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Immiscible capillary flows in non-uniform
channels
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(Received 12 March 2021; revised 25 May 2021; accepted 20 July 2021)

We consider the release of preferentially wetting fluid in a laterally extensive V-shaped
channel initially filled with a second fluid, presenting solutions for the initial exchange flow
and the late time spreading of the wetting fluid along the narrow part of the channel. We
also show that, if there is a buoyancy force acting in the cross-channel direction, the early
time exchange flow depends on the Bond number, and the intermediate time slumping
flow may initially be dominated by buoyancy, but at long times becomes controlled by
capillarity. Where there is an along-channel component of gravity we show that the flow
spreads out downslope, with capillarity controlling the structure of the nose. We then
consider the case where the channel is connected to a reservoir of wetting fluid at constant
pressure. We show that, depending on this pressure, either a zero flux exchange flow
develops, or a net inflow through the whole width of the channel develops, as in the
classical Washburn, Lucas, Bell and Cameron capillary imbibition flow. We show these
flows are analogous to the classical model for one-dimensional capillary driven flows in
porous media, with the current width in the channel corresponding to the saturation in the
pore space.

Key words: capillary flows, Hele-Shaw flows

1. Introduction

Capillary driven flows arise in many situations when a wetting fluid displaces a
non-wetting fluid. Important examples include the classical capillary imbibition flow
in which a fluid is drawn along a capillary tube, as described by Washburn, Lucas,
Bell and Cameron (WLBC), and the capillary driven flows along a corner formed by
the intersection of two planes (Lucas 1918; Bell & Cameron 1905; Washburn 1921;
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Figure 1. (a) Cartoon displaying early time behaviour where there is a fully saturated region of wetting fluid
in the range −xs < x < xs. (b) At later times the two receding fronts meet and the wetting fluid slumps at the
origin as the current extends along the channel. (c) As the flow is symmetrical about x = 0, for simplicity
we only consider the region x > 0. The channel thickness varies linearly with cross-channel position with
the leading wetting front migrating through the thinnest region of the channel. (d) Interface curvature at two
interface positions. The curvature at the interface increases toward the thin boundary, leading to a capillary
pressure gradient which drives flow.

Weislogel & Lichter 1996). In the general case, the flow is three-dimensional, but in
the case of a narrow angle V-shaped channel, the flow may become approximately
two-dimensional. The capillary pressure jump between the two fluids depends on the
location of the interface across the channel, being proportional to σ/b, where b is the local
gap width and σ the surface tension. The flow may then be driven along the channel by
the gradient of capillary pressure associated with variations in the location of the interface
across the channel, as sketched in figure 1. The capillary driven flow of a single fluid
along such a narrow wedge has been described by Romero & Yost (1996) and Weislogel &
Lichter (1996). They showed that, at early times, the fluid is drawn out by the gradient
of capillary pressure into the narrower side of the channel, while the fluid supplying
this advancing tongue is supplied by a receding front on the wider side of the channel,
with the motion being described by similarity solutions in which the interface moves at a
speed proportional to t−1/2. They also considered the motion of a finite volume of fluid
which spreads out along the thin part of the channel from an initially localised region, and
demonstrated that this is governed by a different class of similarity solution, in which the
front spreads with speed decaying as t−3/5.

In the present contribution, we develop this analysis to consider the capillary driven
flow of a wetting fluid into a channel which is initially saturated with a second immiscible
fluid of different viscosity. We consider the capillary driven spreading of a finite volume
of the wetting fluid, assuming that it fills the width of the channel along a finite region
and illustrate the control of the mobility ratio between the two fluids on the imbibition
flow, contrasting new solutions for the early and later time flow with earlier studies which
focussed on a single fluid. We also consider the case in which a channel, initially filled with
one fluid, is adjacent to a reservoir containing an immiscible and preferentially wetting
fluid which is maintained at a different pressure from the far-field pressure in the channel.
We show that, with a sufficiently small pressure difference, a counterflow with zero net
flux develops in the channel driven by the capillary pressure, in which the wetting fluid
only partially saturates the channel. In contrast, with a larger pressure difference, we show
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Immiscible capillary flows

that the wetting fluid fills the channel, leading to a net flow in the along-channel direction,
which represents a generalisation of the WLBC-type capillary imbibition flow.

Such capillary imbibition flows may be important in situations in which fluid is injected
into a fractured rock, for example with CO2 geo-sequestration, whereby supercritical
CO2 is injected into a saline aquifer. In this case, the CO2 will initially flood the high
permeability primary fractures within the formation leading to a dispersed zone of CO2
within the formation. Typically, such fractures intersect secondary fractures, which are
initially filled with brine. Over time, the capillary imbibition flows described herein may
lead to further dispersion of the CO2 into the formation driven by the exchange of CO2
and water between the primary and secondary fractures. This process may be critical in
assessing the storage capacity of the reservoir, and the lateral extent of the CO2 plume
within the reservoir.

Our model also provides a physical analogue to capillary imbibition flows through a
porous rock (Handy 1960; Bear 1975; Alyafei & Blunt 2018). In porous media, the flow
is described in terms of the saturation s of the wetting fluid within the pore space, and
empirical laws for the capillary pressure Pc(si) and relative permeability of each phase,
ki(s) are expressed in terms of this saturation. The model developed herein for flow in
a triangular shaped channel provides an analogue and exact analytical model for such
porous medium flows, where the width of the flow across the channel is equivalent
to the saturation in the porous layer. This analogy is complementary to the model of
Lajeunesse et al. (1999), in which it was demonstrated that the displacement of one
fluid by second in a cylinder or a constant gap width Hele-Shaw cell is analogous to the
Buckley–Leverett fractional flow model for displacement flow in a porous medium. The
inclusion of a variable thickness across the channel, leads to variations in the capillary
pressure analogous to the saturation dependence of the capillary pressure in a porous layer.

