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Abstract

We study the convolution of compound negative binomial distributions with arbitrary
parameters. The exact expression and also a random parameter representation are
obtained. These results generalize some recent results in the literature. An application
of these results to insurance mathematics is discussed. The sums of certain dependent
compound Poisson variables are also studied. Using the connection between negative
binomial and gamma distributions, we obtain a simple random parameter representation
for the convolution of independent and weighted gamma variables with arbitrary
parameters. Applications to the reliability of m-out-of-n:G systems and to the shortest
path problem in graph theory are also discussed.
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1. Introduction

The compound negative binomial (CNB) model arises naturally in several fields, such as
insurance mathematics and actuarial sciences, and has been studied by several authors. For a
recent reference, see Drekic and Willmot (2005) and the references therein. It also arises in
nonactuarial applications (see Johnson et al. (2005, pp. 232–250) and Vellaisamy and Upadhye
(2007)). Recently, Furman (2007) studied the sums of independent negative binomial random
variables and obtained an interesting recurrence relation for computing its probability mass
function (PMF). He also showed that the convolution of a negative binomial distribution with
arbitrary parameters is a negative binomial distribution, but with a random parameter.

In Section 2 we first derive an exact expression for the distribution of sums of CNB
random variables. For the negative binomial (NB) case, this expression reduces to a finite-sum
expression which is numerically compared with the series expression of Furman (2007). We
also obtain a simple random parameter representation for the convolution of CNB distributions,
where the compounding distributions Qj = Q. Theorems 2.1 and 2.2 of Furman (2007) follow
as special cases. Our approach is essentially that of Furman (2007), except that we use the
distribution itself rather than using its moment generating function (MGF).

If the Qj s are different then the convolution of CNB distributions is neither a CNB nor a
mixture of CNBs. In such cases, a compound Poisson (CP) representation is presented. It is
also shown that a sum of certain dependent CP variables is again a CP variable. It is well known
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Sums of compound negative binomial and gamma random variables 273

that the weighted sums of independent gamma variables arise in several contexts in probability
and statistics. The reader may refer to Diaconis and Perlman (1990) for several examples and
applications. They mentioned that the distribution of such a sum is not expressible in a closed
form and so discussed approximations and studied tail probabilities. Using the connection
between the NB and gamma distributions (see Engel and Zijlstra (1980) or Vellaisamy and
Sreehari (2008)), we obtain, in Section 3, the exact distribution of weighted sums of independent
gamma random variables with arbitrary parameters.

In Section 4 we discuss several interesting examples and applications of the results obtained
in Sections 2 and 3. The problems of total claim amount and the distribution of combined
portfolios, which arise in insurance mathematics, are discussed as applications of convolutions
of CNB variables and certain dependent CP variables, respectively. Furthermore, two important
applications of gamma convolutions, namely, the reliability of m-out-of-n:G systems with
dynamic failure rates and the shortest path problem in graph theory, are analyzed in detail. At
the end, the main contributions of the paper are briefly outlined.

2. Convolution of CNB variables

Let Z+ = {0, 1, . . .} be the set of nonnegative integers, let 0 < p < 1, and let q = (1 − p).
Let N ∼ NB(α, p), the NB distribution with

P(N = m) =
(

α + m − 1

m

)
pαqm, m ∈ Z+, α > 0, 0 < p < 1. (2.1)

Then, a real-valued random variable Y is said to follow a CNB distribution with parameters α,
p, and Q, denoted by CNB(α, p, Q), if it admits the random sum representation Y = ∑N

i=1 Wi,

where N ∼ NB(α, p) and {Wi} is a sequence of independent and identically distributed (i.i.d.)
random variables with distribution Q that is independent of N .

Let m ∈ Z+, let δm be the Dirac measure concentrated at m, and let Qm denote the m-fold
convolution of Q. Then, the distribution L(Y ) of Y is given by

L(Y )(A) =
∞∑

m=0

(
α + m − 1

m

)
pα(qQ)m(A) (2.2)

= pα
∞∑

m=0

(−1)m
(−α

m

)
(qQ)m(A)

= pα(δ0 − qQ)−α(A)

=
(

δ0 − q

p
(Q − δ0)

)−α

(A), (2.3)

where A is any Borel-measurable set. Indeed, (2.3) is a formal representation for (2.2) in the
sense that, when (2.3) is expanded as a power series, the powers of Q represent its convolutions.

