A NOTE ON APPROXIMATION OF DISTRIBUTIONS BY QUASI-ANALYTIC FUNCTIONS

S. R. HARASYMIV

(Received 28 August 1967, revised 3 March 1968)

1. Introduction and notation

Throughout this note \mathbb{R}^n denotes the *n*-dimensional Euclidean space. Addition and multiplication in \mathbb{R}^n are defined component-wise. If $k \leq n$ is a positive integer and $x \in \mathbb{R}^n$, we write x_k for the *k*-th component of *x*. The set $\{x \in \mathbb{R}^n : x_k \neq 0 \text{ for each } k \leq n\}$ is designated by $\mathbb{R}^{\#}$.

We shall use the standard notations of the calculus of n variables; see, for example, Hörmander [5], p. 4. If α is a multi-index, then j^{α} is the function on \mathbb{R}^n defined by $j^{\alpha}(x) = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for all $x \in \mathbb{R}^n$.

Suppose that W is an open subset of \mathbb{R}^n . We write D(W) for the space of functions which are indefinitely differentiable and have compact support in W; and the space of distributions with support in W is denoted by D'(W). The spaces of rapidly decreasing indefinitely differentiable functions and temperate distributions on \mathbb{R}^n are denoted by $S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n)$, respectively. In what follows, $S'(\mathbb{R}^n)$ is always assumed to have the strong topology $\beta(S', S)$.

Finally, let $\phi \in D(\mathbb{R}^n)$. If $b \in \mathbb{R}^n$, then the function $\phi_b \in D(\mathbb{R}^n)$ defined by

$$\phi_{h}(x) = \phi(x+b)$$
 for all $x \in \mathbb{R}^{n}$

is called a *translate* of ϕ . If $a \in \mathbb{R}^{\#}$, then the function $\phi^a \in D(\mathbb{R}^n)$ defined by

$$\phi^a(x) = \phi(ax)$$
 for all $x \in R^n$

is called a *dilation* of ϕ . The *translate* u_b and *dilation* u^a of an arbitrary distribution $u \in D'(\mathbb{R}^n)$ are defined via the adjoints of the mappings $\phi \to \phi_b$ and $\phi \to \phi^{a^{-1}}$; we write $u_b(\phi) = u(\phi_b)$ and $u^a(\phi) = |1/j(a)| \cdot u(\phi^{a^{-1}})$ for all $\phi \in D(\mathbb{R}^n)$. A vector subspace F of $D'(\mathbb{R}^n)$ is said to be *dilation-invariant* [resp. *translation-invariant*] if $u^a \in F[u_b \in F]$ for all $u \in F$ and all $a \in \mathbb{R}^{\#}[b \in \mathbb{R}^n]$.

In Harasymiv [3], the following problem was considered: if E is a dilation-invariant and translation-invariant locally convex space of temperate distributions and $u \in E$, what is the closed vector subspace T[u] of E generated by the set of distributions $\{(u_k)^a : a \in R^{\#}, b \in R^n\}$. It was

shown that if we make certain assumptions about the topology on E, then T[u] coincides with the whole of E provided that the support of the Fourier transform of u is sufficiently 'thick'. Moreover, it was found that we could replace the parameter sets R^{\neq} and R^n by a dense subset A of R^{\neq} and a dense subset B of R^n without altering the conclusions in [3]. In this note we remark on a condition which allows us to restrict still further the size of the parameter sets A and B.

2. Preliminaries

In this section we derive some results which we shall need to prove the approximation theorem in § 3. Throughout, the term *space of temperate distributions* will mean a vector subspace of $S'(\mathbb{R}^n)$ which contains $S(\mathbb{R}^n)$. We begin with two definitions.

2.1. DEFINITION. A locally convex space E of temperate distributions is said to be an admissible space of it satisfies the following two conditions.

- (i) $S(\mathbb{R}^n)$ is dense in E.
- (ii) The injections $S(\mathbb{R}^n) \to E \to S'(\mathbb{R}^n)$ are continuous.

