
STRUCTURE THEORY FOR MONTGOMERY-SAMELSON 
FIBERINGS BETWEEN MANIFOLDS, II 

P E T E R L. ANTONELLI 

1. Introduction. Le t / : Mn —» Nv be the projection map of an MS-fibering 
of manifolds 0 with finite non-empty singular set A and simply connected total 
space (see 1). Results of Timourian (10) imply that (n, p) = (4, 3), (8, 5) 
or (16, 9), while a theorem of Conner (2) yields that §(A), the cardinality 
of the singular set, is equal to the Euler characteristic of Mn. We give an 
elementary proof of this fact and, in addition, prove that §{A) is actually 
determined by bn/2(M

n), the middle betti number of Mn, or what is the same, 
by bn/2(N

p — f(A)). I t is then shown that 0 is topologically the suspension of 
a (Hopf) sphere bundle when Np is a sphere and bn/2(M

n) = 0. I t follows as a 
corollary that fi must also be a suspension when Mn is ^/4-connected with 
vanishing bn/2. Examples where bn/2 is not zero are constructed and we state 
a couple of conjectures concerning the classification of such objects. 

2. The cardinality of the singular set. 

PROPOSITION 2.1. If f: Mn —» Np is the projection map of an MS-fibering of 
manifolds with finite non-empty singular set A Ç Mn and Mn is \-connected, then 

#04) = X(M*). 

Proof. Via Timourian's result (10), (n, p) = (4,3), (8, 5) or (16,9), and 
the fiber F is a homotopy 1-, 3- or 7-sphere. Then Mn — A is 1-connected and 
of course, X(F) = 0. 

Utilizing the fiber-homotopy sequence, Np — f(A), and hence, Np, is 
1-connected. Thus, in particular, 

(1) X(Mn - A) = X(Np -f{A)) • X(F) = 0. 

The connectivity of Mn — A and the orientability of Mn imply that 

(2) b0(M
n - A) = 1, bn{Mn - A) = 0. 

By the cohomology exact sequence for the pair (Mn, A) we obtain 

H*(M*) = W(Mn,A), a ^ 2. 
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But, Lefschetz duality yields 

Hn_q(M
n - A) = H«(Mn,A), 

and therefore 

dimQHn-.q(M
n - A) = dimQH«(Mn) 

so that we arrive at 

(3) bq(M
n) = bq(M

n - A) 

for n — 2 ^ q ^ 2 via Poincaré duality. 
When q = 1, we have the cohomology sequence 

<-Hl{A) ^-H^(Mn) t-miWiA) <-f f 0 (4) <-ff0(ikf) <-, 

where the groups are reduced in dimension zero. However, 

Hl(A) = 0 = H°(M) 

so that we obtain a short exact sequence of finite-dimensional vector spaces. 
This sequence must split, therefore 

dim off1 CM*, 4 ) = dim QH*(Mn) + dimQHQ(A) 

= dimQHn^{Mn) + #(A) - 1 

= bn-^M") + #04) - 1 

while Lefschetz duality yields 

dimQH'(Mn,A) = dimgff^iCM* - A) = bn^(Mn - A). 

Therefore, 

(4) bn^{Mn -A)= bn^(Mn) + #(A) - 1, 

where n = 2, 4 or 8. By (1) we know that 

£ (-l)V^-^) = C 
so that (2) and (3) together apply to yield 

£ ( - 1 ) \ 0 O - 6^i(Jlf" - A) = 0. 

<z=o 

This relation, coupled with (4), then yields 

£ (-D V^") = ̂ ( i i n + #(^) - i, 
<z=o 

which proves the proposition. 
We shall now show that the number of singular points is completely deter-

mined by the middle betti number of ikP, for Mn simply connected. 
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THEOREM 2.2. If f: Mn —* Nv is the projection map of an MS-fibering of 
manifolds with finite non-empty singular set A Ç Mn and Mn is 1-connected, then 

#(A) = bn/2(M
n) + 2. 

Proof. Our argument splits naturally into three cases. In each of these cases 
the fiber homotopy sequence implies that both Nv — f(A) and Np are 
1-connected. Furthermore, via Proposition 2.1, it suffices to prove that 

X(Mn) = 2 + bn/2(M
n). 

Case (1). (n,p) = (4,3). 

This case follows trivially from Poincaré duality. Thus, 

X(M4) = 2 + b2. 

Case (2). (n, p) = (8,5). 

As in the first case, X(M8) = 2 + 64 - 2(6i - b2 + h) via Poincaré 
duality, and we have that &i(itf8) = 0. I t will suffice to show that 

(5) b2(M*) = h(M*). 