When Q = δ1, Qm = δm
1 = δm and, hence, from (2.2), CNB(α, p, δ1) = NB(α, p). Also,

when α = 1, CNB(1, p, Q) := CG(p, Q) denotes the compound geometric distribution with
parameters p and Q.

First we obtain an exact representation for the convolution of CNB distributions with
Qj = Q.
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Theorem 2.1. Let Yj ∼ CNB(αj , pj , Q) for 1 ≤ j ≤ n, and let Sn = ∑n
j=1 Yj . Then

P(Sn ≤ x) =
∞∑
l=0

( ∑
m1+···+mn=l

n∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)
Ql((−∞, x]), (2.4)

where the inside sum is over nonnegative integers mj such that m1 + m2 + · · · + mn = l.

Proof. The proof is by induction. Note that, for n = 1, (2.4) reduces to the distribution
function of Y1. Assume that (2.4) is true for n = k − 1. Then

P(Sk ≤ x) =
∫

R

P(Sk−1 ≤ x − y) dFYk
(y)

=
∫

R

∞∑
l=0

( ∑
m1+···+mk−1=l

k−1∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)
Ql((−∞, x − y])

×
∞∑

mk=0

(
αk + mk − 1

mk

)
p

αk

k q
mk

k dQmk(y)

=
∞∑
l=0

∞∑
mk=0

( ∑
m1+···+mk−1=l

k−1∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)(
αk + mk − 1

mk

)

× p
αk

k q
mk

k

∫
R

Ql((−∞, x − y]) dQmk(y)

=
∞∑
l=0

∞∑
mk=0

( ∑
m1+···+mk−1=l

k−1∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)(
αk + mk − 1

mk

)

× p
αk

k q
mk

k Ql+mk ((−∞, x])

=
∞∑

r=0

( ∑
m1+···+mk=r

k∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)
Qr((−∞, x]),

where the last equality follows by substituting l + mk = r and then interchanging the order of
summation of mk and r . Thus, (2.4) is satisfied for n = k, which completes the proof.

Remark 2.1. When Q = δ1, (2.4) reduces to

P(Sn ≤ x) =
�x�∑
l=0

( ∑
m1+···+mn=l

n∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j

)
,

where �x� denotes the integral part of x.
Also, the PMF of Sn is

P(Sn = x) =
∑

m1+···+mn=x

n∏
j=1

(
αj + mj − 1

mj

)
p

αj

j q
mj

j for x ∈ Z+. (2.5)

An alternative form for P(Sn = x) is given in Furman (2007, Equation (11)), which is a series
whose coefficients are recursively defined. In contrast, our expression (2.5) is compact and the
exact value can be easily computed.
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Table 1: The computation of pVU = P(Sn = x) using (2.5).

x = 3 x = 5 x = 8 x = 10 x = 15
n

pVU Time pVU Time pVU Time pVU Time pVU Time

2 0.023 20 0.0 0.034 03 0.000 0.042 83 0.000 0.044 25 0.000 0.038 56 0.000
3 0.002 73 0.0 0.007 30 0.015 0.017 24 0.000 0.024 21 0.000 0.036 07 0.000
4 0.000 20 0.0 0.000 94 0.015 0.004 08 0.000 0.007 85 0.016 0.020 99 0.015
5 0.000 01 0.0 0.000 10 0.016 0.000 76 0.000 0.001 96 0.015 0.009 20 0.063
6 0.000 00 0.0 0.000 01 0.016 0.000 14 0.031 0.000 47 0.047 0.003 65 0.234
7 0.000 00 0.0 0.000 00 0.016 0.000 03 0.063 0.000 13 0.140 0.001 54 0.844

Table 2: The computation of pF = P(Sn = x) using Furman’s formula (11).