REMARK. It is very easy to verify that the topological dual space E' of an admissible space E can be identified with a space of temperate distributions in such a way that

- (2.1) $\langle u, \phi \rangle = u * \phi(0)$ for all $u \in E$
- (2.2) $\langle \phi, v \rangle = \phi * v(0)$ for all $v \in E'$

whenever $\phi \in S(\mathbb{R}^n)$. [If *E* is an admissible space, then the symbol \langle , \rangle will always denote the bilinear form on $E \times E'$ induced by the natural pairing of *E* and *E'*.]

2.2 DEFINITION. Suppose that E is an admissible space. We say that E is c-admissible if it satisfies conditions (i)-(iii) below.

(i) E is translation-invariant.

(ii) For each $x \in \mathbb{R}^n$, the mapping $u \to u_x$ of E (with its usual topology) into E (with the weak topology $\sigma(E, E')$) is continuous.

(iii) For each $u \in E$ and each $v \in E'$, the mapping $x \to \langle u_x, v \rangle$ defines a continuous function which is a temperate distribution on \mathbb{R}^n .

A c-admissible space which satisfies conditions (iv)-(vi) below is called a dilation space.

(iv) E is dilation-invariant.

(v) For each $x \in \mathbb{R}^{\#}$, the mapping $u \to u^x$ of E (with its usual topology) into E (with the weak topology $\sigma(E, E')$) is continuous.

(vi) For each $u \in E$, the mapping $x \to u^x$ of $R^{\#}$ into E is continuous for the $\sigma(E, E')$ topology on E.

REMARK. Suppose that E is a translation-invariant barrelled admissible space such that for each $x \in \mathbb{R}^n$, the mapping $u \to u_x$ of E (with its usual topology) into E (with the weak topology $\sigma(E, E')$) is continuous, and for each $u \in E$ the mapping $x \to u_x$ of \mathbb{R}^n into E is continuous for the weak topology on E. In this case it can be shown that if for each $u \in E$ and each $v \in E'$ the convolution u * v is defined (in the general sense of Chevalley [1]) and is a temperate distribution on \mathbb{R}^n , then E is c-admissible.

Assume that E is a *c*-admissible space and that $u \in E$ and $v \in E'$. In what follows, we shall use the symbol $u \oplus v$ to denote the temperate distribution on \mathbb{R}^n generated by the function $x \to \langle u_x, v \rangle$ $(x \in \mathbb{R}^n)$, as in condition (iii) of Definition 2.2. If we consider $u \oplus v$ as a function, then in view of Theorem 2.2(a) in Harasymiv [3], we have

$$u \circledast v(x) = \langle u_x, v \rangle = \langle u, v_x \rangle$$
 for all $x \in \mathbb{R}^n$.

If *E* is a dilation space, then we shall write $u \bigtriangledown v$ for the function on $R^{\#}$ defined by $u \bigtriangledown v(x) = \langle u^x, v \rangle (x \in R^{\#})$. By condition (vi) in Definition 2.2, $u \bigtriangledown v$ is continuous on $R^{\#}$; and by Theorem 2.2(b) in Harasymiv [3], $u \bigtriangledown v(x) = |1/j(x)| \cdot \langle u, v^{x^{-1}} \rangle$ for all $x \in R^{\#}$.

We now list several results about dilation spaces which we shall need in what follows.

2.3 LEMMA. (a) Suppose that E is a barrelled c-admissible space and that M is a weakly bounded subset of E. Then for each $v \in E'$ and each compact set $K \subset \mathbb{R}^n$, there exists a positive constant m (depending on v and K) such that

 $|u \circledast v(x)| \leq m$ for all $x \in K$

simultaneously for all $u \in M$.

(b) Suppose that E is a barrelled dilation space and that M is a weakly bounded subset of E. Then for each $v \in E'$ and each compact set $K \subset R^{\neq}$ there exists a positive constant M (depending on v and K) such that

$$|u \bigtriangledown v(x)| \leq m' \text{ for all } x \in K$$

simultaneously for all $u \in M$.

PROOF. We shall restrict ourselves to establishing (b); a very similar argument will prove (a). Thus, assume that E is a barrelled dilation space, $v \in E'$ and that K is a compact subset of $R^{\#}$. The continuity of the mapping $x \to v^{x^{-1}}$ of $R^{\#}$ into E' (for the weak topology on E') entails that the set $\{v^{x^{-1}} : x \in K\}$ is a weakly compact, and hence weakly bounded subset of E'. Theorem 7.1.1(b) in Edwards [2] now tells us that the set $\{v^{x^{-1}} : x \in K\}$ is

equicontinuous, and so this set is uniformly bounded on each bounded subset of E. Since any weakly bounded subset of a locally convex topological vector space is necessarily bounded (Edwards [2], Theorem 8.2.2), we infer the existence of a constant m > 0 such that

(2.3)
$$|\langle u, v^{x^{-1}} \rangle| \leq m$$
 for all $u \in M$ and all $x \in K$.

