a sequence of real functions in [a, b] which is assumed,
throughout the section, to be convergent and to converge to F(x), say.

It is easily observed that Vk[F; a, b] < lim inf^^ Vk[Fp; a, b].

PROPERTY Ak. A sequence {Fp(x)} is said to satisfy Property Ak on [a, b] if a
subdivision I I o ^ , £ , , . . . , £M), n > 2k, of [a, b] and a positive integer q exist
such that

\Qk(Fp> Xo,xv..., xk)\ > \Qk{Fq; XQ, XX, . . . , xk)\

when p > q and for each set of k + 1 distinct points xr, r = 0, 1, . . . , k,
belonging to [£„ £,+2*], i = 0, 1, . . . , ju - 2k.

REMARK 2.1. The case k = 1 demands a simpler definition:
A sequence {Fp(x)} is said to satisfy Property Ax on [a, b] if a subdivision

Ilo(a = | 0 , £p . . . , £M = fe) of [a, b] and a positive integer q exist such that
I^Oc.) - Fp(x0)\ > \Fq(Xl) - Fq(x0)\

when/? > q and for every pair JC0, JC, belonging to [£,, | I + , ] , / = 0, 1, . . . , ju — 1.
We observe that for distinct elements x0, x, the above inequality is the same as
that in Property Ak (k = 1), but the fundamental difference is that the contain-
ing subintervals are disjoint save the end points in this case contrary to the case
of k > 2.

Consider the sequence {Fp(x)} in [a, b] defined by

Fp(x) = apx
n, n>k, \ap\ > \aq\ for/> > q.

By Milne-Thomson (1965), §1.31 p. 7, we obtain

Qk(Fp'> x0, x, xk) = Op2 * o V ' • • • xk*

where the summation is extended to all positive integers including zero which
satisfy the relation 2*_0«r = n — k. Obviously then {Fp(x)} possesses property
Ak.
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[s] Convergence in kth variation 167

Let G denote the collection of all II subdivisions of [a, b] and let
n-k

vk[<p> n ] = 2 ( * , + * - * , ) l < 2 * ( < p ; x , , . . . , x l + k ) \ .
1 = 0

LEMMA 2.1. limJ>_00 Vk[Fp; II] = Vk[F; li] for every II G (3.

PROOF. Let e > 0 be arbitrary. We consider a subdivision n(jc0, JC,, . . . , JCM) of
[a, b], and let S = mino<i<li_l(xi+1 — xt). There exists a positive integer /»,
(/ = 0, 1, . . . , ft) such that \Fp(x,) - F(x,)\ < eSk/ii(k + 1)(6 - a) whenever
p > Pj. Then for^ > P = max, /?, and for each i, 0 < /' < /x — k

| l & f F , ; JC,, . . . , xi+k)\ - \Qk(F; x,, . . . , xl+k)\ |

i + k
{Fp(xr)-F(xp)}/U(xr-xs) , by Definition 3

- a).

It then follows that for/? > P

M - *

(xi+k - Xi)\Qk(F; Xf, . . . , xi+k)\

(*/+* - x,)e/p(b - a) < e

and the lemma is proved.

LEMMA 2.2. / / K is a finite positive number and if for all p, Vk[Fp; a, b] < K,
then Vk[F; a, b] < K.

PROOF. The proof follows directly from Definition 6 or else easily using
Lemma 2.1.

LEMMA 2.3. If the sequence {Fp(x)} possesses Property Ak on [a, b] and if
Vk[Fp; a, b]> K for all p, K being a finite positive number, then a subdivision
I l e C exists such that Vk[Fp; II] > K for all p.

PROOF. A subdivision no(£0, £„ . . . , £M) of [a, b] and a positive integer q exist
such that

\Qk{Fp; JC,., JC,.+ 1, . . . , \Qk{Fq; x t , x i + x , . .., x i + k ) \
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when p > q and for each set of k + 1 distinct points xr, r = i, . . ., i + k,
belonging to [£, £-+2*]>* = 0, 1, . . . , /i - &.

Let n , G S which contains all the points of subdivision of II0. Using
Property Ak it is easily seen that

(2.1) Vk[Fp; I I , ] > Vk[Fq; I I , ] forall/> > ? .

Since FJ-F,; a, Z>] > A, 1 < i < ^ an element II2 G 6 exists such that

(2.2) Vk[
Fi\ n 2 ] > K for each i, 1 < i < q.