x = 3 x = 5 x = 8 x = 10 x = 15
n

pF Time pF Time pF Time pF Time pF Time

2 0.0232 0.000 0.0340 0.000 0.0428 0.000 0.0442 0.015 0.0385 0.015
3 0.0027 0.000 0.0073 0.063 0.0172 0.063 0.0242 0.266 0.0360 0.250
4 0.0002 0.078 0.0009 0.078 0.0040 0.328 0.0078 1.312 0.0209 10.532
5 0.0000 1.484 0.0001 11.953 0.0007 11.953 0.0019 12.156 0.0090 339.860
6 0.0000 1.844 0.0000 14.985 0.0001 14.844 0.0004 480.359 0.0034 61 324.600
7 0.0000 17.437 0.0000 557.141 0.0000 555.422 0.0000 555.921 0.0004 71 302.900

As suggested by the referee, we next compare (2.5) with Equation (11) of Furman (2007)
by numerically calculating the computational time (in seconds) and P(Sn = x). The values of
P(Sn = x) are calculated, using MATHEMATICA� 5.1, for some selected values of αj = j ,
pj = j/10, x = 3, 5, 8, 10, 15, and n = 2, . . . , 7, and are given in Tables 1 and 2. Since
Furman’s formula (11) involves recurrence relations, the order of accuracy of the values in
Table 2 is restricted to 10−3 to bring down the computational time. A comparison of the values
in Tables 1 and 2 shows that the computation of probability values using (2.5) requires much
less time than that of Furman’s formula (11).

2.1. Random parameter representation

In this subsection we obtain a random parameter representation for the convolution of
independent CNB variables and also of certain dependent CP variables.

Let Y1, Y2, . . . , Yn be independent variables, where Yj ∼ CNB(αj , pj , Q) for 1 ≤ j ≤ n.

We now introduce the following notation. Let

pm = max
1≤j≤n

pj , qm = 1 − pm, sj = qj

pj

, sl = min
1≤j≤n

sj = qm

pm

;

α =
n∑

j=1

αj , cn =
n∏

j=1

(
sl

sj

)αj

, and ai = 1

i

n∑
j=1

αj

(
1 − sl

sj

)i

for i ∈ Z+ \ {0}.

Define Kn to be a Z+-valued random variable with probability distribution

P(Kn = k) = cnbk for k ∈ Z+, (2.6)

where b0 = 1 and bk = (1/k)
∑k

i=1 iaibk−i for k ≥ 1 (see Remark 2.2, below).
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We are now ready to prove the main result of this subsection. Note that our approach is
essentially that of Furman (2007), except that he used the MGF, while we use the distribution
itself.

Theorem 2.2. Let Yj ∼ CNB(αj , pj , Q) for 1 ≤ j ≤ n, and let Sn = ∑n
j=1 Yj . Then

Sn ∼ CNB(Kn + α, pm, Q), where the distribution of Kn is defined in (2.6).

Proof. Using (2.3),

L(Yj ) = (δ0 − sj (Q − δ0))
−αj

=
(

(δ0 − sl(Q − δ0))
sj

sl

(
δ0 −

(
1 − sl

sj

)
(δ0 − sl(Q − δ0))

−1
))−αj

. (2.7)

Observe that δ0 − sl(Q − δ0) is a finite signed measure and that (δ0 − sl(Q − δ0))
−1 =

CG(pm, Q) := G(say). Therefore, from (2.7) we have

L(Sn) =
n∏

j=1

L(Yj )

= (δ0 − sl(Q − δ0))
−αcn

n∏
j=1

(
δ0 − 1 − sl/sj

δ0 − sl(Q − δ0)

)−αj

= Gαcn exp

( ∞∑
k=1

1

k

n∑
j=1

αj

(
1 − sl

sj

)k

Gk

)

= Gαcn exp

( ∞∑
k=1

akG
k

)
(say). (2.8)

If we write f (z) = exp(
∑∞

k=1 akz
k) = ∑∞

k=0 bkz
k then bk = f (k)(0)/k! for k ∈ Z+, where

f (k) denotes the kth derivative of f . Therefore, it can be seen that b0 = 1, b1 = a1, and
b2 = a2

1/2 + a2, and, in general, we obtain bk = (1/k)
∑k

i=1 iaibk−i for k ≥ 1. Using these
facts, we obtain, from (2.8),

L(Sn) = Gα
∞∑

k=0

cnbkG
k

= Gα
∞∑

k=0

P(Kn = k)Gk

= CNB(α, pm, Q)CNB(Kn, pm, Q)

= CNB(Kn + α, pm, Q),

since Gα = CNB(α, pm, Q). This proves the result.

