STRUCTURE THEORY FOR MONTGOMERY-SAMELSON FIBERINGS BETWEEN MANIFOLDS. II

PETER L. ANTONELLI

1. Introduction. Let $f: M^n \to N^p$ be the projection map of an MS-fibering of manifolds β with finite non-empty singular set A and simply connected total space (see 1). Results of Timourian (10) imply that (n, p) = (4, 3), (8, 5) or (16, 9), while a theorem of Conner (2) yields that #(A), the cardinality of the singular set, is equal to the Euler characteristic of M^n . We give an elementary proof of this fact and, in addition, prove that #(A) is actually determined by $b_{n/2}(M^n)$, the middle betti number of M^n , or what is the same, by $b_{n/2}(N^p - f(A))$. It is then shown that β is topologically the suspension of a (Hopf) sphere bundle when N^p is a sphere and $b_{n/2}(M^n) = 0$. It follows as a corollary that β must also be a suspension when M^n is n/4-connected with vanishing $b_{n/2}$. Examples where $b_{n/2}$ is not zero are constructed and we state a couple of conjectures concerning the classification of such objects.

2. The cardinality of the singular set.

PROPOSITION 2.1. If $f: M^n \to N^p$ is the projection map of an MS-fibering of manifolds with finite non-empty singular set $A \subseteq M^n$ and M^n is 1-connected, then

$$\#(A) = X(M^n).$$

Proof. Via Timourian's result (10), (n, p) = (4, 3), (8, 5) or (16, 9), and the fiber F is a homotopy 1-, 3- or 7-sphere. Then $M^n - A$ is 1-connected and of course, X(F) = 0.

Utilizing the fiber-homotopy sequence, $N^p - f(A)$, and hence, N^p , is 1-connected. Thus, in particular,

(1)
$$X(M^{n} - A) = X(N^{p} - f(A)) \cdot X(F) = 0.$$

The connectivity of $M^n - A$ and the orientability of M^n imply that

(2)
$$b_0(M^n - A) = 1, \quad b_n(M^n - A) = 0.$$

By the cohomology exact sequence for the pair (M^n, A) we obtain

$$H^q(M^n) = H^q(M^n, A), \qquad q \ge 2.$$

Received August 4, 1967. The material in this paper constitutes a portion of the author's doctoral dissertation directed by Professor E. Hemmingsen and submitted to Syracuse University. This research was partially supported by a NASA Graduate Fellowship and an NSF Summer Graduate Fellowship and NSF contract #. GP-5420.

But, Lefschetz duality yields

$$H_{n-q}(M^n - A) = H^q(M^n, A),$$

and therefore

$$\dim_{\mathcal{Q}} H_{n-q}(M^n - A) = \dim_{\mathcal{Q}} H^q(M^n)$$

so that we arrive at

$$(3) b_q(M^n) = b_q(M^n - A)$$

for $n-2 \ge q \ge 2$ via Poincaré duality.

When q = 1, we have the cohomology sequence

$$\leftarrow H^1(A) \leftarrow H^1(M^n) \leftarrow H^1(M^n, A) \leftarrow H^0(A) \leftarrow H^0(M) \leftarrow$$

where the groups are reduced in dimension zero. However,

$$H^1(A) = 0 = H^0(M)$$

so that we obtain a short exact sequence of finite-dimensional vector spaces. This sequence must split, therefore

$$\dim_{Q}H^{1}(M^{n}, A) = \dim_{Q}H^{1}(M^{n}) + \dim_{Q}H^{0}(A)$$

$$= \dim_{Q}H_{n-1}(M^{n}) + \#(A) - 1$$

$$= b_{n-1}(M^{n}) + \#(A) - 1$$

while Lefschetz duality yields

$$\dim_{\mathcal{O}} H^1(M^n, A) = \dim_{\mathcal{O}} H_{n-1}(M^n - A) = b_{n-1}(M^n - A).$$

Therefore,

$$(4) b_{n-1}(M^n - A) = b_{n-1}(M^n) + \#(A) - 1,$$

where n = 2, 4 or 8. By (1) we know that

$$\sum_{q=0}^{n} (-1)^{q} b_{q} (M^{n} - A) = C$$

so that (2) and (3) together apply to yield

$$\sum_{n=0}^{n-2} (-1)^{q} b_{q}(M^{n}) - b_{n-1}(M^{n} - A) = 0.$$

This relation, coupled with (4), then yields

$$\sum_{q=0}^{n-2} (-1)^q b_q(M^n) = b_{n-1}(M^n) + \#(A) - 1,$$

which proves the proposition.

We shall now show that the number of singular points is completely determined by the middle betti number of M^n , for M^n simply connected.