We have arranged the paper as follows. First, we derive the equations for the counterflow
in a finite width channel, and describe new solutions for the spreading of a finite volume
of wetting fluid at short and long times as it displaces the non-wetting phase. We then
discuss how a buoyancy contrast between the two fluids impacts the flow when gravity
acts both across and along the channel, illustrating the control of the flow in terms of the
Bond number. We then present a new class of solutions corresponding to an exchange
flow between a channel and reservoir of fixed pressure, establishing a regime diagram to
delineate the condition in which a counterflow and a co-flow develop. Finally, we explore
the analogy between the present model and the models typically used for capillary driven
imbibition in a porous layer.

2. Immiscible exchange between two fluids

We consider the displacement of one fluid by a second, preferentially wetting fluid, along a
channel of width 0 < y < H and thickness b( y) – see figure 1. As the interface between the
fluids spreads out along the channel, the curvature becomes dominant in the cross-channel
direction and,to leading order, we can write the capillary pressure at the interface as σ/b,
where σ is the surface tension. If the gradient of the channel thickness is sufficiently
shallow so that max(b) � H then, to leading order, the resulting capillary pressure
gradient acts in the along-channel direction and the boundary layer connecting the fluid
to upper and lower faces of the channel is much smaller than the extent of the fluid–fluid
interface. Then, in the limit where the interface extends a distance along the channel which
is much greater than H, the flow becomes approximately unidirectional, with the pressure
gradient in each fluid phase being constant at each point along the channel. The flow speed
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at a point (x, y) is then given by

uw = −b( y)2

12μw

∂Pw

∂x
, (2.1a)

unw = − b( y)2

12μnw

∂Pnw

∂x
, (2.1b)

where μ is the fluid viscosity and the subscripts w and nw denote the wetting and
non-wetting phases respectively. The flux of the wetting fluid and non-wetting fluid at
point x along the channel is then given by

Qw = − 1
12μw

j(0,w)
∂Pw

∂x
, (2.2a)

Qnw = − 1
12μnw

j(w,H)
∂Pnw

∂x
, (2.2b)

where

j(w1,w2) =
∫ w2

w1

b( y)3 dy, (2.3)

where w1 and w2 are arbitrary coordinates along the y axis. The capillary pressure gives
rise to a pressure jump across the fluid interface. Given that the capillary pressure is

Pc = − σ

b(w)
, (2.4)

we can relate the pressure in the wetting fluid to that of the non-wetting fluid with the
relationship

Pnw(x, t) = Pw(x, t)− Pc(x, t) = Pw(x, t)+ σ

b(w)
. (2.5)

If there is a net flux Q along the channel, then after some algebra, we find that the local
conservation of mass has the form

b(w)
∂w
∂t

+ Q
∂

∂x
J(w) = σM

12μw

∂

∂x

(
J(w)j(w,H)

b(w)2
db
dw
∂w
∂x

)
(2.6)

where the viscosity ratio M = μw/μnw and the fractional flow of the wetting phase J(w)
is given by

J(w) = j(0,w)
j(0,w)+ Mj(w,H)

. (2.7)

The solutions of (2.6) depend on the boundary conditions and the details of the channel
thickness with position across the channel. In the following, we assume that b(w) = λw
for 0 < w < H, where λ is the gradient of aperture width across the channel.

We consider two problems. First, the spreading of a finite volume of wetting fluid
initially located in the region −L < x < L, which fills the width of the channel, while
the remainder of the channel is filled with non-wetting fluid. Second, the spreading of a
wetting fluid from a reservoir of pressure P, at x = 0, which opens into the channel, and
we consider the flow in x > 0.
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Figure 2. (a) Variation of the leading edge of the current as a function of time, for M = 0.1, 1, 10 and for
a single wetting fluid (M = ∞). As M increases the transition from early time self-similarity to late time
self-similarity shortens. For M = 10 the front position is almost indistinguishable from that of a single fluid
propagating in an empty channel. The dashed blue and green lines are a guide for the eye and show the
theoretical gradients of the early and late time power laws. (b) Early time confined exchange flows of M = 0.01,
0.1, 1, 10 and 100. Note that M = 100 is very similar to the solution for a single wetting fluid (red dashed line).
We also show the similarity solution for M = 1 (blue dotted line) which shows a strong agreement with the
numerical simulation. (c) The position of ηf (solid line) and ηs (dashed line) as a function of mobility ratio.
(d) The variation of the ŵ as a function of along-channel position at time t̂ = 0, 1, 10, 100 and 1000 for the case
M = 1.

3. Finite release

For a finite release we consider the volume of wetting fluid in the region 0 < x < L
which ultimately spreads into the region x > 0. The leading front of the wetting fluid,
xf , propagates away from L and the trailing front of the current, xs, which runs along the
thick boundary, propagates toward the origin. It is convenient to introduce dimensionless
variables w = ŵH, x = x̂L and t = t̂τ where,

τ = 48L2μw

λHσ
(3.1)

leading to the dimensionless governing equation

ŵ
∂ŵ
∂ t̂

= M
∂

∂ x̂

(
ŵ2(1 − ŵ4)

ŵ4 + M(1 − ŵ4)

∂ŵ
∂ x̂

)
, (3.2)

for the shape of the interface ŵ. In figure 2(a) we present a series of numerical calculations
which illustrate the variation of the leading edge of the wetting fluid as a function of time.
In the figure, we see that the front grows at a rate proportional to t1/2 at early time and
at a rate proportional to t2/5 at late time. The transition depends on the value of M, and
is somewhat slower than the rate of advance of the wetting fluid in the asymptotic case
M → ∞ corresponding to the case in which the non-wetting fluid viscosity tends to zero.