Remark 2.2. Note that, from the proof of Theorem 2.2,

f (z) = exp

( ∞∑
k=1

akz
k

)
=

∞∑
k=0

bkz
k.
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Setting z = 1 in the above equation, we obtain

∞∑
k=0

bk = exp

( ∞∑
k=1

ak

)

= exp

( ∞∑
k=1

1

k

n∑
j=1

αj

(
1 − sl

sj

)k)
(see (2.8))

= exp

(
−

n∑
j=1

αj ln

(
sl

sj

))

=
n∏

j=1

(
sl

sj

)−αj

= c−1
n .

Hence, P(Kn = k) = cnbk, k ∈ Z+, is a valid probability distribution.

Corollary 2.1. (Furman (2007, Theorem 2).) Let Yj ∼ NB(αj , pj ) for 1 ≤ j ≤ n, and let
Sn = ∑n

j=1 Yj . Then Sn ∼ NB(Kn + α, pm).

Corollary 2.2. (Furman (2007, Theorem 1).) Let Yj ∼ NB(αj , pj ) for 1 ≤ j ≤ n, and let
Sn = ∑n

j=1 Yj . Then

P(Sn = x) =
∞∑

k=0

cnbk

(
α + k + x − 1

x

)
pα+k

m qx
m, x ∈ Z+. (2.9)

Proof. The proof easily follows from Corollary 2.1 and the fact that

P(Sn = x) =
∞∑

k=0

P(Sn = x | Kn = k) P(Kn = k).

Next we look at the case of different Qj s. In this case, a CP representation is useful.

Theorem 2.3. Let W1, W2, . . . , Wn be independent CNB(αj , pj , Qj ) random variables, and
let Tn = ∑n

j=1 Wj . Also, let λj = −αj ln pj , qj = (1 − pj ), and Gj = ln(δ0 − qjQj )/ln pj .
Then Tn ∼ CP(λ, G), where λ = ∑n

j=1 λj and G = (1/λ)
∑n

j=1 λjGj .

Proof. Note that

L(Wj ) =
(

δ0 − qj

pj

(Qj − δ0)

)−αj

=
(

pj

δ0 − qjQj

)αj

= exp(αj (ln(1 − qj ) − ln(δ0 − qjQj )))

= exp

(
−αj ln(1 − qj )

(
ln(δ0 − qjQj )

ln(1 − qj )
− δ0

))

= CP(λj , Gj ), (2.10)
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where λj = −αj ln pj and Gj = ln(δ0 − qjQj )/ln pj . Note that if Wj ∼ CP(λj , Gj )

then, by the additivity property, Tn = ∑n
j=1 Wj ∼ CP(λ, G), where λ = ∑n

j=1 λj and
G = (1/λ)

∑n
j=1λjGj . The result now follows.

Remarks 2.3. Here we discuss the connections between CP and CNB distributions.

(i) Suppose that Y ∼ CP(λ, F ) so that L(Y ) = exp(λ(F − δ0)). Equating this distribution
to a CNB(α, p, Q) distribution and then solving for p and Q, using (2.10), we obtain

p = e−λ/α and Q = δ0 − exp(−(λ/α)F )

1 − e−λ/α
,

where α > 0 is arbitrary and Q is in general a finite signed measure.

(ii) Applying Theorem 2.3 and then using part (i), we obtain L(Tn) = CNB(α, p, Q), where

p =
n∏

j=1

p
αj /α

j , Q = δ0 − ∏n
j=1(δ0 − qjQj )

−αj /α

1 − ∏n
j=1 p

αj /α

j

,

and α > 0 is arbitrary. Since Q is in general a finite signed measure, a CP representation
given in Theorem 2.3 may be useful for applications.

(iii) Let N follow a logarithmic series distribution with parameter 0 < q < 1 so that

P(N = k) = qk

kh(q)
, k = 1, 2, . . . ,

where h(q) = −ln(1 − q). Also, let the Xi be i.i.d. with distribution Q. Then
the distribution of

∑N
i=1 Xi is a compound logarithmic series distribution, denoted by

CL(q, Q). That is,

CL(q, Q) = ln(δ0 − qQ)

ln(1 − q)
.

When F = CL(q, Q), we have CP(λ, F ) = CNB(−λ/ln(1 − q), 1 − q, Q) and Q is
now a probability measure.