THEOREM 2.2. If $f: M^n \to N^p$ is the projection map of an MS-fibering of manifolds with finite non-empty singular set $A \subseteq M^n$ and M^n is 1-connected, then

$$\#(A) = b_{n/2}(M^n) + 2.$$

Proof. Our argument splits naturally into three cases. In each of these cases the fiber homotopy sequence implies that both $N^p - f(A)$ and N^p are 1-connected. Furthermore, via Proposition 2.1, it suffices to prove that

$$X(M^n) = 2 + b_{n/2}(M^n).$$

Case (1).
$$(n, p) = (4, 3)$$
.

This case follows trivially from Poincaré duality. Thus,

$$X(M^4) = 2 + b_2$$
.

Case (2).
$$(n, p) = (8, 5)$$
.

As in the first case, $X(M^8) = 2 + b_4 - 2(b_1 - b_2 + b_3)$ via Poincaré duality, and we have that $b_1(M^8) = 0$. It will suffice to show that

$$(5) b_2(M^8) = b_3(M^8).$$

The mapping

$$M^8 - A \xrightarrow{f} N^5 - f(A)$$

is a fibering with a 1-connected base and a homotopy 3-sphere for fiber. The simple connectivity of $N^5 - f(A)$ implies that $\pi_1(N^5 - f(A))$ acts simply on H*(F; Q) so that we may apply the Gysin sequence (rational coefficients)

letting m = 5 we obtain

(6)
$$H_2(N^5 - f(A)) = H_5(M^8 - A)$$

since

$$H_6(N^5 - f(A)) = 0 = H_5(N^5 - f(A)).$$

The group on the left is zero since $N^5 - f(A)$ has the homotopy type of a complex without any 6-simplices, while the group on the right vanishes via the orientability of N^5 .

Lefschetz duality and (6) yield

(7)
$$H^3(M^8, A) = H_5(M^8 - A) = H_2(N^5 - f(A)) = H^3(N^5, f(A)),$$
 while the cohomology sequences for the pairs (M^8, A) and $(N^5, f(A))$ yield the equations

(8)
$$H^3(M^8) = H^3(M^8, A), \quad H^3(N^5) = H^3(N^5, f(A)).$$

Therefore, (6), (7), and Poincaré duality yield

$$H_5(M^8) = H^3(M^8) = H^3(N^5) = H_2(N^5)$$

so that

$$\dim_{\mathcal{Q}} H_5(M^8) = \dim_{\mathcal{Q}} H_2(N^5),$$

FIBERINGS, II

and hence $b_5(M^8) = b_2(N^5)$. But, duality for betti numbers yields $b_3(M^8) = b_5(M^8)$ so that we finally arrive at

$$(9) b_3(M^8) = b_2(N^5).$$

Letting m=6 in the Gysin sequence we have that $\to H_7(N^5-f(A)) \to H_3(N^5-f(A)) \to H_6(M^8-A) \to H_6(N^5-f(A)) \to$ from which we obtain the isomorphism

$$(9') H_3(N^5 - f(A)) = H_6(M^8 - A),$$

since

$$H_7(N^5 - f(A)) = 0 = H_6(N^5 - f(A)).$$

From Lefschetz duality and (9') we obtain

$$H^2(N^5, f(A)) = H_3(N^5 - f(A)) = H_6(M^8 - A) = H^2(M^8, A)$$

and as in (8) we have that

$$H^2(N^5) = H^2(N^5, f(A)), \qquad H^2(M^8) = H^2(M^8, A)$$

so that $H^2(N^5) = H^2(M^8)$. Then Poincaré duality applies to yield

$$(9'') b_3(N^5) = b_2(M^8),$$

and finally (9), (9''), and Poincaré duality yield

$$b_2(M^8) = b_3(M^8).$$

as desired.

Case (3).
$$(n, p) = (16, 9)$$
.

Now, $X(M^{16}) = 2 + b_8 - 2(b_1 - b_2 + \dots - b_6 + b_7)$. The procedure of proof is as in Case (2). We prove that

- (a) $b_2(M^{16}) = b_7(M^{16}),$
- (b) $b_3(M^{16}) = b_6(M^{16})$,
- (c) $b_4(M^{16}) = b_5(M^{16}),$

and then by the 1-connectivity of M^{16} , $b_1 = 0$ so that we finally obtain $X(M^{16}) = 2 + b_8(M^{16})$ as desired.

As before, $N^9 - f(A)$ is 1-connected, so we may apply the Gysin sequence with rational coefficients. Since the fiber is a 7-sphere, the sequence has the form

$$\to H_{m+1}(N^9 - f(A)) \to H_{m-7}(N^9 - f(A)) \to H_m(M^{16} - A) \to H_m(N^9 - f(A)) \to H_m(N^9 - f(A))$$

First letting m = 9 and proceeding as in Case (2) we obtain (a) above. Similarly, letting m = 10, 11 we obtain (b) and (c) above. We shall omit these details.

