STRUCTURE THEORY FOR MONTGOMERY-SAMELSON
FIBERINGS BETWEEN MANIFOLDS. II

PETER L. ANTONELLI

1. Introduction. Let f: M™ — N? be the projection map of an MS-fibering
of manifolds B with finite non-empty singular set 4 and simply connected total
space (see 1). Results of Timourian (10) imply that (n, p) = (4, 3), (8, 5)
or (16,9), while a theorem of Conner (2) yields that #(4), the cardinality
of the singular set, is equal to the Euler characteristic of M”. We give an
elementary proof of this fact and, in addition, prove that #(4) is actually
determined by b,,2(M™"), the middle betti number of M*, or what is the same,
by b,2(N? — f(4)). It is then shown that § is topologically the suspension of
a (Hopf) sphere bundle when N? is a sphere and b,2(M") = 0. It follows as a
corollary that 8 must also be a suspension when M" is n/4-connected with
vanishing b,,.. Examples where b,,2 is not zero are constructed and we state
a couple of conjectures concerning the classification of such objects.

2. The cardinality of the singular set.

ProrosiTiON 2.1. If f: M™ — N? is the projection map of an MS-fibering of
manifolds with finite non-empty singular set A © M" and M"™ is 1-connected, then

#(d) = X(M").

Proof. Via Timourian’s result (10), (n, p) = (4, 3), (8, 5) or (16,9), and
the fiber Fis a homotopy 1-, 3- or 7-sphere. Then M™ — A is 1-connected and
of course, X (F) = 0.

Utilizing the fiber-homotopy sequence, N? — f(4), and hence, N?, is
1-connected. Thus, in particular,

(1) XM — A4) = X(N? — f(4)) - X(F) = 0.
The connectivity of M” — A4 and the orientability of M" imply that
(2) bo(M" — 4) =1, by(M™ — A) = 0.

By the cohomology exact sequence for the pair (M", 4) we obtain

HU(M"™) = H(M", A), q= 2.
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But, Lefschetz duality yields
H, ,(M"— 4) = H(M", A4),
and therefore
dim oH,—,(M" — A) = dim oH*(M")
so that we arrive at
3) bo(M") = by(M* — A)

forn — 2 = ¢ = 2 via Poincaré duality.
When ¢ = 1, we have the cohomology sequence

— H'(A) « H'(M") «— H'(M", A) «— H°(4) <« HY(M) «,
where the groups are reduced in dimension zero. However,
H'(4) =0= H'(M)
so that we obtain a short exact sequence of finite-dimensional vector spaces.
This sequence must split, therefore
dimH'(M", A) = dim H'(M"™) + dim H*(4)

= dimoH,—1(M") + #(4) — 1

= b1 (M") + #(4) — 1
while Lefschetz duality yields

dimH'(M", A) = dimoH,—1(M" — A) = b,y (M™ — A4).

Therefore,
4) bpa(M" — A) = bpa(M*) + #(4) — 1,
where z = 2,4 or 8. By (1) we know that

S (~1%,00 — 4) = ¢

so that (2) and (3) together apply to yield

n—2
Z}] (=1)%(M™) — byr(M" — 4) = 0.
po

This relation, coupled with (4), then yields

n—2

;0 (=) (M") = by (M") + #(4) — 1,

which proves the proposition.
We shall now show that the number of singular points is completely deter-
mined by the middle betti number of M™, for M" simply connected.
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TueOREM 2.2. If f: M™— N? is the projection map of an MS-fibering of
manifolds with finite non-empty singular set A C M" and M" is 1-connected, then
#(A) = bupp(M") + 2.

Proof. Our argument splits naturally into three cases. In each of these cases
the fiber homotopy sequence implies that both N? — f(4) and N? are
1-connected. Furthermore, via Proposition 2.1, it suffices to prove that

X(M") = 2+ byja(M™).
Case (1). (n, p) = (4, 3).
This case follows trivially from Poincaré duality. Thus,
X(M*) =2+ bs.
Case (2). (n, p) = (8, 5).
As in the first case, X (M8) = 2 + by — 2(by — by + b3) via Poincaré
duality, and we have that b;(M8) = 0. It will suffice to show that
(5) by (M?) = by(MB).
The mapping
= 4L — f(4)
is a fibering with a 1-connected base and a homotopy 3-sphere for fiber. The
simple connectivity of N® — f(4) implies that 7;(IV3 — f(4)) acts simply on
Hx(F; Q) so that we may apply the Gysin sequence (rational coefficients)
- I{m+l(]v5 —f(A)) —_)Hm~3(N5 _f(A)) - Hm(Ms - A)
— Hu(N® — f(4)) —;
letting m = 5 we obtain
(6) Hy(N° — f(4)) = Hs(M® — 4)
since
Ho(N° — f(4)) = 0 = H5(N° — f(4)).