2.2. Sums of dependent CP variables

We consider here the sums of certain dependent CP distributions, where the dependence
is caused by a common mixing random variable W . Such a case arises in the distribution of
combined portfolios. For example, Dhaene et al. (2003) considered the case of W being a
gamma variable.

In the sequel, X
L= Y means that the distributions of X and Y are the same.

Theorem 2.4. Let W > 0 be a continuous random variable, let {Ni(t)}, 1 ≤ i ≤ n, be
independent Poisson processes with rate λi , and let Vi := Ni(W), 1 ≤ i ≤ n. Define

SVi
:= ∑Vi

j=1 Xi,j , where Xi,j ∼ Qi . Then Un = ∑n
i=1 SVi

L= ∑N(W)
i=1 Xj ∼ CP(λW, Q),

where {N(t)} is a Poisson process with parameter λ=∑n
i=1λi and Xj ∼Q = (1/λ)

∑n
i=1λiQi .

Proof. Observe that, for any given W > 0, SVi
∼ CP(λiW, Qi) for 1 ≤ i ≤ n. By

the additivity property of CP distributions, we obtain (Un | W) ∼ CP(λW, Q), and, hence,
(unconditionally also) Un ∼ CP(λW, Q), where λ = ∑n

i=1 λi and Q = (1/λ)
∑n

i=1 λiQi .
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3. Convolution of weighted gamma random variables

The distribution of the sum of weighted gamma random variables arises in many situations,
and does not admit a closed form (see Diaconis and Perlman (1990)). As an application
of Theorem 2.2, here we obtain the random parameter representation for such sums. This
representation is compact and may be helpful for analytical purposes.

Theorem 3.1. Let Z1, Z2, . . . , Zn be independent random variables, where Zj ∼ G(βj , tj ),
the gamma distribution with scale parameter β−1

j and shape parameter tj > 0. For cj > 0
and i ∈ Z+ \ {0}, let Tn = ∑n

j=1 cjZj , β = max1≤j≤n βj /(cj + βj ), dn = ∏n
j=1((1 −

β)βj/(cjβ))tj , and ai = (1/i)
∑n

j=1 tj (1 − (1 − β)βj/(cjβ))i . Then Tn ∼ G(β/(1 − β),

Ln + t), where Ln is a random variable with P(Ln = k) = dnbk, k ∈ Z+, and t = ∑n
j=1 tj .

Here, b0 = 1 and bk = (1/k)
∑k

i=1 iaibk−i for k ∈ Z+ \ {0}.
Proof. Note that

Zj ∼ G(βj , tj ) ⇐⇒ cjZj ∼ G

(
βj

cj , tj

)
⇐⇒ N(cjZj ) ∼ NB

(
tj ,

βj

cj + βj

)

(see Proposition 2 of Engel and Zijlstra (1980)), where {N(t)} is a standard (parameter unity)
Poisson process. Also, there exist (see Vellaisamy and Sreehari (2008)) independent standard
Poisson processes {Nj(t)}1≤j≤n and {N(t)} such that

N1(c1Z1) + N2(c2Z2) + · · · + Nn(cnZn)
L= N(c1Z1 + c2Z2 + · · · + cnZn).

By Corollary 2.1 we have N(c1Z1+c2Z2+· · ·+cnZn) = N(Tn) ∼ NB(Ln+t, β), where t and
β are as defined in the theorem and Ln is the discrete random variable with P(Ln = k) = dnbk

for k ∈ Z+. Hence, Tn ∼ G(β/(1 − β), Ln + t), which proves the result.

Remark 3.1. When c1 = c2 = · · · = cn = 1, Theorem 3.1 yields the convolution of n

independent gamma variables with arbitrary parameters. It is known in the literature (see, for
example, Sim (1992, p. 140)) that the density of Tn is complicated. Our Theorem 3.1 gives a
simple random parameter representation for the distribution of Tn, which may be helpful for
analytical or inferential purposes.

4. Examples and applications

In this section we discuss some examples and applications of the results derived in Sections 2
and 3. We start with an application of Theorem 2.2 to risk theory. The finite sums of CNB
random variables naturally occur in credit risk modeling and have been studied by many authors
(see, for example, Gundlach and Lehrbass (2004, pp. 32–40) and Dhaene et al. (2003)).

