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FUNCTIONALS ON REAL C(S) 

NICHOLAS FARNUM AND ROBERT WHITLEY 

The maximal ideals in a commutative Banach algebra with identity have 
been elegantly characterized [5; 6] as those subspaces of codimension one 
which do not contain invertible elements. Also, see [1]. For a function algebra 
A, a closed separating subalgebra with constants of the algebra of complex-
valued continuous functions on the spectrum of A, a compact Hausdorff space, 
this characterization can be restated: Let F be a linear functional on A with 
the property: 

^ For each / in A there is a point s, which may depend on f, for which 
( } F(f) = f(s). 

Then there is a fixed point s0 with F(f) = f(s0) for a l l / in A. 
For the space of real-valued continuous functions on a compact Hausdorff 

space S, property (*) does not generally characterize the multiplicative linear 
functionals. For example, the functional 

Hf) = jf(x)dx, S = [0, 1], 
*> 0 

has property (*) [6]. We are thereby led to characterize exactly those linear 
functionals which satisfy (*) on the space of real-valued continuous functions 
on S. We additionally consider a condition which is suggested by (*) in which 
the value F(f) of the functional is related to the values of/ at two points. 

In what follows S will be a compact Flausdorff space and C(S) the supremum 
norm Banach space of real-valued continuous functions on S. For a continuous 
linear functional F on C(S) there is a unique associated Borel measure /x, 
with variation norm |/x| = | |F | | , F(f) = ffdp, and with support O-(JU) [3]. 

THEOREM 1. Let F be a linear functional on the real Banach space C(S). 
Fhen F satisfies (*) if and only if F is a positive linear functional of norm one 
with the support of the associated measure contained in a connected set. 

Proof. If a(n) is contained in a connected set C, then 

inf {/(s) : s in C\ ^ I fd\x g sup [fis) : s in C}. 

Since/(C) is connected, there is a point s in C with 

f(s) = ffd»= F(f). 
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Conversely suppose tha t F has property (*). I t is clear tha t F is a positive 
linear functional with | | F | | = F (I) = 1. Assume tha t o-(/x), for the associated 
positive measure /x, is not contained in a connected set. Then there are points x 
and y in a(n) with disjoint connected components Cx and Cv. Recall the fact, 
which will frequently be useful, tha t a component in a compact space is the 
intersection of all closed and open, i.e. clopen, sets which contain it [4, p. 240; 
2, p . 251]. Since Cx and Cv are compact, there is a clopen set U containing Cx 

with the complement Uc containing Cy. The argument used to see this is a 
version of the s tandard proof of the normality of a compact Hausdorff space 
in which clopen sets are used to separate points in Cx and Cy. Since F satisfies 
(*), the values of F on the characteristic functions of the sets U and IIe, 
F(xu) and F(xuc) must be either zero or one, and as 1 = F(xu) + F(xv) 
one of the values must be zero. Then either /x(£7) = 0 or IJL(UC) — 0, which 
contradicts both x and y belonging to the support of /x. 

Thinking about property (*) suggests tha t we consider functionals F for 
which F(f) = af(s) + bf(t). I t is too strong to let all of a, b} s, and / vary 
with j ; for if F is any continuous linear functional, \\F\\ ^ 1, then, as 

f(s0) = inf {/CO : 5 in S} g F(f) g sup \f(s) : 5 in S} = / ( / 0 ) , 

F(f) is some convex combination oî f(s0) a n d / ( / 0 ) . I t is too easy to lix s = s{) 

and / = /o and let a and b va ry ; for then, as whenever f(sQ) = /(/») = 0, 
F(f) = 0, we must have F a linear combination of the evaluations a t s() and 
a t to [3, p. 421]. The interesting problem involves those linear functionals F 
satisfying: 

/**\ Let a and /; be fixed. For each / there are points s and /, which may 
( ) depend o n / , with 5 ^ / and F(f) = af(s) + / ;/(/). 

The condition s ^ / keeps (*) and (**) distinct. 
T h e characterization of functionals satisfying (**) will depend on relations 

between a and /;. The following division is necessary. 

( + ) / / ( / ) = af(s) + bf(t), with a ^ b > 0 and a + b = 1, 

( - ) F(f) = af(s) + /;/(/), with a > 0, b < C, a + b > 0, and a - b = 1, 

(0) F(f) =J(s) - / ( / ) . 

Any other values for a and /; can be reduced to one of these three cases by 
dividing F by a suitable scalar. 

LEMMA 1. If { f/i, U2, U?,\ is a partition of S into three el open sets and F, with 
associated measure //, satisfies .(**), then |/z| ( Ut) = 0 for at least one of i = 1 , 2 , o,. 