At early times when the current is confined by the channel walls, we can therefore expect
a solution of the form ŵ = f (η) where η = x̂/t̂1/2 and for which f satisfies the equation

−η
2

ff ′ = M
(

f 2(1 − f 4)f ′

f 4 + M(1 − f 4)

)′
(3.3)

subject to the boundary conditions that at η = ηf , f = 0 and f ′ = −ηf M/4, while at η =
ηs, f = 1 and f ′ = 0 - where ηf and ηs are the leading and trailing fronts of the wetting
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fluid in similarity coordinates respectively. The solution of (3.3) is shown in figure 2(b)
for the cases M = 0.01, 0.1, 1, 10 and 100. Full numerical solutions are compared with
the similarity solution for the case M = 1. It is seen that as M becomes larger and the
relative mobility of the non-wetting fluid increases then the wetting fluid advances through
a greater cross-channel region, so that it can access wider parts of the channel. In contrast,
when the wetting fluid is of relatively low viscosity, it spreads along a thin region near the
narrowest part of the channel. When M � 1, (3.2) reduces to the simplified form

−η
2

ff ′ =
(

f 2f ′
)′
, (3.4)

which is consistent with the model of Romero & Yost (1996) for a single capillary current
running along a V-shaped groove, with solution given by the red-dashed line in figure 2(b).
We can also find the limit corresponding to a single non-wetting fluid by taking M � 1.
We can re-scale (2.6) with respect to the non-wetting fluid by defining a new dimensionless
time t∗, so that t = t∗τ ∗ where

τ ∗ = 48L2μnw

λHσ
. (3.5)

We therefore take a new similarity variable η∗ = x̂/
√

t∗ and the governing equation in
similarity coordinates becomes

− η∗

2
ff ′ =

(
f 2(1 − f 4)f ′

f 4 + M(1 − f 4)

)′
, (3.6)

which in the limit M � 1 becomes

− η∗

2
ff ′ =

(
(1 − f 4)f ′

f 2

)′
, (3.7)

which indeed is the equation for a single non-wetting fluid along a V-shaped groove.
Detailed solutions for a non-wetting fluid can be found in Appendix A.

Continuing with our initial example, at later times the two fronts of non-wetting fluid
advancing into the wetting fluid will meet. Subsequently the wetting fluid spreads out along
the narrow part of the channel, occupying a progressively thinner fraction of the channel.
We see from figure 2(a) that in this regime, asymptotically the current propagates at a
rate proportional to t̂2/5. Indeed, the system admits solutions of the form ŵ = t̂αf (x̂/t̂β),
where α = −1/5 and β = 2/5. This flow is directly analogous to the capillary driven
spreading of single wetting fluid along a sharp corner. Figure 2(c) shows the position of
the advancing front ηf (solid line) and the retreating front ηs (dashed line) as function
of mobility ratio. We can see that the lateral extent of the early time similarity solution
increases with mobility toward the maximum at M = ∞. The late time spreading of the
current is illustrated by figure 2(d) where we show current profiles for t̂ = 1, 10, 100 and
1000. Note that the backward propagating front x̂s reaches the origin at around t̂ = 1,
where then the transition to late time self-similar behaviour begins.

3.1. Impact of cross-channel component of gravity
In many applications, there may also be a component of gravity in the cross-channel
direction, in which case there may be a buoyancy force associated with any density
difference �ρ between the two fluids. Where �ρ = ρw − ρnw, with ρw and ρnw being
the density of the wetting and non-wetting fluid, respectively. We consider the case where
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Immiscible capillary flows

gravity acts in the negative y direction, the wetting fluid is denser than the non-wetting
fluid. The local conservation law for the evolution of the interface can then be generalised
to include the buoyancy force acting in tandem with the capillary force, leading to the
equation

b(w)
∂w
∂t

= M
12μw

∂

∂x

([
σ

b(w)2
db
dw

+�ρg
]

J(w)j(w,H)
∂w
∂x

)
. (3.8)

If we again let the channel profile take the form b(w) = λw and let w = ŵH, x = x̂L and
t = t̂τ we arrive at the dimensionless governing equation

ŵ
∂ŵ
∂ t̂

= M
∂

∂ x̂

(
ŵ2(1 − ŵ4)(1 + Boŵ2)

ŵ4 + M(1 − ŵ4)

∂ŵ
∂ x̂

)
, (3.9)

where Bo = λ�ρgH2/σ . In figure 3(a) we present numerical solutions illustrating the
position of the leading edge of the flow when a finite volume of wetting fluid is released
from the region −L < x < L, and an exchange flow with the original non-wetting fluid
develops. At early times, the leading front migrates at a rate proportional to t1/2 with
the flow speed increasing with Bond number, as gravity becomes progressively more
dominant. Once the receding front reaches the point x = 0, the wetting fluid separates
from the top boundary and the flow adjusts to a long thin slumping flow. It is seen that
with a large Bond number (Bo = 100), when gravity effects dominate, the front of the
current steepens relative to those flows with smaller Bo, because in the wider parts of the
channel the flow upstream is faster than the pure capillary driven flow.