In view of the definition of $u \bigtriangledown v$, relation (2.3) is easily seen to lead to the desired boundedness property.

In order to abbreviate the stements of the results below, we introduce the following terminology.

2.4. DEFINITION. Let E be an admissible space, and suppose that F is an algebraic subspace of E which is admissible relative to some topology such that the injection $F \rightarrow E$ is continuous. We then say that F is a subspace of type (Γ) if for each $u \in F$ and each pair of multi-indices α and β such that $\beta \leq \alpha$, we have $j^{\beta}D^{\alpha}u \in F$ and the following condition is satisfied.

(i) For each pair of multi-indices α and β such that $\beta \leq \alpha$, the mapping $u \rightarrow j^{\beta} D^{\alpha} u$ of F into F is continuous.

REMARK. Obviously, each admissible space contains at least one subspace of type (Γ) ; namely, $S(\mathbb{R}^n)$.

2.5. LEMMA. Suppose that E is a barrelled dilation space and that F is a subspace of E of type (Γ). Then the following assertions are true.

(a) For each $u \in F$ and each $v \in E'$, the function $u \circledast v$ is indefinitely differential be on \mathbb{R}^n and for each multi-index α

 $D^{\alpha}(u \circledast v)(x) = (D^{\alpha}u) \circledast v(x)$ for all $x \in \mathbb{R}^{n}$.

(b) For each $u \in F$ and each $v \in E'$, the function $u \bigtriangledown v$ is indefinitely differentiable on $R^{\#}$ and for each multi-index α

$$D^{\alpha}(u \bigtriangledown v)(x) = [1/j^{\alpha}(x)] \cdot \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta}D^{\beta}u) \lor v(x) \text{ for all } x \in R^{\#}.$$

where $C^{\alpha}_{\beta} = \alpha!/\beta! (\alpha - \beta)!.$

PROOF. Once again we content ourselves with proving (b). The proof of (a) is similar but simpler.

Assume that u and v are as in part (b) in the statement of the lemma. It is evident that our proof will be complete if we succeed in showing that if W is an arbitrary relatively compact subset of \mathbb{R}^n such that $\overline{W} \subset \mathbb{R}^{\#}$, then $u \bigtriangledown v$ is indefinitely differentiable in W and for each multi-index α

$$(2.4) \quad D^{\alpha}(u \nabla v)(x) = [1/j^{\alpha}(x)] \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta}D^{\beta}u) \nabla v(x) \quad \text{for all} \quad x \in W.$$

Now, in view of Théorème VII in Chapitre II of Schwartz [7] and the

[4]

Approximation of distributions

continuity of the functions $(j^{\beta}D^{\beta}u) \bigtriangledown v$, it is easy to see that relation (2.4) is equivalent to the demand that $D^{\alpha}(u \bigtriangledown v)$ and $[1/j^{\alpha}] \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta}D^{\beta}u) \bigtriangledown v$ should coincide as distributions on W. In other words, the validity of (2.4) will be assured if we show that for each $\psi \in D(W)$

(2.5)
$$\int_{W} u \bigtriangledown v(x) \cdot D^{\alpha} \psi(-x) dx = \int_{W} [1/j^{\alpha}(x)] \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta} D^{\beta} u) \bigtriangledown v(x) \cdot \psi(-x) dx.$$

With this end in view, we argue as follows. Since F is admissible, we can extract a net (ϕ_i) from $D(\mathbb{R}^n)$ such that $\lim_i \phi_i = u$ in F. Then, by virtue of the continuity (for each multi-index β) of the mapping $w \to j^{\beta} D^{\beta} w$ of F into F, it is also true that $\lim_i j^{\beta} D^{\beta} \phi_i = j^{\beta} D^{\beta} u$ in F for each multi-index $\beta \ge 0$. Since the topology on F is stronger than that induced by E (see Definition 2.4), this entails that for each multi-index β