Proof. Let xr/, be the characterist ic function of Uh and let au a2, a3 be in R. 
Then (p(au a2, a3) = F(Y,j u.iXu,) = Z. / «./M./» where /x7- = n(U7), and so ^ is 
a continuous function of («i, «2, «3). Now for a fixed (af, a2 ' , a.-/) and 
renumbering the £/'s, if necessary, <p(ai, a2'', 0:3') = ^(2Z,/ «./xc/j(^)) + 
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K E . / OL/XUJO)) = (lai + ba« or (a + b)aj. T h u s « / M I + a?2'/X2 + «3V3 = 
a / a + a/l^ or (// + &)a/ and by cont inui ty of the left hand side of this equa
tion, either xxi = d> M2 = b, M3 = 0 or xxx = a + ft, 1x2 = Ms = 0. Suppose 
| /x | (f t ) ^ 0. Choose /* Ç C(S) with support in ft such tha t F(h) 7^ 0 and 
||/z|| g 1. Consider g = kXu, + h where k is in R, k > 2(\a\ + |/;|)|a + b\-]. 
Then for 5, /, sf, t' G 5, ah (s) + bh(t) = /<(/*) = K g ) = *(</ + b) + ah(sf) 
+ bh(t').Yromk\a + b\ = \a(h(s) - his')) + b(h(t) - h(t'))\ g 2( | a | + | / ; | ) , 
we obtain a contradiction. 

LEMMA 2. Let F be a linear junctional, on the real Banach space C(S), that is 

given by a point mass at x. 

1. If conditio}! ( + ) holds, then F satisfies (**) if and only if x is not a 6Y 
2. If condition (0) feo/ds, //zew F cannot satisfy (**). 

3. If condition ( — ) /w/ds, /feen /^ satisfies (**) if and only if one of the following 

hold: 

i) 77z<? £oiw/ x fv ^0/ <7 GÔ. 
ii) The point x 9^ ft, the component of x. 

Proof. Suppose condition ( + ) holds. If x is not a G5, then for a n y / there is 
a point t j*. x w i t h / ( / ) - f(x); thus F(f) = af(x) + bf(t) with t ^ x\ Con
versely, if x is a Gs, there is a c o n t i n u o u s / , 0 ^ / ^ 1, with / - 1 ( 0 ) = i^i 
[2, p. 248]; then F(f) = f(x) = 0 ^ <//(.v) + /;/(/) for any two points 5 and /. 

Suppose condition (0) holds. F cannot satisfy (**), for F(l) ^ 0. 
Suppose condition ( —) holds. If x is not a G$, then (**) follows as above. 

If {x\ 9^ Cr, then for ft/) = 0, the only difficulty occurs when j (y) 7^ 0 for 
y 9^ x. In this ease/(C. r) is a nondegenerate interval containing zero. For any 
non-zero f(y) i n / ( f t ) * ( — b/a)f{y) also belongs t o / ( f t ) , i.e., af(y) + bf(t) = 
0 = ft/) for some / 9^ y. Conversely suppose t ha t neither i) nor ii) hold; F is 
a point mass a t x, x is a G5, and {x\ = C.r. Because Cx is the intersection of all 
the clopen sets which contain x and because x is a G5, there is a countable nested 
collection lj\ 2 ft 2 f/3 2 . . . of clopen sets with p | ft = {#}• If — b/a is 
rat ional, c o n s i d e r / = ]T ( l / n 2 ) x f t — 7r2/G. For t h i s / , ft/) = f(x) = 0 and 
f(y) 9^ 0 for v ^ x. For any v F^ X, ;y does not belong to ft for large n and so 
/Ov) = y — ?r2/G, r a rational number . T h u s we cannot have af(y) + bf(z) = 0 
else 7T2 would be rational. In the event tha t —a/b is irrational the function 
£ (l/2n)xun — 1 shows similarly t ha t (**) cannot hold. 

T H E O R E M 2. Let F be a linear functional, with associated measure /x, on the 
real Banach space C(S), and suppose that F is not a point mass. If F satisfies (**), 
then when condition ( + ) holds F must be a positive linear functional of norm 1 ; 
and when condition ( — ) holds F must be a continuous linear functional with 
\\F\\ ^ 1 and F(l) = a + b. In either case, F will satisfy (**) if and only if, 
in addition, one of the following holds: 

1. The support of /x is contained in a connected set, 
2. The support o-(ix) Ç C\ ^J C2, the union of two disjoint connected sets, with 

M ( f t ) = a and /x(C2) = b. 
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Proof. First suppose tha t condition ( + ) holds. If F satisfies (**) with a and 

ft positive and a + b = 1 then F is a positive linear functional with | | F | | = 

F(D = i. 
Suppose tha t the measure JU associated with F has support a(n) contained 

in a connected set C. Because F is not a point mass, for x in a there is an open 
neighborhood Uof x with 0 < n(U) < 1. We have, by Theorem 1, 

/ /rf/x = f(ci)n(U)} C\ in C, and 

I fdn=f(c2)n(Uc), 6-2 in C. 
•̂  t/c n c 

T h u s /^(/) = ix{U)f{c\) + (1 — n(U))f(c2) is a point on the line joining 
f(ci) to f(c2). A s / ( C ) is an interval, if f(c\) 9e f(c2) there are points s and / 
'in C with F(f) = ,//(*) + / > / ( 0 - If / ( c i ) = / ( c 2 ) , then we have /<(/) = 
(l/li(U))jufdn. If this fails to hold for any neighborhood of x of measure less 
than one, then we can write F in the desired form. On the other hand, if this 
holds for every such neighborhood of x then, by the regularity of /x, F(f) = 
f(x). A similar argument applied to a point y ^ x in cr(/x) shows tha t we are 
done unless we also have F(f) = f(y). But in this final case, F(f) = f(x) = 
f(y) = ,tj(x) + bf(y). 