For large Bond numbers there is an intermediate gravity dominated regime. Indeed,
in the absence of capillary forces, a finite volume of fluid spreading through a V-shaped
channel will propagate at a rate proportional to t2/7 (Takagi & Huppert 2007) as seen in
figure 3(a). However, at late times once Boŵ2 � 1 the capillary dominated solutions of
(3.2) apply with the current ultimately spreading as t2/5. Figure 3(b) shows the self-similar
behaviour of the early time solutions, where x̂s > 0 for Bo = 0, 10 and 100. It can be seen
that with increasing Bond number, the wetting fluid migrates more rapidly. In figure 3(c)
we illustrate the evolution of the current shapes at late time. For Bo = 100 the shape adjusts
from that of a gravity current with a large gradient at the leading edge to that of a capillary
current at later times, with a shallower gradient at the nose. In figure 3(d) we see three
scaled current shapes at t̂ = 0.2, 10 000 and 20 000 for Bo = 100. The red dashed line
indicates the shape of a gravity driven fluid in a V-shaped channel (Takagi & Huppert
2007) and the blue dashed line shows the shape of a single capillary current from (3.4).
The plot shows how the current adjusts from the gravity driven shape at early times toward
the capillary current shape asymptotically.

3.2. Impact of along-channel component of gravity
Now consider a channel which is tilted at some angle θ to the horizontal, so that there is
an along-channel as well as a cross-channel component of gravity – see figure 4. Again,
we consider a wetting fluid which initially fills the region −L < x < L.

If the channel is inclined so that −L is up-slope from L, then the wetting fluid will
migrate at a Darcy speed according to

uw = −b( y)2

12μw

(
∂Pw

∂x
− ρwg sin θ

)
. (3.10)

Given that we are considering a sealed channel containing a constant volume of fluid, we
can follow the approach of § 2 by equating the flux of the two fluids in order to eliminate
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ŵ ŵ

x̂x̂/t̂ 1/2

f/
f (

0
)

η/ηf

Bo = 0

Bo = 10

Bo = 100

Bo = 0

Bo = 10

Bo = 100

Gradient = 1/2

Gradient = 2/5

Gradient = 2/7

(a)

(b) (c) (d)

Figure 3. (a) The ln – ln plot of front position vs time for Bo = 0, 10 and 100. We can see for higher Bond
numbers an intermediate regime which is dominated by gravity effects. This length of this intermediate regime
increases with increasing Bond number. The dashed lines are a guide for the eye showing the theoretical power
laws of the confined, gravity driven and capillary driven regimes respectively. (b) Confined gravity–capillary
exchange solutions shown for Bo = 0, 10 and 100. (c) Late time shapes for Bo = 100 at t̂ = 1, 10, 100 and
1000. (d) Scaled similarity shape of a gravity current (red dashed line) and a capillary current (blue dashed
line). We can see how the scaled numerical profiles adjust from the gravity limit toward the capillary limit for
the Bo = 100 case across the times t̂ = 0.2, 10 000 and 20 000.

g
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Figure 4. Cartoon illustrating the shock-like dynamics of an immiscible preferentially wetting current acting
under gravity forces both in the across- and along-channel directions. The along-channel component of gravity
leads to an increase in the interface speed with increasing y – as the thickness increases. This leads to a
steepening of the current near the nose and a region where the current width rapidly drops to zero.

the pressure gradient. Upon doing this we arrive at the advection–diffusion-type equation

b(w)
∂w
∂t

+ MG
∂

∂x
J(w)j(w,H) = Mσ

12μwλ

∂

∂x

[(
1 + λ�ρgw2

σ

)
∂w
∂x

J(w)j(w,H)
w2

]
,

(3.11)

where

G = �ρg sin θ
12μw

. (3.12)
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Immiscible capillary flows

By applying the same channel profile and scalings as before we arrive at the dimensionless
equation

ŵ
∂ŵ
∂ t̂

+ MBo sin θ
∂

∂x

(
ŵ4(1 − ŵ4)

ŵ4 + M(1 − ŵ4)

)
= M

∂

∂ x̂

(
ŵ2(1 − ŵ4)(1 + Boŵ2)

ŵ4 + M(1 − ŵ4)

∂ŵ
∂ x̂

)
.

(3.13)

As the leading edge of the current migrates down the channel, we expect that the width of
the current becomes small so that in the limit ŵ � min{1,Bo−1/2,M1/4}, (3.13) becomes

ŵ
∂ŵ
∂ t̂

+ 4Bo sin θŵ3 ∂ŵ
∂ x̂

= ∂

∂ x̂

(
ŵ2 ∂ŵ
∂ x̂

)
. (3.14)

If we let Γ = 4Bo sin θ , then we also expect that for large Γ the advective term will
dominate the along-channel migration (Huppert & Woods 1995). The speed of the
interface at a constant width will be, to leading order

dx̂
dt̂

= Γ ŵ2 (3.15)

leading to the solution
x̂(t̂) = x̂(0)+ Γ ŵ2 t̂. (3.16)

Since the flow speed increases with the thickness of the current, the leading edge of the
current continually steepens, and eventually leads to the formation of a region in which
the depth rapidly drops to zero. To leading order we can describe the front of the flow in
terms of a discontinuous shock-type solution (Whitman 1974), as has been described in the
analogous problem of a gravity current moving down a slope in a uniform porous medium
(Huppert & Woods 1995). We first present solutions for this leading-order model of the
front of the current and then describe in detail the structure of the transition to zero depth
across this shock, by accounting for the effect of the gradient of capillary pressure on the
flow. The position of the shock front is given by the dimensionless relation for volume
conservation ∫ x̂shock

