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Abstract

We treat a single-server vacation queue with queue-length dependent vacation schedules.
This subsumes the single-server vacation queue with exhaustive service discipline and the
vacation queue with Bernoulli schedule as special cases. The lengths of vacation times
depend on the number of customers in the system at the beginning of a vacation. The
arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length
distribution at departure epochs. By using a semi-Markov process technique, we obtain the
Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time
point and its limiting distribution.

1. Introduction

Because of its applicability to the performance evaluation of computer, communication
and manufacturing systems, the queue with server vacations has been the subject of
extensive study over the last two decades. For detailed bibliographies on vacation
models, the reader is referred to Doshi [2] and Takagi [12]. A number of different
vacation models have been introduced. Vacation models are distinguished by their
scheduling disciplines, that is, the rules determining when a service stops and a
vacation begins. In the exhaustive service discipline, the server takes a vacation only
when there are no customers in the system. In the nonexhaustive service discipline, a
vacation may start even when customers are present in the system.

Most of the previous work on vacation queues assumes that customers arrive at the
system in accordance with a stationary Poisson process. The M/G/l vacation queue
with queue-length dependent vacation schedule and vacation times has been studied
by Harris and Marchal [3]. This model was extended to its Mx/G/l version by Shin
[11].
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Lucantoni, Meier-Hellstern and Neuts [6] studied the exhaustive vacation system
with Markovian arrival process (MAP) and provided algorithmically-tractable equa-
tions for the distributions of the waiting times at an arbitrary time and at arrival instants,
as well as the queue length at an arbitrary time, at arrival instants and at departure in-
stants. Machihara [9] considered the vacation queue with phase-type Markov renewal
arrivals, semi-Markovian service times and semi-Markovian vacation times. Takine
and Hasegawa [13] analysed the batch SPP/G/l queue with multiple vacations and
exhaustive service disciplines, using a supplementary variable technique.

In this paper, we treat a BMAP/G/l vacation queue whose vacation schedule and
the lengths of whose vacation times depend on the queue length of the system at the
beginning of a vacation. The vacation schedule considered subsumes the exhaustive
service discipline and the Bernoulli schedule. Following the general approach of
Neuts [10] we derive the queue-length distribution at departure epochs, the transient
queue-length distribution and its limiting distribution.

The paper is organized as follows. In Section 2, we set up the model and address
an underlying Markov renewal process, the transition matrix of which is spatially
inhomogeneous. This is sufficient for an analysis of the stationary queue-length
distribution at departure epochs, which is effected in Section 3. To treat the transient
queue-length distribution at an arbitrary time point, we need to first analyse the
associated first-passage problem for the renewal process introduced in Section 2.
This is done in Section 4. We then consider the queue length at an arbitrary time point
in Section 5 and the corresponding stationary distribution in Section 6.

2. The model

2.1. Arrival process Arrivals to the system are according to a BMAP with m
phases and coefficient matrices {Dk, k > 0}. For a detailed definition and examples of
BMAPs we refer the reader to Lucantoni [4]. The matrix Do has negative diagonal

elements, the matrices Dk (k > 1) are nonnegative and D = ^Z Dk is irreducible

with stationary probability vector TT. We assume that D ^ Do, which ensures that the
matrix transform [si — £>0]~' exists for all 5 with Re s > 0. The arrival rate X is given

oo

by X = Tvd, where d = Yl kDke and e is a conformable column vector with every

component unity. In the derivation of moment formulae, we assume that the matrix
oo

series £ k2Dk converges.
k=0

Let P(n,t) be the matrix whose (/, j) entry is Pjj(n, t), the conditional probability
that n arrivals occur in (0, t ] and the arrival phase is j at time t, given that the phase at

oo

time 0 is /. The matrix generating function P*(z,t) = ^2 P(n,t)zn (\z\ < 1) of the
n=0
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sequence of matrices {P(n, t)} is then given by

P*(z, t) = exp[D(z)r] for |z| < \,t > 0, (2.1)

oo

where D(z) =

2.2. Vacation schedule Let L > 0 be a specified integer. If after a service comple-
tion there are n > 0 customers in the system, then with probability vn another service
starts and with the complementary probability 1 — vn a vacation of length Vn starts.
Here v0 = 0. Further, the random variables Vn have a common distribution for n > L
and we write genetically VL+] for a random variable with this distribution. If after a
vacation-completion epoch there are n > 1 customers in the system, a service starts
immediately, while if there are no customers in the system, another vacation starts
(with length Vo). We denote by Vn(t) = P(Vn < t) the distribution function of the
random variable V B ( 0 < / i < L + l).