The mapping 
M8 - A^Nb -f{A) 

is a fibering with a 1-connected base and a homotopy 3-sphere for fiber. The 
simple connectivity of N5 — f(A) implies that iri(Nb — f(A)) acts simply on 
H*(F; Q) so that we may apply the Gysin sequence (rational coefficients) 

->Hm+1(N* - f(A))-+H^N* -f(A))-+Hm(M* - A) 

->Hn(N*-f(A))-+; 
letting m — 5 we obtain 

(6) H2(N* -f(A)) = HA{M* - A) 

since 
Ht(N*-f(A)) = 0 = Hi(N> -f{A)). 

The group on the left is zero since N5 — f(A) has the homotopy type of a 
complex without any 6-simplices, while the group on the right vanishes via the 
orientability of Nb. 

Lefschetz duality and (6) yield 

(7) H*(M*,A) = Hb(M* - A) = H2(N
5 - f(A)) = H*(N5,f(A))y 

while the cohomology sequences for the pairs (ikf8, A) and (N5,f(A)) yield 
the equations 

(8) Hs (Ms) = H*(M*,A), H* (N5) = H*(N*,f(A)). 

Therefore, (6), (7), and Poincaré duality yield 

H5(M*) = H*(MS) = H*(N5) = H2(N
5) 
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so that 
dim QH5(M

8) = dim QH2(N
5), 

and hence b5(M
8) = b2(N

b). But, duality for betti numbers yields bz(M
8) = 

b$(M8) so that we finally arrive at 

(9) bz(M
8) = b2(N*). 

Letting m = 6 in the Gysin sequence we have that 
-+#7( iV5 -f(A)) - > # 3 ( ^ -f(A))-^H,{M8 - A)->H9(N* - f(A)) -> 
from which we obtain the isomorphism 

(90 Hz(W -f(A)) = H,(M8 - A), 

since 
Hi(W -f(A)) = 0 = Ht(N> -f(A)). 

From Lefschetz duality and (9') we obtain 

H2(N\f(A)) = H^N* -f(A)) = H,{M8 - A) = H2(M8,A) 

and as in (8) we have that 

H2(N5) = H2(N\f(A)), H2(M8) = H2(M8,A) 

so that H2(N5) = H2(M8). Then Poincaré duality applies to yield 

(9") bz(N*) = b2(M
8)} 

and finally (9), (9"), and Poincaré duality yield 

b2{M8) = bz{M8), 
as desired. 

Case (3). (n, p) = (16,9). 

Now, X(MU) = 2 + b8 - 2(6i - b2 + . . . - 6 6 + ft7). The procedure of 
proof is as in Case (2). We prove that 

(a) b2(M™) = 67(ilf16), 
(b) h(M^) = 6«(Af16), 
(c) &4(M

16) = 65(M16), 
and then by the 1-connectivity of ikf16, bi = 0 so that we finally obtain 
X(ikf16) = 2 + 68(Af16) as desired. 

As before, N9 — f(A) is 1-connected, so we may apply the Gysin sequence 
with rational coefficients. Since the fiber is a 7-sphere, the sequence has the 
form 

->Hm+1(N* -f(A))-*HmMN» -f(A))-*Hm(M" - A) -
Hm(N» - f(A))-> 

First letting m = 9 and proceeding as in Case (2) we obtain (a) above. 
Similarly, letting m = 10, 11 we obtain (b) and (c) above. We shall omit 
these details. 
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In Theorem 2.2 the cardinality of the singular set A was related to the betti 
numbers of the total space Mn. In the following proposition §{A) is related to 
the betti numbers of Np — f(A). The proof follows by similar techniques and 
is omitted. 

PROPOSITION 2.3. If f: Mn —» Np is the projection map of an MS-fibering of 
manifolds with finite non-empty singular set A and Mn is 1-connected, then 

HA) = bnf2(N
p- (A))f+1. 

3. The structure theorem. 

THEOREM 3.1. Iff: Mn-±SP, Mn 1-connected, bn/2(M
n) = 0 is the projection 

map of an MS-fibering of manifolds /3 with non-empty finite singular set A, then 
jS is topologically s (a) for some Hopf spine a. 

Proof. By Theorem 2.2 we must have that §{A ) = 2. We may as well suppose 
the set /04 ) to consist of antipodal points on Sp. In this case we have Sp — f(A ) 
topologically equivalent to S^1 X (0, 1). We may then conclude that Mn — A 
is topologically just / _ 1 ( ^ _ 1 ) X (0,1). This then implies that Mn is the 
suspension of/_1(52,~1) = X(a). Moreover, X(a) must be a closed connected 
topological manifold since it is the total space of a fibering in which both the 
base Y (a) = S^1 and the fiber F (a) = F(/3) are closed connected manifolds. 

I t is clear from definitions that a is a spine of /3 and that S (a) = /3. I t there­
fore remains to show that a is a Hopf spine. Now, by our definition of Y (a), it 
is a (p — 1)-sphere; thus, it will be sufficient to demonstrate that X(a) is a 
homotopy sphere (modulo the usual restrictions on the Poincaré conjecture in 
dim 3, 4). 