Example 4.1. (Total claim amount.) Let the claim sizes Xi ∼ E(β) = Q, the exponential
distribution with parameter β. Suppose that a company has a portfolio of n policies, and assume
that the number Ni of claims of the ith policy follows NB(αi, pi), which is a reasonable model,
especially when var(Ni) > E(Ni). Our interest is in the distribution of the total claim amount
defined by

Sn =
n∑

i=1

Ni∑
j=1

Xj .
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An application of Theorem 2.2 shows that

L(Sn) = CNB(Kn + α, pm, Q)

=
∞∑

k=0

CNB(k + α, pm, Q) P(Kn = k).

Also, the density of Sn is

fSn(x) =
∞∑

k=0

cnbk

∞∑
l=0

(
α + k + l − 1

l

)
pα+k

m ql
mfTl

(x), (4.1)

where

fTl
(x) = βl

�(l)
e−βxxl−1 for x > 0

is the density of the gamma G(β, l) variable, since Ql = G(β, l).
Panjer and Wilmot (1981) considered the case in which n = 1 and suggested an

approximation procedure employing the methods of numerical analysis to evaluate the error in
approximating S1 to a compound binomial distribution. Our expression (4.1) gives the exact
density of Sn.

The following two examples correspond to Theorem 2.4.

Example 4.2. Let W ∼ G(β, s) in Theorem 2.4 so that Vi = Ni(W) ∼ NB(s, β/(β+λi)) and
SVi

∼ CNB(s, β/(β + λi), Qi). Then, by Theorem 2.4, Un = ∑n
i=1 SVi

∼ CNB(s, β/(β +
λ), Q), where Q and λ are as defined in Theorem 2.4. This result is due to Dhaene et al. (2003).

Example 4.3. Let W ∼ L(α), the Lindley distribution with parameter α (see Johnson et al.
(2005)), with density

fW(x) = α2

α + 1
(1 + x) e−αx, x > 0, α > 0.

It is well known that Ni(W) ∼ PL(α, λi), the Poisson–Lindley distribution with parameters α

and λi having distribution

P(Ni(W) = k) = α2

α + 1

λk
i (α + λi + k + 1)

(α + λi)k+2 , k ∈ Z+.

Let Un, λ, and Q be defined as in Theorem 2.4. Then Un follows compound PL(α, λ, Q).

Finally, we discuss two important applications of Theorem 3.1.

4.1. Reliability of the m-out-of-n:G system with different failure rates

Consider an m-out-of-n:G system with n i.i.d. components having exponential E(λ) life-
times. Initially, each component has failure rate λ0. As the first component fails, there is an
increase in the stress on the remaining (n − 1) components, which increases the failure rate
of the components to λ1. Generally, the failure of the ith component raises the stress on the
remaining (n − i) components, which increases the failure rate to λi . Our interest is to find the
distribution of the system time to failure.
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Let Ti denote the time to failure of the ith component, and let Xi = Ti − Ti−1. Then,
the time to system failure T = Tn−m+1 = ∑n−m+1

i=1 Xi . Observe that Xi ∼ E(αi), where
αi = (n− i +1)λi−1, and the reliability of the system is R(t) = P(T > t). Using Theorem 3.1,
T ∼ G(γ, Ln−m+1 + (n − m + 1)), where γ = maxi (n − i + 1)λi−1.

Let Zj ∼ G(βj , tj ). Indeed, Scheuer (1988) derived the distribution of Tn = ∑n
i=1 Zj as

fTn(x) = B

n∑
k=1

tk∑
m=1

�km(−βj )

(tk − m)! (m − 1)!x
tk−1 exp(−βjx), (4.2)

where B = ∏n
j=1 β

tj
j and

�km(x) = dm−1

dxm−1

n∏
j=1
j �=k

(βj + x)−tj . (4.3)

Using Theorem 3.1, we see that Tn ∼ G(γ, Ln + t) with

fTn(x) =
∞∑

k=0

P(Ln = k)
γ t+k

�(t + k)
e−γ xxt+k−1

=
∞∑

k=0

dnbk

γ t+k

�(t + k)
e−γ xxt+k−1, (4.4)

where γ = β/(1 − β), β = max1≤j≤n βj /(1 + βj ), and dn and the bks are defined in
Theorem 3.1. Note that (4.3) involves derivatives of the mth order and, hence, (4.2) and
(4.3) are difficult to compute. Equation (4.4) is much simpler and can be easily evaluated.