(2.6)
$$\lim_{i} j^{\beta} D^{\beta} \phi_{i} = j^{\beta} D^{\beta} u \quad \text{in} \quad E.$$

Next we notice that since \overline{W} is compact, the set $\{v^{x^{-1}} : x \in \overline{W}\}$ is weakly compact, and hence weakly bounded in E'. This is a consequence of the continuity (for the weak topology on E') of the mapping $x \to v^{x^{-1}}$ of $R^{\#}$ into E'. Theorem 7.1.1(b) in Edwards [2] now tells us that the set $\{v^{x^{-1}} : x \in \overline{W}\}$ is equicontinuous. If we bear this fact in mind, then the remark on p. 504 (third paragraph) of Edwards [2], together with (2.6), leads us to the conclusion that for each multi-index β

$$\lim_{i} \langle j^{\beta} D^{\beta} \phi_{i}, v^{x^{-1}} \rangle = \langle j^{\beta} D^{\beta} u, v^{x^{-1}} \rangle \quad \text{uniformly for} \quad x \in \overline{W}.$$

In view of the definition of the functions $(j^{\beta}D^{\beta}u) \bigtriangledown v$, and the fact that j is bounded away from zero on \overline{W} , we may now assert that for each multiindex β

(2.7)
$$\lim_{i} j^{\beta} D^{\beta} \phi_{i} \bigtriangledown v(x) = j^{\beta} D^{\beta} u \bigtriangledown v(x)$$
 uniformly for $x \in \overline{W}$.

It is now easy to verify that (2.5) holds. Consider an arbitrary function $\psi \in D(W)$. Then, because of (2.7), we have

(2.8)
$$\int_{W} u \bigtriangledown v(x) \cdot D^{\alpha} \psi(-x) dx = \lim_{i} \int_{W} \phi_{i} \bigtriangledown v(x) \cdot D^{\alpha} \psi(-x) dx = \lim_{i} \int_{W} D^{\alpha}(\phi_{i} \bigtriangledown v)(x) \cdot \psi(-x) dx.$$

Now, each ϕ_i belongs to $D(\mathbb{R}^n)$. Therefore, if we use relation (3.1) in Harasymiv [4], it is easily demonstrated that for each i

$$(2.9) \quad D^{\alpha}(\phi_i \bigtriangledown v)(x) = [1/j^{\alpha}(x)] \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta}D^{\beta}\phi_i) \lor v(x) \quad \text{for all} \quad x \in \overline{W}$$

Relations (2.7), (2.8) and (2.9) together entail that

$$\begin{split} \int_{W} u \bigtriangledown v(x) \cdot D^{\alpha} \psi(-x) dx \\ &= \lim_{i} \int_{W} [1/j^{\alpha}(x)] \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta} D^{\beta} \phi_{i}) \bigtriangledown v(x) \cdot \psi(-x) dx \\ &= \int_{W} [1/j^{\alpha}(x)] \sum_{\alpha \leq \beta} C^{\alpha}_{\beta}(j^{\beta} D^{\beta} u) \lor v(x) \cdot \psi(-x) dx. \end{split}$$

This establishes (2.5), which is what we set out to do.

REMARK. If E is a B_r -complete module over $S(\mathbb{R}^n)$ then in part (a) of Lemma 2.5 it is sufficient to merely assume that $u \in E$ is such that $D^{\alpha}u \in E$ for each multi-index α ; the result still holds. However, we shall nowhere make use of this fact, and mention it only in passing.

2.6. DEFINITION. Let E be an admissible space and $(a_k)_{k=1}^{\infty}$ a sequence of complex numbers. For each multi-index α , let $a_{\alpha} = a_{\alpha_1} \cdots a_{\alpha_n}$. We shall write $M(a_k)$ for the set of all $u \in E$ which have the following properties.

(i) If α and β are multi-indices such that $\beta \leq \alpha$ then $j^{\beta}D^{\alpha}u \in E$.

(ii) The set $\{a_{\alpha}j^{\beta}D^{\alpha}u:\beta\leq\alpha, |\alpha|=1,2,\cdots\}$ is weakly bounded in E.

With the above notation, we state the following corollary to Lemmas 2.3 and 2.5.