We have the following isomorphisms: 

ira{Mn) = 7rq(M
n - A) = irq(X(a) X (0, 1)) = 7rQ(X(a)) 

for g :§ n — 2. Therefore, if we show that irq(M
n) = 0 for this range of integers, 

the fact that codim(/3;a) = 1 will imply, via (4, p. 357), that X(a) is a 
homotopy sphere since it is a compact finite-dimensional absolute neighbour­
hood retract (ANR). 

L e t / : SQ —> Mn be a representative of a class [/] in Tq(M
n) for q S n — 2. 

We wish to show that [/] = 0. We may suppose that / is simplicial via the 
simplicial approximation theorem so that / does not raise dimension. This 
means t h a t / cannot be onto, so there exists a point X0 G Mn — f(SQ). Now 
Mn = S{X(a)) is a connected manifold so that we may suppose that X0 is one 
of the two suspension points of S(X(a)). 

Since f(SQ) ÇZ Mn — X0 and Mn — X0 is collapsible onto the cone over 
X(a) and finally onto the cone point itself, the mapping/ must be inessential. 
Hence, [/] = 0 and the proof is complete. 

I t should be noted that Theorem 3.1 takes care of the p = 0 case of the 
structure Theorem 5.2 of (1), without the use of tameness or flatness in the 
hypothesis. 
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COROLLARY 3.2. If f: Mn —» Np is the projection map of an MS-fibering of 
manifolds /3 with finite non-empty singular set A and bn/2(M

n) = 0 with Mn 

n/^-connected, then fi admits a Hopf spine a and ft = S (a). 

This result is modulo the possibility that the Poincaré conjecture may be 
false in dim 3, 4. 

Proof. The space Mn — A is w/4-connected, since n — n/4 ^ 2. Using 
the fiber homotopy sequence for the associated fibering 0, namely 

. . . -> TQ(Mn -A)-> irg(N
p - f(A)) -> T^F) -> ir^iM* - A)-+..., 

we obtain the isomorphism 

(12) 0-^7T,(Nv-f(A))^rQ.1(F)^0 

for a ^ w/4. But, F is a homotopy sphere of dim 1, 3 or 7 and dim F ^ w/4 
so that 

ir,_i(iO = 0 , g ^ w/4, 
and hence 

(13) ^ ( ^ - / ( ^ ) ) = 0 , g 5 ^ / 4 . 

Then Np is w/4-connected and the Hurewicz isomorphism yields 

(14) Hq(N*;Z) = 0 

for a ^ n/4: = (p — l ) /2 . By (14) and duality for betti numbers and torsion 
coefficients we have that Np is an integral homology sphere, and finally via 
the Hurewicz isomorphism that Np is a homotopy sphere. Now apply Theorem 
3.1 to complete the proof. 

4. Examples where bn/2 does not vanish. Let a denote the Hopf fibering 
[5W , /(Û;), SP, F (a)] and S (a) its suspension. S (a) is clearly an MS-fibering of 
manifolds with singular set just two points. Let Dp be an open £-disc in a 
" trivializing" neighbourhood of the fibering S (a) associated with S (a). (See 
1 for notation.) We then have the homeomorphism 

(Sf(a))-HD*) ~DpX F(a), 

where Sf(a) denotes the suspension of f(a). Now, since F (a) is contained in a 
tubular neighbourhood, it is locally flatly embedded in the total space of 
S (a), and hence in that of S (a), i.e., in Sn+1. Therefore, via results of Gluck (7) 
and Stallings (15), we may suppose that F (a) is an equatorial (n — p) -sphere 
in Sn+1. 

Now, taking boundaries we obtain 

dQ = d(XS(a) - Dp X F (a)) = dDp X F (a), 

dQ' = d(YS(a) - Dp) = dDp, 

where XS(a), YS(a) are the base and total spaces of S(a). Forming the doubles 
of Q and Q' (i.e., gluing two copies of Q and Qr along their boundaries) we 
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obtain manifolds XD(a), YD (a), where YD (a) is homeomorphic to Sp+1. The 
restriction of Sf(a) to Q is a fibering over Qf and extends in the natural way to 
a map Df(a): DX(a) —>DY(a). This map is the projection map of an MS-
fibering of manifolds D(a) whose singular set consists of exactly four points. 
Now, 

deform homeo , , deform 

Q > XS(a) - F(a) - Sn+1 - Sn~v c > Sv, 

where the homeomorphism is given by the local flatness of F (a) in Sn+1. This 
means that Q is simply connected and via the Van Kampen theorem due to 
Olum (8), we have that DX(a) simply connected as well. Hence, 

bn/2(DX(a)) * 0 
by Theorem 2.2. 

In closing we conjecture the following: 
(A) For n = 2, 4, 8, Sn X Sn fibers over Sn+1 with finite singular set; 
(B) Any MS-fibering of manifolds /3 with projection Mn —» Sp and Mn simply 

connected, admits a spine if and only if bn/2 vanishes. 
Of course, Theorem 3.1 takes care of (2) in one direction. 
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