In Theorem 2.2 the cardinality of the singular set A was related to the betti numbers of the total space M^n . In the following proposition #(A) is related to the betti numbers of $N^p - f(A)$. The proof follows by similar techniques and is omitted.

PROPOSITION 2.3. If $f: M^n \to N^p$ is the projection map of an MS-fibering of manifolds with finite non-empty singular set A and M^n is 1-connected, then

$$\#(A) = b_{n/2}(N^p - (A)) f + 1.$$

3. The structure theorem.

THEOREM 3.1. If $f: M^n \to S^p$, M^n 1-connected, $b_{n/2}(M^n) = 0$ is the projection map of an MS-fibering of manifolds β with non-empty finite singular set A, then β is topologically $s(\alpha)$ for some Hopf spine α .

Proof. By Theorem 2.2 we must have that #(A) = 2. We may as well suppose the set f(A) to consist of antipodal points on S^p . In this case we have $S^p - f(A)$ topologically equivalent to $S^{p-1} \times (0, 1)$. We may then conclude that $M^n - A$ is topologically just $f^{-1}(S^{p-1}) \times (0, 1)$. This then implies that M^n is the suspension of $f^{-1}(S^{p-1}) = X(\alpha)$. Moreover, $X(\alpha)$ must be a closed connected topological manifold since it is the total space of a fibering in which both the base $Y(\alpha) = S^{p-1}$ and the fiber $F(\alpha) = F(\beta)$ are closed connected manifolds.

It is clear from definitions that α is a spine of β and that $S(\alpha) = \beta$. It therefore remains to show that α is a Hopf spine. Now, by our definition of $Y(\alpha)$, it is a (p-1)-sphere; thus, it will be sufficient to demonstrate that $X(\alpha)$ is a homotopy sphere (modulo the usual restrictions on the Poincaré conjecture in dim 3, 4).

We have the following isomorphisms:

$$\pi_q(M^n) = \pi_q(M^n - A) = \pi_q(X(\alpha) \times (0, 1)) = \pi_q(X(\alpha))$$

for $q \leq n-2$. Therefore, if we show that $\pi_q(M^n) = 0$ for this range of integers, the fact that $\operatorname{codim}(\beta; \alpha) = 1$ will imply, via (4, p. 357), that $X(\alpha)$ is a homotopy sphere since it is a compact finite-dimensional absolute neighbourhood retract (ANR).

Let $f: S^q \to M^n$ be a representative of a class [f] in $\pi_q(M^n)$ for $q \leq n-2$. We wish to show that [f] = 0. We may suppose that f is simplicial via the simplicial approximation theorem so that f does not raise dimension. This means that f cannot be onto, so there exists a point $X_0 \in M^n - f(S^q)$. Now $M^n = S(X(\alpha))$ is a connected manifold so that we may suppose that X_0 is one of the two suspension points of $S(X(\alpha))$.

Since $f(S^q) \subseteq M^n - X_0$ and $M^n - X_0$ is collapsible onto the cone over $X(\alpha)$ and finally onto the cone point itself, the mapping f must be inessential. Hence, [f] = 0 and the proof is complete.

It should be noted that Theorem 3.1 takes care of the p = 0 case of the structure Theorem 5.2 of (1), without the use of tameness or flatness in the hypothesis.

185

COROLLARY 3.2. If $f: M^n \to N^p$ is the projection map of an MS-fibering of manifolds β with finite non-empty singular set A and $b_{n/2}(M^n) = 0$ with M^n n/4-connected, then β admits a Hopf spine α and $\beta = S(\alpha)$.

This result is modulo the possibility that the Poincaré conjecture may be false in dim 3, 4.

Proof. The space $M^n - A$ is n/4-connected, since $n - n/4 \ge 2$. Using the fiber homotopy sequence for the associated fibering $\bar{\beta}$, namely

$$\dots \to \pi_q(M^n-A) \to \pi_q(N^p-f(A)) \to \pi_{q-1}(F) \to \pi_{q-1}(M^n-A) \to \dots$$
, we obtain the isomorphism

(12)
$$0 \to \pi_q(N^p - f(A)) \xrightarrow{\tilde{\sim}} \pi_{q-1}(F) \to 0$$

for $q \le n/4$. But, F is a homotopy sphere of dim 1, 3 or 7 and dim $F \ge n/4$ so that

$$\pi_{q-1}(F) = 0, \qquad q \le n/4,$$

and hence

(13)
$$\pi_q(N^p - f(A)) = 0, \qquad q \le n/4.$$

Then N^p is n/4-connected and the Hurewicz isomorphism yields

$$(14) H_q(N^p; Z) = 0$$

for $q \le n/4 = (p-1)/2$. By (14) and duality for betti numbers and torsion coefficients we have that N^p is an integral homology sphere, and finally via the Hurewicz isomorphism that N^p is a homotopy sphere. Now apply Theorem 3.1 to complete the proof.