The vacation schedule described above subsumes the exhaustive service discipline
(v0 = 0 and vn = 1 for n > 1) and the Bernoulli schedule (v0 = 0, while vn = v and
the random variables Vn have a common distribution for n > 0).

2.3. Service times The distribution function for a service time is denoted by B{x)
and its Laplace-Stieltjes transform by B{s). We write \x for the mean service time.
Suppose that just after a service completion n > 1 customers are present. We represent
the distribution function of the time to the completion of the next service by Bn for
I < n < L and by BL+l for n > L. These "effective conditional service-time
distribution functions" are then given by

Bn{t) = vnB{t) + (1 - vn)Vn * B(t) (1 < n < L + 1),

where as usual * denotes convolution. We write fin for the mean of the distribution
given by Bn (1 < n < L + 1). We put p = A/iL+1 and throughout the paper assume
that p < 1, so that the process possesses proper stationary behaviour.

2.4. The renewal process We are now in a position to address the basic renewal
process. Let X(t) and J(t) denote respectively the number of customers in the system
and the arrival phase at time /. We denote by xn {n > 0) the instants of successive
departures from the system, with T0 = 0. By Xn and Jn we signify respectively the
number of customers in the system and the phase of the arrival process immediately
after rn. Then {Xn, /„, xn — rn_t, n > 1} is a Markov renewal sequence with transition
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probability matrix Q(x) given by

^0.3 (*)

[4]

Q(x) =

0
0

0
0
0

' AiA(x)

A2,o(x)
0

AiAx)
A2,i(x)

0
0

A]

A;

A:

i A,

1,3W

i,i(x)

...to

1,1 OO

AL+\,o(x)
0

ALA

AL+\

AL+\

<(x)

Ax)
,o(x)

: • • • : : : /

Here Ak,„ {x) is the mxm matrix whose (/, j) entry is the probability, given a departure
at time 0 which left k customers in the system and the arrival process in phase /, that
the next departure occurs no later than time x, that it leaves the arrival process in phase
j , and that during that time there are n arrivals.

The matrices Ak Ax) are given by

Ak,n{x) = I P(n,t)dBk(t)
Jo

k=0 ,-=! J0
px

x /
Jw=

(1 <k <L + l, n>0),

U

P(i, v)dV0(v)

P[n - i + l)(w)dB(w),
(2.2)

where Vr
0
(*) is the &-fold convolution of V0(t) with itself.

The joint summand and integrand on the right-hand side of (2.2) corresponds to
there being k vacations with no arrivals, the &th vacation ending at time u, the next
vacation being of length v and / customers arriving during that vacation, the first
service time of the busy period being of length w and n — i + 1 customers arriving
during that service.

We define Wn{k, x) as the mxm matrix whose (/, j) entry is the conditional
probability, given a vacation begins at time 0 with n customers in the system and the
phase of the arrival process is i, that the end of the vacation occurs no later than time
x, that it ends with the arrival process in phase j , and that during the vacation there
are k arrivals.

Let Wn(z, s) be the double transform of Wn(k, x), that is,

Wn(z,s) = e~sxdWn(k,x) for \z\ < 1, Res > 0,
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and put Wn{z) = Wn(z, 0) and Wn = Wn{\, 0). Then from the definition of P{n, t)
and (2.1), we deduce that

Wn(z, s)= f e-[s'-D™xdVn(x) = Vn(sl - D(z)) (l<n<L+\).
Jo

We shall make use of the transform matrices

AkAs) = [ e~"dAkAt),
Jo y=o

and for notational convenience set

Akn=Akn(0), Ak = Ak(l, 0), Ak(z) = Ak(z, 0).