2.7. LEMMA. Suppose that E is a barrelled dilation space and that F is a subspace of E of type (Γ) . Let $u \in F$ and assume that $(a_k)_{k=1}^{\infty}$ is a monotonic non-increasing sequence of positive numbers such that $u \in M(a_k)$. Then the following two assertions are true.

(a) For each $v \in E'$ and each compact set $K \subset \mathbb{R}^n$, there exists a positive constant m (depending on v and K) such that

$$|D^{\alpha}(u \circledast v)(x)| \leq m/a_{\alpha}$$
 for all $x \in K$

simultaneously for all multi-indices $\alpha \geq 0$.

(b) For each $v \in E'$ and each compact set $K \subset R^{\#}$, there exist positive constants m' and ρ (both depending on v and K) such that

 $|D^{\alpha}[(D^{\gamma}u) \bigtriangledown v](x)| \leq m' \cdot \rho^{|\alpha|} / a_{\gamma+\alpha}$ for all $x \in K$

simultaneously for all multi-indices $\alpha \ge 0$ and $\gamma \ge 0$.

PROOF. The proofs of parts (a) and (b) of Lemma 2.7 are very similar; we shall only give the argument for part (b).

Suppose that $v \in E'$ and that K is a compact subset of $R^{\#}$. In view of the definition of $M(a_k)$ and Lemma 2.3(b), we infer that there exists a constant m' > 0 (depending on v and K) such that

(2.10)
$$|(j^{\beta}D^{\gamma+\beta}u) \bigtriangledown v(x)| \leq m'/a_{\gamma+\beta} \text{ for all } x \in K$$

simultaneously for all multi-indices β and γ . Now suppose that α and γ are arbitrary, but fixed, multi-indices. Since the sequence (a_k) is non-increasing, we deduce from (2.10) that

(2.11)
$$|(j^{\beta}D^{\gamma+\beta}u) \bigtriangledown v(x)| \leq m'/a_{\gamma+\alpha} \text{ for all } x \in K$$

simultaneously for all multi-indices $\beta \leq \alpha$. Write

$$\rho = 2 \sup \{ |x_i| : x \in K, 1 \leq i \leq n \}.$$

Using Lemma 2.5 and relation (2.11), it is easy to verify that for each $x \in K$

$$\begin{split} |D^{\alpha}[(D^{\gamma}u) \bigtriangledown v](x)| &\leq |1/j^{\alpha}(x)| \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}|(j^{\beta}D^{\gamma+\beta}u) \bigtriangledown v(x)| \\ &\leq \rho^{|\alpha|} \cdot 2^{-|\alpha|} \cdot (m'/a_{\gamma+\alpha}) \cdot \sum_{\beta \leq \alpha} C^{\alpha}_{\beta} \\ &\leq m' \cdot \rho^{|\alpha|}/a_{\gamma+\alpha} \end{split}$$

since $\sum_{\beta \leq \alpha} C_{\beta}^{\alpha} \leq 2^{|\alpha|}$. This completes the proof of Lemma 2.7.

The following result is a straight-forward consequence of the theorem stated at the foot of p. 75 in Mandelbrojt [6]. We omit its proof.

2.8 LEMMA. Suppose that $(a_k)_{k=1}^{\infty}$ is a monotonic non-increasing sequence of positive numbers such that the sequence $(a_k^{1/k})_{k=1}^{\infty}$ is also monotonic nonincreasing. Moreover, suppose that the series $\sum_{k=1}^{\infty} a_k^{1/k}$ diverges. Let W be an open subset of \mathbb{R}^n and suppose that f is a function which is indefinitely differentiable in W and has the following properties.

(i) For each compact subset K of W, there exist constants m > 0 and $\rho > 0$ (depending on K) such that

$$|D^{\alpha}f(x)| < m \cdot \rho^{|\alpha|}/a_{\alpha}$$
 for all $x \in K$

simultaneously for all multi-indices $\alpha \ge 0$. [Here, as elsewhere, we write $a_{\alpha} = a_{\alpha_1} \cdots a_{\alpha_n}$ for each multi-index α .]

(ii) There exists a point $x_0 \in W$ such that $D^{\alpha}f(x_0) = 0$ for each multiindex α .

Then f vanishes identically throughout W.