4. Examples where $b_{n/2}$ **does not vanish.** Let α denote the Hopf fibering $[S^n, f(\alpha), S^p, F(\alpha)]$ and $S(\alpha)$ its suspension. $S(\alpha)$ is clearly an MS-fibering of manifolds with singular set just two points. Let D^p be an open p-disc in a "trivializing" neighbourhood of the fibering $\overline{S(\alpha)}$ associated with $S(\alpha)$. (See 1 for notation.) We then have the homeomorphism

$$(Sf(\alpha))^{-1}(D^p) \approx D^p \times F(\alpha),$$

where $Sf(\alpha)$ denotes the suspension of $f(\alpha)$. Now, since $F(\alpha)$ is contained in a tubular neighbourhood, it is locally flatly embedded in the total space of $\overline{S(\alpha)}$, and hence in that of $S(\alpha)$, i.e., in S^{n+1} . Therefore, via results of Gluck (7) and Stallings (15), we may suppose that $F(\alpha)$ is an equatorial (n - p)-sphere in S^{n+1} .

Now, taking boundaries we obtain

$$\partial Q = \partial (XS(\alpha) - D^p \times F(\alpha)) = \partial D^p \times F(\alpha),$$

 $\partial Q' = \partial (YS(\alpha) - D^p) = \partial D^p,$

where $XS(\alpha)$, $YS(\alpha)$ are the base and total spaces of $S(\alpha)$. Forming the doubles of Q and Q' (i.e., gluing two copies of Q and Q' along their boundaries) we

obtain manifolds $XD(\alpha)$, $YD(\alpha)$, where $YD(\alpha)$ is homeomorphic to S^{p+1} . The restriction of $Sf(\alpha)$ to Q is a fibering over Q' and extends in the natural way to a map $Df(\alpha)$: $DX(\alpha) \to DY(\alpha)$. This map is the projection map of an MS-fibering of manifolds $D(\alpha)$ whose singular set consists of exactly four points. Now,

$$Q \xrightarrow[\text{retract}]{\text{deform}} XS(\alpha) - F(\alpha) \stackrel{\text{homeo}}{\approx} S^{n+1} - S^{n-p} \xrightarrow[\text{retract}]{\text{deform}} S^p,$$

where the homeomorphism is given by the local flatness of $F(\alpha)$ in S^{n+1} . This means that Q is simply connected and via the Van Kampen theorem due to Olum (8), we have that $DX(\alpha)$ simply connected as well. Hence,

$$b_{n/2}(DX(\alpha)) \neq 0$$

by Theorem 2.2.

In closing we conjecture the following:

- (A) For $n = 2, 4, 8, S^n \times S^n$ fibers over S^{n+1} with finite singular set;
- (B) Any MS-fibering of manifolds β with projection $M^n \to S^p$ and M^n simply connected, admits a spine if and only if $b_{n/2}$ vanishes.

Of course, Theorem 3.1 takes care of (2) in one direction.

References

- P. L. Antonelli, Structure theory for Montgomery-Samelson fiberings between manifolds. I, Can. J. Math. 21 (1969), 170-179.
- P. E. Conner, On the impossibility of fibering certain manifolds by compact fibre, Michigan Math. J. 5 (1957), 249-255.
- **3.** H. Gluck, *Unknotting* s¹ in s⁴. Bull. Amer. Math. Soc. 69 (1963), 91–94.
- 4. S. Hu, Mappings of a normal space into an absolute neighborhood retract, Trans. Amer. Math. Soc. 64 (1948), 336-358.
- 5. Homotopy theory (Academic Press, New York, 1959).
- D. Montgomery and H. Samelson, Fiberings with singularities, Duke Math. J. 13 (1946), 51-56.
- 7. M. H. A. Newman, The Engulfing theorem for locally tame sets, Bull. Amer. Math. Soc. 72 (1966), 861–862.
- 8. P. Olum, Non-Abelian cohomology and Van Kampen's theorem, Ann. of Math. (2) 68 (1958), 658-668.
- 9. J. Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490-503.
- J. G. Timourian, Singular fiberings of manifolds, unpublished Ph.D. thesis, Syracuse University, 1967.

Syracuse University, Syracuse, New York; The University of Tennessee, Knoxville, Tennessee