Arguments analogous to those in Lucantoni, Meier-Hellstern and Neuts [6] lead
readily to the relations

Ak(z, s) = [vk + (1 — vk)Wk(z, s)]A(z, s) (1 < k < L + 1), (2.3)

A0(z, s) = -[I- W0(0, s)Tl[W0(z, s) - W0(0, s)]A(z, s),
z

where A(z, s) = f™exp[-(sl - D(z))x]dB(x).
In the following sections we shall make some use of mean values. Let otk denote

the row vector whose /-th entry is the mean number of arrivals during an effective
service, conditional on that service having begun with k customers present and the
arrival process in phase /. Then for 1 < k < L + 1,

ak =
dAk(z,0)

e.dz z=i

Direct calculation from (2.3) yields

ak = [vkl + (1 - vk)Wk]a + (1 - vk)W'k(l)e (1 < k < L + 1),

where

a = ke + (A - l)(en - D)~]d,

Wk\\)e = XE{yk)e + (Wk - I)(eir - D)~ld.
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3. The stationary queue length at departure epochs

The transition probability matrix with respect to departure epochs is <2(oo). We
represent the stationary probability vector p of Q(oo) in the partitioned form p =
(Po>P\> • • • ) . where each/*, is an w-vector. The eigenvalue equations for/7, can be
expanded as

i+i

/7o/4Ot, + ^ / 7 y / 4 y , _ ; + 1 , if 0 < / < L

Pi ~ { '~L Z+l

PQAOJ + / ,PjAj,i-j+i + / t PjA[_+\j_j+\, if i > L.
j=\ j=L+\

oo
If p(z) = ^PjZ1, these relations may be expressed as

/=o

p(z)[zl -AL+l(z)]=PoA0(z)(l - z ) + 2_,/»/z '[A,-(z)-i4t + ,(z)]. (3.1)
;=o

We wish to find the unknown vectorspo,P\,--- ,PL SO t n a t t n e generating function
p(z) is completely determined. This we achieve in Lemma 1 below. For A: > l,x > 1,
let G{^(k, x) be the m x m matrix the (j, j') entry of which is the probability that the
first passage from state (L + i + r, j) to state (L + i, j') (1 < j , j ' < m) occurs in
exactly k transitions and takes no more than time x, with (L + /, j') being the first
state visited in level L + i. For convenience we set G(k, x) := &l)(k, x).

By a first-passage argument (Neuts [10]), the joint transform matrix G(z,s) defined
by

OO /.o

* = i •'o
e-sxd6ll)(k,x)zk (|z| < 1, Res > 0)

satisfies the nonlinear matrix equation

*=o

oo

Further, if D(G(z, s)) = £ DkG
k(z, s), then G(z, s) also satisfies

*=o

/

oo

e-i"-DM-'»*dBL+l{x) = zBL+i(sI - D(G(z, s)))

(cf. Lucantoni and Neuts [7]).
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In the remainder of the paper G{z,s) will be used in the derivation of a number
of quantities of interest. However an inspection of final formulas relating to queue
lengths will show that these depend only on G(l, s) and G := G(l, 0). The efficient
determination of these is considered in Lucantoni, Chaudhury and Whitt [5].

It is well-known (see Neuts [10]) that the matrix G has the following probabilistic
interpretation. For v > 1 and / > 0, the (j, k) entry of Gv is the probability that the
Markov chain {(Xn, Jn),n > 0} with transition probability matrix <2(oo) eventually
visits level L + i by entering the specific state (L + i, k), given that it starts in the
state (L + i + v, j). We note also that since p < 1, the matrix G is stochastic and its
invariant vector g satisfies gG = g and ge = 1. This leads to the following result.