3. Some approximation results

Throughout this section, we shall adopt the following notation. Suppose that E is a dilation space and let A and B be subsets of $R^{\#}$ and R^n , respectively. If $u \in E$, then we denote by $T_B^A[u]$ the closed vector subspace of E generated by the set of distributions $\{(u_b)^a : a \in A, b \in B\}$. In the case when A coincides with $R^{\#}$ and B coincides with R^n , we drop the superscript and subscript, and write T[u] for $T_B^A[u]$.

3.1 THEOREM. Let E be a barrelled dilation space. Let F be a subspace of E of type (Γ) and let $u \in F$ be such that the following condition is satisfied.

(i) $u \in M(a_k)$ for some sequence $(a_k)_{k=1}^{\infty}$ of positive numbers such that for each integer $m \ge 0$, the sequence $(a_{m+k}^{1/k})_{k=1}^{\infty}$ is monotonic non-increasing and the series $\sum_{k=1}^{\infty} a_{m+k}^{1/k}$ diverges.

In the above circumstances, the following assertion is true: If H is a closed vector subspace of E such that

(ii) $j^{\beta}D^{\alpha}u \in H$ for each pair of multi-indices α and β such that $\beta \leq \alpha$ then $H \supset T[u]$.

PROOF. Our proof will be complete if we succeed in showing that $H \supset T[u]$ whenever H is a closed vector subspace of E which satisfies condition (ii) in the statement of Theorem 3.1; and according to the Hahn-Banach theorem, this is equivalent to showing that

(3.1)
$$\langle (u_y)^x, v \rangle = 0$$
 for all $x \in R^{\#}$ and all $y \in R^n$

whenever $v \in E'$ is such that

$$(3.2) \qquad \langle w, v \rangle = 0 \quad \text{for all} \quad w \in H.$$

Thus, suppose that H is a closed vector subspace of E which satisfies condition (ii) above; and suppose that $v \in E'$ is such that (3.2) holds. Then

$$(3.3) \qquad \langle j^{\beta}D^{\alpha}u,v\rangle = 0$$

for each pair of multi-indices α and β such that $\beta \leq \alpha$. Let γ be an arbitrary multi-index. Then from Lemma 2.5(b) it follows that

(3.4)
$$D^{\alpha}[(D^{\gamma}u) \bigtriangledown v](1) = \sum_{\beta \leq \alpha} C^{\alpha}_{\beta}(j^{\beta}D^{\gamma+\beta}u) \bigtriangledown v(1)$$
$$= \sum_{\beta \leq \alpha} C^{\alpha}_{\beta} \cdot \langle j^{\beta}D^{\gamma+\beta}u, v \rangle$$
$$= 0$$

the last equality being a consequence of relation (3.3). Next we notice that Lemma 2.7(b) ensures that if K is a compact subset of $R^{\#}$, then there exist constants m' > 0 and $\rho > 0$ (depending on K) such that

$$(3.5) |D^{\alpha}[(D^{\gamma}u) \bigtriangledown v](x)| \leq m' \cdot \rho^{|\alpha|}/a_{\gamma+\alpha} \text{ for all } x \in K$$

holds simultaneously for all multi-indices $\alpha \geq 0$. Equipped with the knowledge that (3.4) and (3.5) hold (and bearing in mind the hypotheses about the sequence $(a_k)_{k=1}^{\infty}$) we may turn to Lemma 2.8 and deduce that

(3.6)
$$(D^{\gamma}u) \bigtriangledown v(x) = 0 \text{ for all } x \in R^{\#}.$$

Relation (3.6) holds for each multi-index γ . Now consider an arbitrary, but fixed, $x \in R^{\#}$. If we refer to Lemma 2.5(a) and Theorem 2.2(b) in Harasymiv [3], we easily verify that for each multi-index γ

$$D^{\gamma}(u \circledast v^{x^{-1}})(0) = (D^{\gamma}u) \circledast v^{x^{-1}}(0)$$

$$= \langle D^{\gamma}u, v^{x^{-1}} \rangle$$

$$= |j(x)| \cdot \langle (D^{\gamma}u)^{x}, v \rangle$$

$$= |j(x)| \cdot (D^{\gamma}u) \lor v(x)$$

$$= 0$$

the last equality following immediately from (3.6). Next, we appeal to Lemma 2.7(a) to assure ourselves that if K is a compact subset of \mathbb{R}^n , then there exists a constant m > 0 (depending on K) such that

$$(3.8) |D^{\gamma}(u \circledast v^{x^{-1}})(y)| \le m/a_{\gamma} \text{ for all } y \in K$$

simultaneously for all multi-indices $\gamma \ge 0$. Relations (3.7) and (3.8) allow us to appeal to Lemma 2.8 and find that