4.2. The shortest path problem in graph theory

The shortest path from a source node to a destination node is a path which minimizes the sum
of the positive weights of its constituent links. The related shortest path tree (SPT) is the union
of the shortest paths from the source node to a set of m other nodes in the graph of r nodes. If
m = r − 1, the SPT connects all nodes and is called a spanning tree. The uniform recursive
tree (URT) of size r is a random tree rooted at node A and, at each stage, a new node is attached
uniformly to the existing node until all the nodes are discovered. We analyze the influence of
the link weight structure on the SPT. Such problems arise in communication networks (see, for
example, Mieghem (2006, pp. 347–384)).

The problem of finding the shortest path between two nodes A and B in a complete graph Kr ,
with link weights as E(1) (exponentially distributed with mean 1) variables, can be modeled in
the form of a Markov discovery process {X(t)} with state space S = {1, 2, . . . , r}, where X(t)

denotes the number of nodes discovered up to time t . Note that X(t0) = A, X(T ) = B, where
t0 is the starting time and T denotes the random time to reach B, and that the transmission
rates are λj = j (r − j), j ∈ S. This is because, from the first node A, r − 1 new nodes can
be reached, each with E(1) link weights, and so the shortest path Z1 ∼ E(r − 1). Similarly,
from the first two nodes, the remaining r − 2 nodes can be reached with the shortest path
Z2 ∼ E(2(r − 2)). In general, from the (j − 1)th node to the j th node, the shortest path
Zj ∼ E(λj ) with λj = j (r − j).

Observe that the time to reach the kth node from the source node A or the discovery time
of the kth node is given by Mk = ∑k

j=1 Zj . Using the MGF of Mk , the mean E(Mk) and the
variance var(Mk) are computed (see Mieghem (2006, p. 359)), but they are rather complicated.
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An application of Theorem 3.1 yields Mk ∼ G(β/(1 − β), Lk + k), where

β = max
1≤j≤n

j (r − j)

1 + j (r + j)
.

Note that β/(1 − β) = k(r − k) if k ≤ r/2. When k ≥ r/2, we have β/(1 − β) = r2/4 if r is
even and β/(1 − β) = (r − 1)2/4 if r is odd. Therefore, the density of Mk is

fMk
(x) =

∞∑
m=0

dkbm

γ k+m

�(k + m)
e−γ xxk+m−1, (4.5)

where γ = β/(1 − β), as described above.
It is well known (see Mieghem (2006, p. 359)) that the shortest path in a complete graph

with exponential E(1) link weights is a URT. Now, let Wr denote the length of the shortest
path in Kr , and let N denote the number of nodes, excluding the source node, discovered by
the URT to reach the destination node. Then

Wr =
N∑

j=1

Zj , (4.6)

where N follows a discrete uniform distribution over {1, 2, . . . , r − 1} and is independent of
the Zj . Also, the density of Wr is given by

fWr (x) =
r−1∑
k=1

P(N = k)fMk
(x) = 1

r − 1

r−1∑
k=1

fMk
(x), (4.7)

where fMk
(x) is defined in (4.5). It is mentioned in Mieghem (2006, p. 360) that the density of

Wr can be obtained by using the inverse Laplace transform of the MGF of Wr . Equation (4.7)
gives the exact density of Wr. Note that the moments and other characteristics of Wr can easily
be computed using (4.6) or (4.7).

5. Concluding remarks

The main contributions of this paper are the derivation of an exact expression and the random
parameter representation for the convolution of compound negative binomial variables. In the
case of negative binomial distributions, it is numerically verified that the exact expression is
computationally more efficient than the random parametric form. Some applications to insur-
ance mathematics are also discussed. The distribution of a sum of certain dependent compound
Poisson variables is obtained, which generalizes some existing results. The conditions under
which a compound Poisson distribution is also a compound negative binomial distribution
are analyzed. Using the connection between negative binomial and gamma distributions, the
convolution of arbitrary gamma variables is derived, which is also a useful result. This result
is then applied to two important practical problems which arise in reliability theory and graph
theory.
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