0
ŵ2 dx̂ = 1, (3.17)

leading to the result
x̂shock = x̂(0)± (x̂(0)2 + 4Γ t̂)1/2. (3.18)

We can also find the envelope through which the current sweeps by combining (3.16) and
(3.17) and thereby express the width of the current at the shock, ŵshock(x̂shock). We neglect
x̂(0) which is small relative to the current extent at late times in order to arrive at the
approximate relation

ŵshock =
(

4
Γ t̂

)1/4

. (3.19)

Figure 5(a) shows numerical solutions to (3.13) for Bo = 100 and M = 1 at t̂ = 1, 10
and 100, compared with the approximate shock solutions. We can see that there is a
reasonable agreement with some offset where the analytical solution (red line) is ahead
of the numerical solution from the full equation. This is because we have neglected the
diffusive terms of (3.13) in our shock analysis, leading to a slight over prediction of the
shock position downslope. At later times this offset becomes very small as a fraction of
the total current length and the current height matches the analytical prediction (blue
dashed line) very closely.
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Figure 5. (a) Numerical solutions of (3.13) for a pulse of fluid initially filling the channel in the range −1 <
x̂ < 1 with θ = 10, Bo = 100 and M = 1 at times t̂ = 1, 10 and 100, plotted with the analytical shock solutions
(red lines) given by (3.18) and (3.19). We also display the fluid envelope showing Wshock as a function of x̂shock
(blue dashed line). (b) Boundary layer at the leading front of the wetting fluid moving downslope. The scaled
nose shape from the numerical solution to (3.13) at t̂ = 1 (dash-dotted line), 10 (dashed line), 100 (solid line)
and 1000 (dotted line) for Bo = 100, θ = 10, the red line is the analytical shape given by (3.24).

3.2.1. Capillary boundary layer
From (3.19) we expect the width of the current to wane at a rate t̂1/4 across the shock. To
model the detailed flow structure in this region we therefore substitute ŵ = ψ(x̂, t̂)/t̂1/4

into (3.14), resulting in

ψ

t̂1/2
∂ψ

∂ t̂
+ 4Γ

ψ3

t̂
∂ψ

∂ x̂
= 1

t̂3/4
∂

∂ x̂

(
ψ2 ∂ψ

∂ x̂

)
(3.20)

as t̂ → ∞ the first term becomes small so that

4Γ
ψ3

t̂1/4
∂ψ

∂ x̂
= ∂

∂ x̂

(
ψ2 ∂ψ

∂ x̂

)
. (3.21)

If we introduce the similarity variable ηb = (x̂f − x̂)/t̂1/4 and integrate we find

Γ ψ4 = −ψ2 ∂ψ

∂ηb
+ κ. (3.22)

At ψ = ψshock, ψ ′ = 0, so that κ = 4. We therefore find that

Γ ψ4 = −ψ2 ∂ψ

∂ηb
+ 4, (3.23)

which we can integrate to find an implicit relationship between ηb and ψ

ηb = tan−1 (δψ)− tanh−1 (δψ)

23/2Γ 3/4 , (3.24)

where δ = Γ 1/4/
√

2. Figure 5(b) shows that the structure of the front of the current as
predicted by the full numerical solutions (black line) transitions with time toward the
analytical profile found from (3.24).
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Figure 6. Cartoon showing the pressure driven injection of a dense, wetting fluid (red) into a channel filled
with an immiscible fluid (grey). Here, the flux of the wetting fluid entering the channel is equal to the flux of
the ambient fluid leaving the channel.

4. Immiscible exchange from a reservoir through a channel

We now consider the different boundary condition in which the channel is connected to a
reservoir of fluid at constant pressure, with the channel being oriented so that the y-axis
is vertical and the x-axis is horizontal (figure 6) . We consider the case in which the fluid
in the reservoir is preferentially wetting and dense relative to the fluid originally in the
channel. We explore the capillary driven exchange flow as the wetting fluid is drawn into
the narrow part of the channel, driving out the original fluid back into the reservoir – see
figure 6.

The flooding of the channel is controlled by two parameters; the reservoir pressure and
the Bond number. There are two classes of solution for this problem. First, an exchange
flow solution in which there is an exchange flow in the channel and second a solution with
a net flow through the channel where the advancing front fills the entire channel width.
Which of these two solutions develops depends on the pressure in the source reservoir and
the Bond number in the channel as we describe below.

If we impose a source pressure PS in the reservoir and a far field pressure in the channel
PR, then the pressure balance across the fluid interface at the reservoir–channel boundary
is

PS − PR −�ρgh0 = − σ

λh0
, (4.1)

where h0 is the height of the wetting fluid at the reservoir–channel boundary (x = 0). For
convenience, we define a dimensionless pressure, equal to the pressure difference between
the reservoir and the far field pressure over the characteristic hydrostatic pressure of the
channel;

P̂ = PS − PR

�ρgH
. (4.2)

We then let h0 = ĥ0H, where ĥ0 is the dimensionless height of the wetting fluid at the
reservoir–channel boundary, leading to the dimensionless relationship between ĥ0 and P̂

P̂ = ĥ0 − 1

Boĥ0
. (4.3)

925 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.693


P.K. Mortimer and A.W. Woods

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

5 10 15 200

0.5

1.0

1.5

Flooded

Exchange flow

P̂

Bo

ĥ0
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Figure 7. (a) Regime diagram showing how the channel flooding is controlled by the dimensionless pressure
and the Bond number. Below a critical Bond number the channel floods at the origin for all positive pressures.
When the Bond number is large (Bo > 100) the channel is partially filled where P̂ < 1, for P̂ > 1 the channel is
always flooded at the origin as the difference between the reservoir pressure and the far-field pressure is greater
than the characteristic hydrostat of the channel. (b) Variation of the height of wetting fluid at the origin as a
function of dimensionless pressure in the reservoir, in the limit that the channel is partially flooded, for Bond
numbers in the range 2–256.