LEMMA 1. Let (X*,J*) = {(X*, J*),n > 0} denote the censored Markov chain ob-
tained by embedding {(Xn, Jn),n > 0} at the epochs when it visits the set of states
{(i,j) : 0 < / < L, 1 < j < m}. Then the transition probability matrix Q* of
(X*,f) is given by

Q* =
0
0

^0,2

A2.i

^3,0

0 0 0

AO.L-1 Ao,L
 N

A\,L-\ _A\,L

A2,L-2 A2,L-l

^3,L-3 ^3,L-2

AL,o ALA )

Ifthe invariant probability vector ofQ* is, in partitioned form, x = [JC0, *i, • • • , xL],
where x, is an m-vector, then the vectors p, take the form

Pi = ex, (0 < i < L), (3.2)

- A
L+i

• xoe + 2^Xj(ai - aL+i) J (3.3)
i=0 I

i=0

PROOF. That the transition probability matrix of {X*, J*) is given by Q* follows from
the probabilistic interpretation of G. Relation (3.2) ensues from the fact that the vector
(Po' Pi< " ' PL) IS a n eigenvector of Q* corresponding to eigenvalue unity.

Define

i=0
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On setting z = 1 in (3.1) and adding p(l)eir = TT to both sides, we have since
/ — AL+] + en is nonsingular that

= (n+ U(l))[I - AL+l(l) + en]~l. (3.4)

From (3.1) and (3.2), we derive

p(z)[zl - AL+i(z)]e f ^ ,L4,(z)-AL + 1(z)]el
—— = c \xoe + ^Xiz — .

L «=o J
Letting z -> 1 gives

f _£-, "1
(3.5)- aL+i) =c\xoe + ^ ( Q , - - aL+l) .

L <=o J
Relation (3.3) follows from (3.4), (3.5) and the fact that naL+] = 1 — p, and we are
done.

Now we derive the mean queue size at departure epochs. Define

U(z)=po(z-
;=o

Differentiation of (3.1) yields

p'(z)(zl - A(z)) +p(z)V - A'L+X{z)) = U\z). (3.6)

Setting z = 1 and addingpr(l)eir to both sides give

p'(Y) = p'(l)eTr + [U'(l) — p(l)(I — /4'i+1(l))](7 — AL+i + en)~l. (3.7)

Differentiation of (3.6) at z = 1 and postmultiplication by e provide

p'(l)aL+1 = p'(l)e — -[p(l) A"L+X{\) + U"(l)]e.

On postmultiplying (3.7) by ctL+i, we derive that the stationary mean queue length is

\p{\)A"A\)e + U"{\)e
2(1 — p) L
+ 2[U' -
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4. Hitting times

In this section we consider first-passage times from level / to level i — 1, those
from level / — 1 to level i and the recurrence times for level i. These will be employed
in Section 5.

4.1. First-passage times from level i to level i — 1 For / > /' > 0, k > 1, x > 0,
let G[ll](k, x) be them x /n matrix whose (j, / ) entry is the probability that the first
passage from state (/, j) to state (/', j') (1 < j , j ' < m) occurs in exactly k transitions
and takes time no more than x and that (/', / ) is the first state visited in level i'. For
notational simplicity we write Gli](k, x) for Gli+1J\k, x). Of course G[i](k, x) has for
each i > L the common value G(k, x) introduced in the previous section. We define
the transform matrix Gl'i](z, s) of Gl'n(k, x) by

OO /»OO

Glu\z, s)=) e'sxdG{k, x)zk, for \z\ < 1, Res > 0

and let G1'1'1 = G [ ' n ( l , 0).
By conditioning on the time and destination of the first transition, we derive from

the law of total probability the recursive formula

J 2 " - k ] ( z , s ) forO<k<L, (4.1)
n = l

where

G[k+n-k](z, s) = Glk+"-l](z, s)Glk+r-2](z, s) • • • Gm(z, s)

[G{i,s)]k+"-L n I G[i](z,s) if k + n > L
i=k

f\ I G[i](z,s) if k + n < L.

i=k

j

Here and subsequently [~] 4, Ck denotes the matrix product CjCj-\ • • • Ck. Likewise
i=k

j
we shall write \\ | Ck for the product CkCk+i • • • Cj.

i=k

The solution of (4.1) may be effected as follows. First we extend the definition of
/4,,z._,+1 to

z,s) (1 < i < L).
k=0
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In terms of this, (4.1) can be expressed as

L-k-\ k+n-1 L-\

Gm(z, s) = z Y, Ak+i.«W f [ I G W(Z ' s) + z^+i.L-t(z, s)Y\i Glr](z, s)
«=0 r=k r=k (42)

for 1 < k < L, where as subsequently we interpret the empty product as being an
identity matrix.