(3.9)
$$u \circledast v^{x^{-1}}(y) = 0 \quad \text{for all} \quad y \in \mathbb{R}^n.$$

Now, the point $x \in R^{\#}$ which figures in (3.9) was arbitrarily chosen; hence relation (3.9) is easily seen to entail that for each $x \in R^{\#}$ and each $y \in R^n$

$$\langle (u_y)^x, v \rangle = |1/j(x)| \cdot \langle u_y, v^{x^{-1}} \rangle$$

= $|1/j(x)| \cdot u \circledast v^{x^{-1}}(y)$
= 0.

This establishes (3.1) and so completes the proof of the theorem.

3.2 COROLLARY. Let E be a barrelled dilation space. Suppose that $\phi \in S(\mathbb{R}^n)$ is such that the set $\{(1/\alpha!)j^{\beta}D^{\alpha}\phi: \beta \leq \alpha, |\alpha| = 1, 2, \cdots\}$ is weakly bounded in E. Then the closed vector subspace of E generated by the set of functions $\{j^{\beta}D^{\alpha}\phi: \beta \leq \alpha, |\alpha| = 1, 2, \cdots\}$ contains the whole of $T[\phi]$.

PROOF. We recall that $S(\mathbb{R}^n)$ is a subspace of E of type (Γ) ; and the boundedness of the set $\{(1/\alpha!)j^{\beta}D^{\alpha}\phi:\beta\leq\alpha, |\alpha|=1, 2, \cdots\}$ entails that $\phi\in M(1/k!)$.

3.3 THEOREM. Let E be a barrelled dilation space. Let F be a subspace of E of type (Γ) and let $u \in F$ be such that the following condition is satisfied.

 $u \in M(a_k)$ for some sequence $(a_k)_{k=1}^{\infty}$ of positive numbers such that the sequence $(a_k^{1/k})_{k=1}^{\infty}$ is monotonic non-increasing and the series $\sum_{k=1}^{\infty} a_k^{1/k}$ diverges.

In the above circumstances, the following assertion is true: If A is a non-meagre subset of $R^{\#}$ and B is a non-meagre subset of R^n , then $T_B^A[u] = T[u]$.

PROOF. It is sufficient to show that $T_B^A[u] \supset T[u]$. Thus, suppose that $v \in E'$ is such that

(3.10)
$$\langle (u_b)^a, v \rangle = 0$$
 for all $a \in A$ and all $b \in B$.

Now consider a fixed $a \in A$. In view of Theorem 2.2(b) in Harasymiv [3], relation (3.10) is easily seen to entail that $u \circledast v^{a^{-1}}(b) = 0$ for all $b \in B$. Since B is a non-meagre subset of R^n and the function $u \circledast v^{a^{-1}}$ is continuous, it follows that $u \circledast v^{a^{-1}}$ must vanish on some non-void open subset W of R^n . Hence there exists a point $y_0 \in W$ such that

$$(3.11) D^{\alpha}(u \circledast v^{a^{-1}})(y_0) = 0 ext{ for all multi-indices } \gamma \ge 0.$$

Secondly, we observe that if K is a compact subset of \mathbb{R}^n , then Lemma 2.7(a) implies the existence of a constant m > 0 (depending on K) such that

$$(3.12) |D^{\alpha}(u \circledast v^{a^{-1}})(y)| \leq m/a_{\alpha} \text{ for all } y \in K$$

simultaneously for all multi-indices $\alpha \ge 0$. In view of (3.11) and (3.12), we may apply Lemma 2.8 and deduce that

$$(3.13) (u \circledast v^{a^{-1}})(y) = 0 \quad \text{for all} \quad y \in \mathbb{R}^n.$$

Now from (3.13) and Theorem 2.4(b) in Harasymiv [3] it follows that $u^a \circledast v(y) = 0$ for all $y \in \mathbb{R}^n$; whence (since the point $a \in A$ is arbitrary) we infer that

(3.14)
$$\langle u^a, v_y \rangle = 0$$
 for all $a \in A$ and all $y \in \mathbb{R}^n$.