At the upper boundary, ĥ0 = 1. Equation (4.3) therefore suggests that the wetting fluid only
partially floods the channel if

P̂ < 1 − 1
Bo
. (4.4)

In this case, there is no net flow through the channel, and we expect a capillary driven
counterflow to develop. Figure 7(a) displays a regime diagram based on (4.4) illustrating
that for Bond numbers below a critical value (Bo = 1), the channel will flood at the
origin for all positive P̂ leading to a net flow through the aquifer, whereas for larger
Bond numbers, an exchange flow will develop, with no net transport along the channel.
Figure 7(b) shows the relationship between P̂ and ĥ0 for a range of Bond numbers in the
case that an exchange flow develops. As can be seen from (4.3), P̂ ≈ ĥ0 for large Bond
numbers. The partially filled channel solution has the form w = f (x̂/t̂1/2) where f satisfies
(3.3) in ηf > η > 0 subject to the boundary condition f (ηf ) = 0 and f (0) = ĥ0.

In figure 8(a) we present numerical solutions showing the dependence of ηf as a function
of the Bond number and the dimensionless source pressure. At lower pressures, the
currents with lower Bond numbers have a greater lateral extent. This is because at lower
pressures the width of the current decreases with Bond number and so the migration of
current is predominantly limited by the narrow and therefore highly resistant region of the
channel. At higher pressures, however, the depth of the wetting fluid at the origin is larger
and so the buoyancy forces become more significant. At intermediate pressures there is a
transition between these two regimes – as may be seen in by figure 8(b–d) by comparing
the solutions with different Bond numbers.

The other class of solution corresponds to the case in which the channel is fully flooded
with the wetting fluid and there is a net flow along the channel. The detail of this solution
depends on the far-field boundary condition and the viscosity of the two fluids. In the
limit of a finite length channel in which the original non-wetting phase has relatively low
viscosity, so that the main pressure drop is in the wetting fluid, then the solution may
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Figure 8. (a) Variation of the position of the leading edge of the wetting fluid in similarity coordinates as
a function of the pressure for Bond numbers 4, 16, 64 and 256 and for M = 0.1 (dotted line), M = 1 (solid
line) and M = 10 (dash-dotted line). The mobility of the fluid only influences the lateral extent appreciably for
higher pressures. (b–d) Depth of the current as a function of position in the fracture for Bond numbers 4, 16, 64
and 256 at P̂ = 0.1, 0.4 and 0.7. Interestingly, at lower pressure the lower Bond number currents have a greater
extent. As the reservoir pressure increases there is a reversal of this effect as more of the current moves through
the higher permeability region of the channel at higher pressures, with the increased buoyancy force having a
greater effect.

be approximated by taking M → ∞ and recovering the governing equation for a single
wetting fluid; (3.4).

As shown by figure 7(a) we find solutions which flood the depth of the channel in the
case

P̂ > 1 − 1
Bo
. (4.5)

The pressure gradient in the fully saturated region 0 < x̂ < x̂s is given by

dP̂
dx̂

=
P̂ − 1 − 1

Bo
x̂s

. (4.6)

At the point x̂s the flux in the saturated zone equals the flux supplied to the nose. We
therefore match (4.6) with the expression from (3.9) for M � 1 in order to evaluate ∂ŵ/∂ x̂
at ŵ = 1. This leads to the relation

∂ŵ
∂ x̂

= −
P̂ − 1 + 1

Bo

x̂s

(
1 + 1

Bo

) , (4.7)

at ŵ = 1. In the limit of M � 1 we expect self-similar behaviour where the wetting current
migrates at a rate proportional to t̂1/2. Substituting in the similarity variables ŵ = f (η) and
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Figure 9. The first, second and third rows of plots refer to the Bond numbers 0.5, 1 and 2 respectively. (a–c)
Position of the leading (dashed line) and trailing (solid line) tip of the current nose in similarity space as a
function of P̂. We can see that increasing Bond number will increase the relative length of the saturated zone
to the length of the nose. (d–f ) Shapes of the current across different P̂ and Bo. (g–i) Scaled current shapes
showing that the reservoir pressure has a weak influence on the shape of the current nose across the range.

η = x̂/t̂1/2, (4.7) becomes

f ′(ηs) = −
P̂ − 1 + 1

Bo

ηs

(
1 + 1

Bo

) . (4.8)

Figure 9 shows calculations of the length and shape of the current across a range of P̂ and
Bo. The figure illustrates that with larger Bond numbers the extent of the saturated region
increases for a given value of P̂. Also, as P̂ increases, the current advances progressively
more rapidly, as the flow becomes dominated by the reservoir pressure rather than the
capillary pressure at the front. Note that from the rescaled shapes of the currents in the third
column of plots, show that the scaled shape of the current nose remains approximately
constant between pressures P̂ = 0–4.

We note that these solutions are analogous to the classical WLBC capillary imbibition
solutions for a single wetting fluid. In the case that the viscosity of the original non-wetting
fluid is significant, the details of these solutions are more complex, since the downstream
flow of the non-wetting fluid also needs to be specified, and we leave the detail of this class
of solution for subsequent investigation.

