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Lithium ion batteries (LIBs) have been predominantly used in the consumer electronics and other power 

devices. The drive to use LIBs in the large-scale applications such as electric vehicles (EVs) and smart 

grids has spurred significant research activity, particularly concerning the cathode electrodes. The 

current cathode materials, LiCoO2 (~140 mAh/g) or LiFePO4 (~160 mAh/g), have relatively low energy 

densities, and can hardly match with the capacities of the next generation of anode materials (e.g. Si, 

~4200 mAh/g). To improve upon this limitation, layered materials such as LiNi0.8Co0.15Al0.05O2 (NCA) 

& LiNixMn1-x-yCoyO2 (NCM) – which have discharge capacity ~200 mAh/g – have been actively pursed 

as potential replacements.  However, these cathode materials suffer from rapid capacity fade and poor 

thermal instability, thus raising serious safety concerns. For example, these materials in a highly 

delithiated state (overcharged) can readily release oxygen at high temperature, and lead to complex 

phase transitions: layered (R-3m)  disordered spinel (Fd-3m)  rock-salt (Fm-3m). The released O2 

can react with the flammable electrolyte, leading to thermal-runaway and catastrophic battery failure. 

Therefore, it is critical to understand the role that the oxygen release plays in the migration of transition 

metal (TM) cations (Ni, Co, & Mn) during the various phase transition processes. Environmental 

transmission electron microscopy (ETEM) provides a unique platform where individual nanoparticles 

can be investigated for any morphological, structural or chemical changes, under external stimuli, in 

real-time. Furthermore, the aberration-corrected ETEM with a differential pumping apparatus allows 

high spatial resolution of < 0.1 nm even in a high-pressure gas environment (e.g., O2, H2) in the system. 

Here, we use in-situ ETEM to understand the role that oxygen plays in the rearrangement of the TM ions 

both at the surface & in the bulk of the NCA materials at elevated temperatures. 

Previous in-situ TEM studies performed by Wu et al [1] demonstrated that both NCA and NCM exhibit 

a highly complex structure with a rhombohedral core, a spinel shell at the sub-surface region, and the 

rock-salt structure at the surface of the particles at elevated temperatures. Further heating of the particles 

inside the TEM showed the propagation of spinel and rock-salt phases, ultimately leading to the 

transformation of most particles into the rock-salt phase at 400 °C. Interestingly, upon charging (lithium 

extraction) of the overcharged particles, there was loss of oxygen at the surface of the particles [1-3]. 

The evolution of gases, such as O2 and CO2 has been attributed to the phase transitions that occur during 

thermal decomposition [3].  

Here, we find that upon heating individual half-charged (50 % of lithium extracted electrochemically) 

NCA particles under low oxygen partial pressure (PO2 ) ~ 7.5 mTorr, the pre-edge of the O-K edge 

EELS spectra shifts to a higher energy loss at 250 °C (Figure 1a). The pre-edge (~ 528-530 eV) depicts 

the transition of electrons from O 1s state to unoccupied O 2p states which hybridizes with the 3d state 

of TM (primarily Ni), while the main edge refers to the transition of electrons from the 1s state to 

hybridized O 2p and TM 4sp states. The fading and shifting of pre-edge towards higher energy loss 

occurs from the reduction of TM ions and creation of oxygen vacancies. In a vacuum environment, the 
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loss of the pre-edge has been reported to occur at temperature as low as 300 °C [2], which is roughly 

equivalent to our study at low PO2.  Upon heating the sample at a higher PO2 of ~ 400 mTorr, the onset 

temperature for the release of lattice oxygen dramatically increases (~ 400 °C) (Figure 1b). The high 

resolution TEM (HRTEM) images and corresponding FFT patterns (Figure 1c) of the particle at PO2 ~ 

400 mTorr show that most of the surface and near-surface regions have transformed to the spinel phase 

(FFTs 1 & 2) even at room temperature (RT). At 250 °C, the temperature at which the O-K pre-edge 

starts to fade, the surface of the particle appears roughened. The FFT patterns (3 & 4) suggest that 

surface and near-surface areas still remain as the spinel phase. However, at 400 °C, the O-K pre-edge 

shifts and becomes the shoulder of the main edge. The FFT (5) shows that the particle has transformed 

to the rock-salt phase. Thus, we find that the oxygen gas enrichment significantly delays the loss of 

lattice oxygen in the NCA particles & helps preserve the integrity of the NCA particles at higher 

temperatures. The fundamental understanding of the oxygen activity of NCA at various states of charge 

could facilitate the design & synthesis of better oxide electrodes for battery applications [4].   
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Figure 1. Oxygen evolution & structural phase transition of half-charged (x = 0.5) NCA particles upon 

heating in the ETEM at different PO2. (a) O-K EELS intensity profile at PO2 ~ 7.5 mTorr. (b) O-K 

EELS intensity profile at PO2 ~ 400 mTorr. All spectra in (a) and (b) are normalized to the intensity of 

main edge. (c) HRTEM images obtained during PO2 ~ 7.5 mTorr at three different temperatures: RT, 

250 °C and 400 °C. The numbered boxes in the images represent the areas from which the FFT patterns 

are extracted.  
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