Choose an arbitrary, but fixed $y \in \mathbb{R}^n$. Relation (3.14) asserts that the continuous function $u \bigtriangledown v_y$ vanishes on the non-meagre subset A of $\mathbb{R}^{\#}$. If we now use reasoning similar to that which led to relation (3.11), we deduce the existence of a point $x_0 \in \mathbb{R}^{\#}$ such that

$$(3.15) D^{\alpha}(u \bigtriangledown v_{y})(x_{0}) = 0 ext{ for all multi-indices } \alpha \ge 0.$$

Moreover, Lemma 2.7(b) asserts that corresponding to each compact set $K \subset R^{\#}$, there exist constants m' > 0 and $\rho > 0$ (depending on K) such that the relations

$$(3.16) |D^{\alpha}(u \bigtriangledown v_{y})(x)| \leq m' \cdot \rho^{|\alpha|}/a_{\alpha} \text{ for all } x \in K$$

hold simultaneously for all multi-indices $\alpha \ge 0$. In view of (3.15) and (3.16), Lemma 2.8 now tells us that $u \bigtriangledown v_y(x) = 0$ for all $x \in R^{\#}$. Since $y \in R^n$ was arbitrarily chosen, it is now evident that

(3.17)
$$\langle (u_y)^x, v \rangle = 0$$
 for all $x \in \mathbb{R}^{\#}$ and all $y \in \mathbb{R}^n$.

We have therefore shown that (3.17) holds whenever $v \in E'$ satisfies (3.10). An easy application of the Hahn-Banach theorem now shows that $T_{B}^{A}[u] \supset T[u]$; hence $T_{B}^{A}[u] = T[u]$.

3.4. COROLLARY. Suppose that E is a barrelled dilation space. Let $\phi \in S(\mathbb{R}^n)$ be such that the set $\{(1/\alpha!)j^{\beta}D^{\alpha}\phi: \beta \leq \alpha, |\alpha| = 1, 2, \cdots\}$ is weakly bounded in E. Then $T_B^A[\phi] = T[\phi]$ whenever A is a non-meagre subset of $\mathbb{R}^{\#}$ and B is a non-meagre subset of \mathbb{R}^n .

REMARK. Suppose that n = 1, so that \mathbb{R}^n reduces to the real line \mathbb{R} . Let E be a barrelled dilation space of distributions on \mathbb{R} , and suppose that $u \in E$ satisfies the conditions of Theorem 3.3. Since the dual of any admissible space on \mathbb{R} contains $D(\mathbb{R})$, Lemma 2.7 and relation (2.1) (together with the hypotheses about the sequence $(a_k)_{k=1}^{\infty}$ in Theorem 3.3) entail that $u * \phi$ is a quasi-analytic function (in the sense of Mandelbrojt [6]) for each $\phi \in D(\mathbb{R})$. An argument similar to that used to prove Théorème XXIV in Chapitre VI of Schwartz [8] now shows that u itself must be a quasi-analytic function.

References

- C. Chevalley, Theory of Distributions. Lectures at Columbia University. (Columbia University Press, New York, 1950-51.)
- [2] R. E. Edwards, Functional Analysis: Theory and Applications. (Holt, Rinehart and Winston, New York, 1965).
- [3] S. R. Harasymiv, 'On approximation by dilations of distributions', *Pacific J. Math.* (to appear).
- [4] S. R. Harasymiv, 'A note on dilations in L^p, Pacific J. Math., 21 (1967), 493-501.
- [5] L. Hörmander, Linear Partial Differential Operators. (Springer-Verlag, Heidelberg, 1963).
- [6] S. Mandelbrojt, Séries de Fourier et Classes Quasi-Analitiques de Fonctions. (Gauthier-Villars, Paris, 1935).
- [7] L. Schwartz, Théorie des Distributions, Tome I. (Hermann, Paris, 1950).
- [8] L. Schwartz, Théorie des Distributions. Tome II. (Hermann, Paris, 1951).

Department of Pure Mathematics University of Sydney

[11]