The matrix Q* is irreducible and hence ^ *̂.< + ^*,t-/t+i ' s strictly substochastic
/=i

for 1 < k < L. Thus, as each GM(0) is stochastic, we must have that
L-k-\ k+n-\ L~\

n = \ r=k+l r=k+l

is strictly substochastic and so has spectral radius less than unity. Accordingly, for
\z\ < l,

L-k-l k+n-\ L-\

z J2 Ak+Un(s) f 7 ;Gw(z,*) + zA*+u._t(z,s) f t
n=\ r=k+\ r=k+l

has spectral radius less than unity and

L-k-t k+n-i L-\

lG[r](z,s)-zAk+UL_k(z,s) f ] | G M ( Z , J )
«=1 r=k+l r=k+\

is invertible for 0 < k < L.
Hence (4.2) may be solved explicitly by a downwards recursion via

G[L~u(z, s) = zAL,0(s) [I - zALA(z, s)]'1 (|z| < 1, Res > 0),

Gw(z, 5) = Z/4t+i0(5) / — z Y^ /4,t+i,n(5) [ I \G^{z,s)
n=l r=t+l

— z^t+i,L-/t(z-^) | 7 4-GIrI(z,5) f o r O < £ < L — 1.
r=k+\

4.2. First-passage times from level / — 1 to level 1 We denote by H[n](k, x) the
m x m matrix whose (j, j') entry is the conditional probability that the Markov renewal
process, starting in state (« — 1, j) (1 < j < m), reaches state («, j') (1 < j ' < m)
after exactly k > 1 transitions, talcing no more than time x > 0. We define the joint
transform matrix

H[n](z,s) := Y V / e-sxdHM(k,x) for \z\ < I, Res > 1.
rrf Jo
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By an application of the law of total probability conditioning on the first transition
of the Markov renewal process, we have the formulae

i4I-_,,y(j)GI/+y'-2-'1(z, s) for i > 1.

4.3. Recurrence times for level i Next we consider the return-time distribution of
level i. For / > 0, k > 1 and x > 0, define Kin(k,x) to be the m x m matrix
whose (j, / ) entry (1 < j , j ' < m) is the conditional probability that the Markov
renewal process, starting in state (/, j), returns to level / for the first time in exactly
k transitions, taking time no more than time x, by hitting the state (/, / ) . The joint
transform matrix of matrix Kl'](k,x) is defined by

Kli(,)
li](z,s) = J V f e-sxdK[i\k,x) for |z| < l.Res > 1.

A first-passage argument shows that the transforms K[l](z, s) are given by

Kl0](z, s) = zA0,0(s) + z J2 A0,j(s)Gli-0](z, s),

CX)

Kli](z, s) = zAiiO(s)Hli](z, s) + z J2 AiJ(s)Gu+J-iii(z, s) (i > 1).

5. The queue length at an arbitrary time

In this section we derive the transient queue-length distribution at time t and its
limiting distribution. This is accomplished by a classical argument based on Markov
renewal processes. Consider the continuous-parameter process [(X(t), J(t)), t > 0}
and fix the initial state X(0) = /0, /(0) = j 0 .

Let M(t) be the matrix renewal function whose generic component M(,-0iA),(,-t;)(0
denotes the conditional expected number of visits to the state (/, j) (i > 0, 1 <
j < m) in the interval [0, t], given that X(0) = /0, /(0) = j0. We use Mk(t) to
denote the kth row vector ^Miio,M,(k.\)(t), MUoJoUk,2)(t), • • • , W(<o,jo).(*.m)(O) of M(/)
and introduce the transforms

r°° °°
Mk(s)= e-s'dMk(t), y^
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for Res > Oand \z\ < 1.
Now we determine M(z, s) and Mk(s) (0 < k < L). From the classical theory of

Markov renewal process (see, for example, £inlar [1, Chapt. 10]) we know that

A/,(0 =

8hiiejo A(t) + Mo * A0J AkJ+x_k{t) for 0 < / < L -
k=\

L
8ioJehA(t) + MQ* AQAO + £ Mk *

k=l

k=L+l

(5.1)
for? > L.