5. Analogue to flow in porous media

The capillary exchange flows described above in the confined channel provide an analogue
physical system for the models of capillary exchange flows in porous media. This is of
considerable interest in that the general models for flow in porous media are based on
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Immiscible capillary flows

empirical laws for the relative permeability of each fluid phase and also the capillary
pressure, as functions of the saturation of the wetting phase in the pore space (Handy 1960;
Bear 1975; Alyafei & Blunt 2018). Lajeunesse et al. (1999) and Woods (2015) presented a
series of analogue solutions for the Buckley–Leverett shock-type flows in a porous medium
using the analogue system of a capillary tube or a Hele-Shaw cell in which the fraction of
the area occupied by the invading fluid provided an analogue to the saturation. However,
in those models the focus was on flow driven by an applied pressure and the effect of the
partial filling of the tube or cell was to provide an analogue to the relative permeability.
In the present model, we have also included an analogue for the variation of the capillary
pressure with saturation.

It is known that the problem of capillary imbibition leads to counter flowing or
co-flowing exchange flows, and there has been considerable interest in this class of
problem in terms of inverting experimental observations of capillary imbibition to
determine the capillary-saturation curves and the relative permeability of porous rocks
(Alyafei & Blunt 2018).

Consider a wetting fluid imbibing into a porous region filled with non-wetting fluid
under capillary forces. We assume that the wetting fluid initial occupies a region from
0 < x < x0 of maximum wetting saturation. The Darcy speeds of the two phases can be
described as

uw = −kwk
μw

∂Pw

∂x
, (5.1a)

unw = −knwk
μnw

∂Pnw

∂x
, (5.1b)

where kn and knw are the relative permeabilities of the wetting and non-wetting phases,
respectively. Using the pressure relationship between the two phases, Pnw = Pw + Pc, and
the no-net-flow condition we can substitute the pressure gradient in the wetting phase and
by mass conservation we find

φ
∂s
∂t

= − ∂

∂x

(
knwkF
μnw

∂Pc

∂s
∂s
∂x

)
, (5.2)

where s is the saturation of the wetting phase φ is the porosity of the porous matrix and

F =
(

1 + knwμw

kwμnw

)−1

(5.3)

represents the fractional flow of the wetting phase. We can define a normalised wetting
saturation in terms of the maximum wetting phase saturation sm and the minimum wetting
phase saturation sr so that

ŝ = s − sr

sm − sr
. (5.4)

In order to proceed, we require a model for the relative permeability and the capillary
pressure. In general in a porous rock, there is no simple relation for these properties, in
contrast to the idealised V-shaped channel considered in this paper, for which the saturation
ŝ is analogous to the width of the flow, ŵ. By comparing our model, (3.2), with (5.2), it
follows that for the V-shaped channel the relative permeability has an effective value of
j(0,w) and j(w,H) for the wetting and non-wetting phases, respectively. However, in a
real porous rock, owing to the complexity of the geometry, empirical laws are typically
introduced to describe the relative permeability and capillary pressure. As an illustration,
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in this paper, we adopt the classical empirical laws as described by Brooks & Corey (1966),
which may be used to describe the relative permeabilities of any homogeneous porous
medium where the imbibing phase is strongly wetting;

kw = ŝ4 (5.5a)

knw = (1 − ŝ2)(1 − ŝ)2. (5.5b)

In our analytical formulation for a V-shaped channel, the capillary pressure is simply
given by σ/b2, however, for a porous medium we rely on the many parametrised empirical
models of capillary pressure. Here, we draw on van Genuchten (1980), who suggests that

Pc = σ

(
φ

k

)1/2 ( 1
ŝ1/m − 1

)1/n

, (5.6)

where m and n are empirical constants which typically take a value between 2 and 3.
Here, for simplicity we use m = n = 2. Using these empirical laws leads to the governing
equation, which is analogous to the equation for ŵ in the earlier parts of the work,

∂ ŝ
∂t

= − σ

μnw

(
k
φ

)1/2
∂

∂x

(
knwF

∂Pc

∂ ŝ
∂ ŝ
∂x

)
. (5.7)

For comparison, we can examine the spreading of an interface between a wetting fluid
in the region −L < x < L and a non-wetting fluid in the regions x < −L and x > L. We
can introduce dimensionless time and space coordinates x = x̂L and t = t̄τ̄ and find the
dimensionless expression

∂ ŝ
∂ t̄

= M
mn

∂

∂ x̂

(
knwF

(
ŝ−1/m − 1

)1/n−1

ŝ(1/m+1)
∂ ŝ
∂ x̂

)
, (5.8)

where

τ̄ = L2μw

σ

(
k
φ

)−1/2

. (5.9)

In figure 10 we present a numerical solution of (5.8). At early times, the solution
is self-similar, ŝ = f (x/

√
t), and the spreading of the fronts depends primarily on the

viscosity ratio. Eventually the two spreading zones meet at x = 0 and, subsequently, the
wetting fluid spreads out, with saturation falling to progressively smaller values. At later
times there is no fully saturated zone near the source and the saturation at the origin
wanes as the volume of the wetting fluid stretches a long distance through the extent of the
channel.