Let II be a subdivision in S containing all the points of subdivisions of II,
and II2. By Russell (1973), Theorem 3, and the inequalities (2.1) and (2.2) above,
it follows that

F t [ ^ ;n ] >K ioT&Mp.

This proves the lemma.

THEOREM 2.1. If {Fp(x)} and all its subsequences possess Property Ak on [a, b]
and if Vk[F; a, b] < K, then Vk[Fp; a, b] < K for all p except possibly a finite
number.

PROOF. If possible, we suppose that the theorem is false. There exists a
sequence of positive integers {/>,} with p,,-* oo such that Vk[Fp; a, b] > K.
Applying Lemma 2.3 and then Lemma 2.1, it follows that Vk[F; a, b] > K. The
contradiction proves the theorem.

THEOREM 2.2. If {Fp(x)} and all its subsequences possess the Property Ak on
[a, b] and Vk[Fp; a, b] is finite for eachp, then

Vm Vk[F,; a. b] - Vk[F; a, b].

PROOF. We are to dispose of the following two cases:

(I) Vk[F; a, b] < +oo and (II) Vk[F; a, b] = +oo.

Case I. Let K denote a positive number such that Vk[F; a, b] < K. Then, by
Theorem 2.1, there exists an integer p0 such that

Vk[Fp;a,b] <K for/7 >p0.

Let A =lim Vk[Fp; a, b] and A =lim Vk[Fp; a, b\. There exists a sequence {/>,}
of positive integers such that lim,^^ Vk[Fp; a, b] = A.

If e > 0 is arbitrary, an integer /„ exists such that

A - e < Vk[Fp; a, b] < A + e when i > i0.

So, by Lemma 2.2,

(2.3) Vk[F;a,b] < A + e.
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Again, by Lemma 2.3, an element I I e Q exists such that Vk[Fp-, II] > A - e
for / > i0. Letting i —> oo, we obtain, by Lemma 2.1, Vk[F; II] > A — e and so

(2.4) Vk[F;a,b] > A - e.

Combining (2.3) and (2.4) we get A - e < Vk[F; a, b] < A + e. As e > 0 is
arbitrary, it follows that Vk[F; a, b] = A. It can similarly be shown that
Vk[F; a, b] = \ and hence

Vk[Fp;a,b] = Vk[F;a,b].

Case II. In this case the sequence {Vk[Fp; a, b]} cannot be bounded. If
possible, let lim Vk[Fp; a, b] = X. Then as in Case I, it follows that Vk[F; a, b] =
X which contradicts the hypothesis. Hence limp^^Fy, a, b] = + oo. This com-
pletes the proof.

NOTE 2.1. If g is Ac-convex in [a, c] and A:-concave in [c, b] where a <c <b
and if Dk~lg(x) exists everywhere in [a, b], then

(* - iy.Vk[g; a, b] = \Dk-'g{a) - D*-'«(c)I + |Z>*-'g(c) - Dk~lg(b)\.

This result enables us sometimes to evaluate Vk[ g; a, b] independently.

REMARK 2.2. For the validity of Theorem 2.2, the convergence of the sequence
{Fp(x)} or even the uniform convergence is not sufficient. This is shown by the
following example.

Let Fp{x) = (1 — cospx)/p2, 0 < x < w. Clearly {Fp(x)} converges uniformly
to F(x) = 0 in [0, IT]. We observe that Fp(x) exists in [0, IT] and Fp{x) =
(sinpx)/p, 0 < x < IT. Also, in view of Russell (1973), Theorems 7 and 13, and
2-convex property of Fp(x) in a subinterval in which Fp(x) is increasing, we have

V2(Fp; 0, TT) = V(F;-, 0, TT) = 2 for all/>.