Here <$,,, is, as usual, the Kronecker delta, ejo (1 < j0 < AW) is the m-vector whose
jo component is unity and whose other components are all zero, and A is the unit
step function, taking values unity for nonnegative arguments and zero for negative
arguments.

On taking Laplace transforms in (5.1) and forming generating functions, we derive

M(z, s) = \zio+lejo - (1 - z)M0(s)A0(z, s) + J2zjMj(s)(Aj(z, s) - AL+l(z, s))]
j=0

By the theory of delayed renewal processes, we readily evaluate each Mk(s), in
terms of quantities determined in the previous section, as

Mk(s) =

ekG
Ua-k\\,

eh[l-

if/0 >

ifio =

The transient joint distribution of the queue length and the arrival phase is given by
the conditional probabilities

q(k, j ; t) := P(X(t) = k, J(t) = j\X(0) = /„, ^(0) = yo)

(k > 0, 1 < j <m,t > 0).

Let qk{t) be them -vector with components <7(&, j ; t) (1 < j < m). By conditioning
on the state of the Markov renewal process at the epoch of the last departure before
time t, we find from the law of total probability that

= / dMo{u)eDo{'-"\
Jo

(5.3a)
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oo /.; pl-u

« ; ( ' ) = Y, / rf^o(«) / dv£\v)e°°vP{j, t - u - w)(l - V0(t -u-v))
n=0 JO Jo

OO pt pt—U

+ Y\ \ dM0(u) / dV<"\v)e°<>v

n=o Jo Jo
j pi-u—v

x V / d V 0 ( z ) P ( k , z ) P ( j - k , t - u - v - T ) ( 1 - B(t - u - v - r ) )
t=i •'o

dMt(u)P<J-k,t-u){l-Bt(t-u)), j>l. (5.3b)

The first, second and third terms in (5.3b) correspond respectively to the cases where
/ falls during a vacation after the system becomes empty, during the first service of the
first busy period after the system becomes empty, and during the second or later service
time (including vacation time, if any) of a busy period. Taking Laplace transforms in
(5.3), we have

= M0(s)[I - W0(0, 5)]"' I e-s'P(j, 0(1 - V0(t))dt
Jo

+ M0(s)[I - W0{0, s)Tl V f e~s'P(k, t)dV0(t)
*=i Jo

poo

/ e-"P(j-k,
Jo

/-OO

/ e~"PU - k, Od - Bk{t))dt (j > 1).
Jo

x / e-"P(j-k,t)(l - B(t))dt
Jo

j

*=1

After some routine calculation, we have from (5.2) that

j=o

= [Af (z, s)(l - AL+i(z, 5)) + M0(5)(l - z)A0(z, 5)

k=0

l(z, s) - Ak(z, s))zk\sl -

= [z'^ejeV - AL+i(z, s)) - (1 - z)2M0(s)A0(z, s)

+ (1 - z) J^ Mk(s){At(z, 5) - AL+l(z, s))zk]
k=0 J
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6. The stationary distribution qj = lim^oo qj(t)

We have from Markov renewal theory that

\imsMk(s) = pt/E,

where

8AL+l(l,s)^ f 8A,(l,s) ] _ , _ { „ , v - I f
i=o L 9* *=°J | £o J L

Thus we have from (5.2) and (3.1) that

limsM(z, s){zl - AL+l(z, s)) = -p(z)[zl - AL+l(z)] (6.1)
*0 t

and from (5.4) and (6.1) that

On differentiating, setting z = 1 and postmultiplying by e, we have from the
relations #(1) = n, 7rD'(l)e = k andp(l)e = 1 that E = \/k. Thus q(z) and p(z)
are connected via

q(z)D(z) = kp(z)(z - 1).

Comparing the coefficients of z' shows that the vectors qt and /?, are related by

9i = flijDi-j ~ UPi-t ~Pt) (-Doy
l for/ > 1.

From (5.4) the moments of the queue length distribution at arbitrary time can be
expressed in terms of the moments of p(z). Following a procedure of Lucantoni [4],
the first moment of q(z) is given by

q\\) = q'Weir + [kp(l) - 7rD'(l)](«r + D)~\

where

q'{\)e = p\\)e - - U
Ik
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