6. Conclusions

In this work we have examined the capillary driven exchange between two immiscible
fluids in a channel of non-uniform width. The novel analysis of this work is to study the
exchange of immiscible fluids in a non-uniform channel driven by both capillary and
gravity forces. We also present new solutions for the exchange at a reservoir–channel
boundary, where flow is driven by a pressure difference between the reservoir and the
far-field channel pressure. We also propose that our model of a two fluid capillary driven
exchange in a non-uniform channel may serve as an important analytical analogue to more
complex empirical models of saturation in porous media.

925 A31-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.693


Immiscible capillary flows

50 100 1500

0.2

0.4

0.6

0.8

1.0

–1 –0.5 0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0
Early time self-similarity Late times

ŝ
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Figure 10. (a) Self-similar saturation profile in the limit where there is a region of the porous medium fully
saturated near the source. Solutions displayed for M = 0.1, 1 and 10. (b) Late time solutions where the medium
is no longer saturated with wetting fluid near the source. The finite volume of fluid continues to migrate down
the channel – so that the saturation of the fluid near the source wanes.

We first develop similarity solutions for a confined fluid–fluid exchange, showing that
the fluid fronts migrate at a rate proportional to t1/2. The confined exchange flow reduces
to the well-known equations for single wetting and non-wetting fluids for high and low
mobility ratios respectively. We then show that, if at later times the current becomes
unconfined, the solutions will asymptote to those of a single fluid, with mobility ratio
controlling this transition.

When gravity acts in tandem with capillary forces, there is a gravity dominated regime
at intermediate times in which the current length scales as t2/7 which connects the early
time confined behaviour (xf ∝ t1/2) to the late time capillary driven behaviour (xf ∝ t2/5).
The persistence of this intermediate regime increasing with Bond number. We have also
shown that an along-channel component of gravity leads to a shock-type structure at the
leading front of the current. The position of the shock scales as t1/2 and the width of the
shock decreases at a rate proportional to t1/4 with the flow structure in the shock dominated
by capillarity.

Building on this analysis we look at pressure driven injection of a wetting fluid into
a V-shaped channel from a reservoir filled with wetting fluid, again where gravity and
capillarity both act to drive the flow. We show that it is possible for an exchange flow to
develop at a range of reservoir pressures and Bond numbers. These exchange flows follow
the t1/2 power law of a classical capillary current with the lateral extent governed by both
pressure and Bond number. Interestingly, we show that, at low reservoir pressures, lower
Bond number currents extend further into the channel than high Bond number currents, as
the flow becomes restricted by the thinnest region of the channel. This limiting affect at
low pressures also means that mobility ratio does not significantly affect the current extent
at low pressures. At higher pressures, increasing mobility of the wetting phase results in a
more rapid propagation of the current and as one would expect, the higher Bond number
currents have a greater lateral extent.

As well as its relevance for flow in narrow fractures and channels, the model serves as an
analogue to capillary imbibition in a porous medium. We show that the solutions to porous
medium models which rely on empirical relationships between relative permeability and
saturation are of a very similar form to our exact solutions in a Hele-Shaw cell.
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Figure 11. (a) Cartoon of a non-wetting fluid migrating through a channel where the channel thickness
decreases linearly with y. (b) Interface curvature for a non-wetting fluid. Here the curvature at the fluid interface
extends through the middle of the channel rather than along the walls as in the wetting case.

Appendix A. Non-wetting single fluid

For a single non-wetting fluid the interface curvature along the fluid boundary extends
through the middle of the channel rather than along the channel walls – see figure 11(b).
In the non-wetting fluid, there is a positive capillary pressure

Pc = σ

b(w)
. (A1)

This drives the leading front of the fluid away from the thin wall of the domain and towards
the wider region of the channel. Note that we neglect any friction which may impede the
advance of the non-wetting fluid associated with the top surface of the channel.

For convenience, since the fluid migrates through the thickest region of the channel, for
this appendix, we define the channel profile so that the thickness decreases with increasing
y (figure 11a). In this case b( y) takes the form

b( y) = ε − λy, (A2)

so that the channel thickness decreases linearly from a maximum ε at y = 0. We can then
develop a new governing equation with respect to a non-wetting fluid which takes the form

b(w)
∂w
∂t

= − σ

12μnw

∂

∂x

(
db
dw
∂w
∂x

∫ w

0

b( y)3

b(w)2
dy
)
. (A3)

If we then define w = ŵH, x = x̂L and t = t∗τ ∗, we then find the non-dimensional form
of (A3),

(1 − αŵ)
∂ŵ
∂ t̂

= ∂

∂ x̂

(
1 − (1 − αŵ)4

(1 − αŵ)2
∂ŵ
∂ x̂

)
, (A4)

where

τ ∗ = 48L2μnw

εσ
(A5a)

α = λH
ε
. (A5b)

If we consider the case of a finite release of fluid, initially located in the region 0 < ŵ < 1,
−L < x < L, then the governing equations admit similarity solutions of the form ŵ =
f (η), where η = x̂/

√
t∗. In figure 12(a) we present the similarity solution for different

values of α. In figure 12(b) we show the position of the advancing and trailing edge of the
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Immiscible capillary flows
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Figure 12. (a) Similarity solutions for a confined non-wetting capillary current for α = 0.25 (solid line), 0.5
(dashed line) and 0.75 (dash-dotted line). (b) Leading and retreating front of the non-wetting fluid ηf (blue
dashed line) and −ηs (red dashed line) against the channel aperture gradient α.

current as a function of α. The retreating front ηs (red line) spreads much more rapidly
than ηf (blue line) as it moves through the thin region of the channel. We note that if
α = 1, so that the thickness in the channel falls to zero at y = 1, as ŵ → 1, xs → ∞ for a
non-wetting fluid.
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