The group on the left is zero since N® — f(4) has the homotopy type of a
complex without any 6-simplices, while the group on the right vanishes via the
orientability of N5,

Lefschetz duality and (6) yield

Q) H3(M?, A) = Hs(M® — A) = Ho(N° — f(4)) = H*(N? f(4)),

while the cohomology sequences for the pairs (M8, 4) and (N3, f(4)) yield
the equations

(8) H3(M?®) = H3(M?, 4), H3(N®) = H3(N°®, f(4)).
Therefore, (6), (7), and Poincaré duality yield
Hy(M?) = H3(M?®) = H3(N®) = Hy(N%)
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so that
dim oH35(M3) = dim oH.(N?®),

and hence b;(M?) = b,(N%). But, duality for betti numbers yields b;(M8) =
bs(M?) so that we finally arrive at

9) bs(M?) = by(NV?).

Letting m = 6 in the Gysin sequence we have that
— Hq(N° — f(4)) — Hs(N° — f(4)) = Ho(M® — 4) > He(N° — f(4)) —
from which we obtain the isomorphism

(9" Hy(N° — f(4)) = He(M® — A),

since

H1(N° — f(4)) = 0 = He(N* — f(4)).
From Lefschetz duality and (9’) we obtain
H*(N?, f(4)) = Hs(N® — f(A4)) = He(M® — A) = H*(M5, 4)
and as in (8) we have that
H*(N®) = H*(N®, f(4)),  H*(M?®) = H*(M?® A4)

so that H2(N%) = H?2(M?). Then Poincaré duality applies to yield
9”) bs(N?) = b2(M?),
and finally (9), (9””), and Poincaré duality yield

by (M) = by (M?),

as desired.
Case (3). (n, p) = (16,9).
Now, X (M) =2+ bg — 201 — bz + ... —bs + b1). The procedure of

proof is as in Case (2). We prove that

(@) b2(M®) = b7 (M),

(b) b3(M*®) = be(M*®),

(c) ba(M*®) = bs(M™),
and then by the l-connectivity of A6 b; = 0 so that we finally obtain
X (M%) = 2 + bg(M*®) as desired.

As before, N® — f(A4) is 1-connected, so we may apply the Gysin sequence
with rational coefficients. Since the fiber is a 7-sphere, the sequence has the
form

— Hp 1 (N® — f(4)) = Hpua(N° — f(4)) = Hpo (M — 4) —
H,u(N® — f(4)) —
First letting m = 9 and proceeding as in Case (2) we obtain (a) above.

Similarly, letting m = 10, 11 we obtain (b) and (c) above. We shall omit
these details.
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In Theorem 2.2 the cardinality of the singular set 4 was related to the betti
numbers of the total space M". In the following proposition #(A4) is related to
the betti numbers of N? — f(4). The proof follows by similar techniques and
is omitted.

ProPOSITION 2.3. If f: M™ — N? is the projection map of an MS-fibering of
mantfolds with finite non-empty singular set A and M" is 1-connected, then

#(A) = bup(N? — (4)) f+ 1.

3. The structure theorem.

TueoreM 3.1. If f: M"™ — S?, M™ 1-connected, by;s(M™) = 0 s the projection
map of an MS-fibering of manifolds B with non-empty finite singular set A, then
B is topologically s(a) for some Hopf spine a.

Proof. By Theorem 2.2 we must have that #(4) = 2. We may as well suppose
the set f(4) to consist of antipodal points on S?. In this case we have S? — f(4)
topologically equivalent to S?~! X (0, 1). We may then conclude that M* — 4
is topologically just f~1(S*~') X (0, 1). This then implies that M™ is the
suspension of f~1(5?1) = X (a). Moreover, X (@) must be a closed connected
topological manifold since it is the total space of a fibering in which both the
base Y(a) = S?! and the fiber F(a) = F(B) are closed connected manifolds.

It is clear from definitions that « is a spine of 8 and that S(a) = B. It there-
fore remains to show that « is a Hopf spine. Now, by our definition of Y («), it
is a (p — 1)-sphere; thus, it will be sufficient to demonstrate that X (a) is a
homotopy sphere (modulo the usual restrictions on the Poincaré conjecture in
dim 3, 4).