But V2(F; 0, IT) = 0 and so

lim V2(Fp; 0, W) ¥= V2(F; 0, IT).
p

3. Sequence of RSk integrals

We consider a T(x_k+X, . . . ,xn+k_l) subdivision of [a, b] and make the
definitions Mit /w,, S, s as in Russell (1975), Lemma 4. We note here that Lemma
4 of Russell (1975) is still true if/is simply bounded in [a', b']. It can further be
observed that no lower approximating sum can exceed any upper approximating
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sum for RSk integral with g A-convex in [a', b'\. We define

and/ ( ) ^ 4 p /
J
a dx ' r Ja

It readily follows that if g is A>convex in [a', b'], then

and (/, g) e /JS^a, Z>] if and only if the equality sign holds.
Following Luxemburg (1971) it is not difficult to obtain an Arzela's

dominated convergence theorem for RSk integral:

THEOREM 3.1. Let g(x) be k-convex in [a', b'] and let {fp(x)} be a sequence of
functions which converges to f(x) in [a1, b']. If for all p, (fp> g) £ RSk[a, b] and
(/, g) E. RSk[a, b] and if there exists a constant M > 0 satisfying \fp(x)\ < M for
all x e [a, b] and for all p, then

To establish the proof of Theorem 3.1, we simply require Theorem 1 of
Russell (1975), Theorem 3 of §1, and the obvious inequality
fb

a<p(x)(dkh(x)/dxk~l) > 0 for <p > 0, h being *>convex in [a1, b'] and (<p, h) e
RSk[a, b].

For the sake of simplicity we prove the remaining results for RS* integral.
These can also be proved for RSk integral by proving the results of Section 2 for
outer kth variation.

LEMMA 3.1. / / ( / , g) e. RS£[a, b] and f bounded in [a, b], then

<M(f)Vk[g;a,b],
'K ' dxk~

where M(f) = maxa<;(<fc|/(x)|.

PROOF. Consider any H(x0, * „ . . . , xn) subdivision of [a, b] and choose £,,
x, < £f < xi+k, 0 < i < n — k, arbitrarily. The lemma follows from the inequali-
ties

n-k

n-k

2 l £ ? * - i ( g ; * , - + i . • • • . * , + * ) - Q k - i ( g ' xi> • • • > x i + k - i
i-0

<M(f)Vk[g;a,b].
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THEOREM 3.2. Let f be bounded in [a, b] and let {gp(x)} be a sequence of
functions which converges to g(x) in [a, b] with {Vk[gp; a, b]} converging to
Vk[g; a, b\. If for all p, (/, gp) G RS?[a, b] and also (/, g) G RSfta, b], then

lim

PROOF. Let e > 0 be arbitrary, then there exists a positive integer p0 such that
forp >p0

\Vk[ gp; a, b] - Vk[ g; a, b]\ < e/M(f),

where M(f) = maxa<Jt<6|/(x)|.
Using Russell (1975), Theorem 2, and then Lemma 3.1, we obtain

dkg(x)
dx k~l

dxk~l

<M(f)Vk[gp-g;a,b]
<e

whenever p > p0. This proves the theorem.

Convergence of { Vk[gp; a, b]} to Vk[g; a, b] in Theorem 3.2 may be obtained
by Property Ak. In that case Theorem 3.2 takes the form:

THEOREM 3.3. Let f be bounded in [a, b] and let {gp(x)} be a sequence of
functions which converges to g(x) in [a, b]. Let { gp(x)} and all its subsequences
possess Property Ak and Vk[gp; a, b] is finite for all p. If for all p, (/, gp) E.
RSfia, b] and also (/, g) G RS£[a, b], then

lim *
p—*oo

We now present a convergence formula similar to that for Stieltjes-integral in
Natanson (1961), Theorem 3, p. 233. For this purpose we prove the following
two lemmas.

LEMMA 3.2. If g G BVk[a, b], then
(a) Drg(x) are continuous in [a, b], 1 < r < k — 2, for k > 3,
(b) Dk~1g(x) exists in [a, b] except possibly a countable set of points.

PROOF, (a) Utilising Russell (1973), Theorem 19, the proof is obtained from
that of Bullen (1971), Theorem 7(a), simply omitting the last sentence.
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The proof may also follow from Russell (1973), Theorem 12 and Milne-
Thomson (1965), §1.2(2), p. 6.

(b) In view of Russell (1973), Theorem 19, and Bullen (1971), Theorem 6,
D+~lg(x) exists in [a, b) and Dk~xg{x) exists in {a, b]. Also if a < x0 < x,
< • • • < xk_l < x < y0 <yt < • • • <yk_i < y < z0 < • • • < zk_l < b,
then

D*+-lg(a) < Dk_-'g(x) < Dk
+-lg(x) < Dk_-Xg(y) < Dk

+~lg(y) < Dk_~xg{b).