We have the following isomorphisms:

T (M*) = m,(M" — 4) = 7,(X(a) X (0,1)) = 7, (X ()
for ¢ = n — 2. Therefore, if we show that =,(M") = 0 for this range of integers,
the fact that codim(8;a) = 1 will imply, via (4, p. 357), that X(a) is a
homotopy sphere since it is a compact finite-dimensional absolute neighbour-
hood retract (ANR).

Let f: S2— M" be a representative of a class [f] in =, (M") for ¢ £ n — 2.
We wish to show that [f] = 0. We may suppose that f is simplicial via the
simplicial approximation theorem so that f does not raise dimension. This
means that f cannot be onto, so there exists a point Xy € M" — f(S?). Now
M" = S(X (a)) is a connected manifold so that we may suppose that X is one
of the two suspension points of S(X («)).

Since f(S?) C M" — X, and M" — X, is collapsible onto the cone over
X (a) and finally onto the cone point itself, the mapping f must be inessential.
Hence, [f] = 0 and the proof is complete.

It should be noted that Theorem 3.1 takes care of the p = 0 case of the
structure Theorem 5.2 of (1), without the use of tameness or flatness in the
hypothesis.
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CorOLLARY 3.2. If f: M" — NP is the projection map of an MS-fibering of
manifolds B with finite non-empty singular set A and by(M*) = 0 with M*
n/4-connected, then 3 admits a Hopf spine a and 8 = S(a).

This result is modulo the possibility that the Poincaré conjecture may be
false in dim 3, 4.

Proof. The space M" — A is n/4-connected, since n — n/4 = 2. Using
the fiber homotopy sequence for the associated fibering 8, namely

oo m (Mt — A) 5w, (N — f(A)) o> 1 (F) » g (M — 4A) — ...,
we obtain the isomorphism

(12) 0— 7w (N” = f(4)) = 7 1(F) = 0
for ¢ < n/4. But, F is a homotopy sphere of dim 1,3 or 7 and dim F = n/4
so that
1 (F) =0, q¢=mn/4,
and hence
(13) T (NP — f(4)) =0, q = n/4.
Then N7 is n/4-connected and the Hurewicz isomorphism yields
(14) H,(N?*;Z) =0

for ¢ = n/4 = (p — 1)/2. By (14) and duality for betti numbers and torsion
coefficients we have that N? is an integral homology sphere, and finally via
the Hurewicz isomorphism that NV? is a homotopy sphere. Now apply Theorem
3.1 to complete the proof.

4. Examples where b,,, does not vanish. Let « denote the Hopf fibering
S, f(a), SP, F(a)] and S(«) its suspension. S(a) is clearly an MS-fibering of
manifolds with singular set just two points. Let D? be an open p-disc in a
“trivializing” neighbourhood of the fibering S(a) associated with S(a). (See
1 for notation.) We then have the homeomorphism

(§f(e))71(D”) = D? X Fl(a),

where .Sf(a) denotes the suspension of f(a). Now, since F(a) is contained in a
tubular neighbourhood, it is locally flatly embedded in the total space of
S(e), and hence in that of S(a), i.e., in S*1. Therefore, via results of Gluck (7)
and Stallings (15), we may suppose that F(a) is an equatorial (# — p)-sphere
in S™t1,
Now, taking boundaries we obtain
40 = 0(XS(@) — D? X F(a)) = dD? X F(a),
Q" = 0(¥VS(a) — D?) = aD»,

where XS(«), YS(a) are the base and total spaces of S(a). Forming the doubles
of Q and Q' (i.e., gluing two copies of Q and Q' along their boundaries) we
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obtain manifolds XD («), YD(a), where YD (a) is homeomorphic to S?*1. The
restriction of Sf(a) to Q is a fibering over Q' and extends in the natural way to
a map Df(a): DX (a) = DY (a). This map is the projection map of an MS-
fibering of manifolds D (a) whose singular set consists of exactly four points.

Now,
deform homeo il n— deform
Q=——=XS(@) — Fl@) = S — """ ——.5",
retract retract

where the homeomorphism is given by the local flatness of F(a) in S*t!. This
means that Q is simply connected and via the Van Kampen theorem due to
Olum (8), we have that DX (&) simply connected as well. Hence,

bup(DX (a)) # 0
by Theorem 2.2.
In closing we conjecture the following:
(A) Forn = 2,4, 8,5 X 5" fibers over $"*! with finite singular set;
(B) Any MS-fibering of manifolds 8 with projection M"* — S?” and M" simply
connected, admits a spine if and only if b,/» vanishes.
Of course, Theorem 3.1 takes care of (2) in one direction.
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