Thus Dk~lg(x), DkTxg(x) are monotonic increasing respectively in {a, b], [a, b)
and so are continuous in [a, b] except possibly a countable set of points. It, then,
follows that Dk~lg(x) = D*"1^*) in [a, b] except possibly a countable set of
points. The lemma is then immediate if k = 2. If k > 3, the lemma follows in
view of Part(a) above and Bullen (1973), Corollary 3(b).

LEMMA 3.3. Let { gp(x)} be a sequence of functions, converging uniformly to the
function g(x) in [a, b]. Ifg(x) and each gp(x) belong to BVk[a, b], then

lim
dxk~l

PROOF. The existence of the above integrals follows from Russell (1975),
Theorem 11. If H(a0, a,, . . . , an) is any subdivision of [a, b] and .S*(n, 1, gp),
S*(U, 1, g) denote respectively the approximating sums for the above integrals,
then

• S " ^ 1 1 ' hgp) = Qk-i(gP' « « - * > • • • > « „ ) - Qk-i(gP> «o> • • • . « * - i ) .

S*(II, \,g) = 0fc_,(g; an_k, . . . , o n ) - Qk-i(g; a0, . . . . a ^ , ) -

By Russell (1973), Theorem 4, the approximating sums are bounded indepen-
dent of IT.

Let e > 0 be arbitrary. There exists 8, = 8,(e) > 0 such that

5*(n, 1, g) - * ft>dkg{x)

a dx k-\
< - e whenever ||II|| < 8,.

Since { gp(x)} converges uniformly to g(x), there exists a positive integerp0 such
that for any Il-subdivision of [a, b]

\S*(U, 1, gp) - S*(U, 1, g)\<\e whenever/> >p0.

It then follows that

(3-1) < — e whenever ||II|| < 8, and/» > PQ.
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Also for each/> we can choose 82 = 52(e, p) > 0 such that

(3.2) s*(n, 1,gp)-*f
»dkg(x)

dx k-\
< - e whenever < S2.

For each p > p0 choose S2 and then choose a fixed Il-subdivision of [a, b] with
||XT|| < 5 = min(8,, S )̂. Then from (3.1) and (3.2) we obtain

»dkg{x)
dx k-l

<e whenever/? > p0.

This proves the lemma.

THEOREM 3.4. Let f(x) be continuous in [a, b] and let { gp(x)} be a sequence of
functions which converges uniformly to a finite function g(x) in [a, b]. If K is a
fixed positive number and Vk[gp; a, b] < K for all p, then

lim •
p—>OO

f/W
A'w

dx k-\

PROOF. Clearly each gp e fiKJa, *] . By Lemma 2.2, Vk[g; a, b] < K and so
g G BVk[a, b]. The existence of the integrals are, then, ensured by Russell
(1975), Theorem 11.

We now establish the equality.
By Lemma 3.2, there exists a subset E of [a, b], where [a, b] — E is countable,

such that g and each gp possess (k — l)th Riemann * derivatives at each point of
E. Let e > 0 be arbitrary. There exist finite subintervals [xitxi+1], i =
0, 1, . . . , m — 1, x0 = a, xm = b, xt E. E, 1 < i < m — 1, of [a, b] such that
oscillation of f(x) in each subinterval is less than e/3K. In view of Russell
(1973), Theorem 19, and Russell (1975), Theorem 1 and Theorem 2 of §1,

j * _ / - \ m—1

dx * - l

By Lemma 3.1 and Russell (1973), Theorem 7,

m - l dkg{x)
dxk~l

m - l

= ^p Vk[ g; a, b] < e/3.
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We find,

(3.3)

therefore,

'a

that

dkg(x)
dxk~i

U. Das

m-\

i - O

and

:i) *

A.'

r

[12]

& + 9e/3

In the same way, we can show that for all/»
(3-4)

« f f( \ SpK ' = V f( w f SpK ' + a / 3 (\0\ < \\
'a dxk~1 ,_o ' •'xt dxk~l p p

By Lemma 3.3, there exist />,., / = 0, 1, . . . , m — 1, such that

(3.5)
dx k~\

<e/3mM wheneverp > pt,

where A/ = supfl<x<6|/(x)|. Choosing />0 = maxo<l<m_,/>1 we obtain, from
(3.3), (3.4) and (3.5)

< e whenever/) > p0.

This proves the theorem.
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