If the condition of 2 holds, then (**) follows directly from Theorem 1. 
Suppose tha t F satisfies (**) and tha t a(n) is not contained in a connected 

set. Assume tha t there are three points x, y, and z in a with disjoint components 
C\r, C,j and Cz. As in Theorem 1, there is a clopen part i t ion of S, UX1 Uy, Uz, 
with C,r Ç UX} C„ ÇI U„ and Cz C £/z. By Lemma 1, the measure of one of 
Ux, U,n U z must be zero, which contradicts the corresponding point being in 
the support of pi. So, say a Ç t\, VJ C„. From (**), the only possible values for 
F(xu.r) and F(xu!t) are 0, </, ft, and 1. Since F(l) = F(xr,) + / ' X x r J , 2 follows. 

Second, suppose tha t condition ( —) holds. (In this case the measure /x is 
not necessarily a positive measure. This creates technical problems not present 
under condition ( + ).) 

If F satisfies (**), then F is bounded with \\F\\ ^ a - b = 1 and F(i) = 
a + b. 

I t suffices to show tha t (**) holds for g in the null manifold of F, since for 
a n y / , o = f - ( i / ( a + b))F(f) is in the null manifold, and if F(») = 0 = 
"SCO + ^ ' ( 0 , s * /, then /<(/) = af(s) + /;/(/). 

Suppose tha t a(^) is contained in a connected set C. L e t / be given with 
F(f) = 0 and define « on C X C by #(*, /) = af(s) + ft/(0- Set m = inf 
{/(5) : .v in C} and M — sup {/(s): s hi C). Let M = Mi — M2 be the I lahn 
decomposition of /x into the difference of two positive measures with |MI| + 
|M2| = |M| - \\F\\ g a - ft = 1, and note tha t |Ml | - |M2| = F(l) = a + ft, 
and so | >uc a | ^ a and |JU2| ^ —ft. For 5 and t in C, «m + ft M ^ g (s, t) S a M + 
bm. Also am + bM ^ am + ft M + (m - M)(|/xi| - a) = W|MI| - il̂ T|/x2| ^ 
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J / d / i i - f fdn2 è M\m\ - m\n2\ = a M + bm + (M - w)(|/x2 | + b) ^ 
a-M + bm. 

Cont inui ty of g on the connected set C X C yields „v and / in C with 0 = 
f(f) = f fdm - f fdn2 = g(s, t) = af(s) + bf(t). If the points s and / are 
distinct, F{f) satisfies (**). If the points s and t are not distinct, t h e n / ( s ) = 0. 
If there is a point u ^ s w i t h / ( / 0 = 0, then F{f) = af(s) + bf(u)\ if there is 
no such it then / ( C ) is a nondegenerate interval which contains zero and an 
argument as in the first pa r t of this proof establishes (**) . 

If condition 2 holds, then a - b ^ |M| = I M K Q + M(C 2 ) ^ | M ( C I ) | + 

| M ( C 2 ) | = a — b, from which it follows tha t /x is a positive measure on C\ and 
a negative measure on C2. T h a t is to say tha t \x\ is the restriction of /x to 6\ and 
M2 is the restriction of — \x to C2. From Theorem 1 (**) follows. 

I t remains to show tha t if F satisfies (**) and /* does not have suppor t con
tained in a connected set, then condition 2 holds. 

Suppose tha t F satisfies (**) and the measure n does not have suppor t con
tained in a connected set. Assume tha t x, y, and z are three points in the 
support of \x which belong to disjoint components C.r, C,n and Cz. As above there 
is a clopen part i t ion Ux, Uy, and c72 of 5 with Ux 2 C.r, U}l 2 Cv, and Uz 2 C2. 
For any clopen set U, F(xu) must be one of the numbers 0, a, b, or a + /; by 
(**). By Lemma 1 one of sets Ux, Uin and Uz mus t have var ia t ion zero, con
t rary to the assumption tha t all of the points belonged to the suppor t of \x. 
So it must be tha t , say <r(n) Q C, U Cy\ with n(Ux) j* 0 j* n(Uy). As a + b = 
/x([/.r) + id(Uy), the restrictions on the values for the measures of the clopen 
sets show that , say n(Ux) = a and ix(Uy) = b. As above, since |/x| ^ a — /;, 
wre can conclude tha t u is positive on Ux and negative on Uy; so n(Cx) = a 
and /x(Cy) = ^. 

The last case, case (0), is quite distinctive as it has a different character on 
and off the real line. 

T H E O R E M 3. Let F be a linear junctional on the real Banach space C(S). Then 
F satisfies (**) in the case a = 1 and b = — 1 , i.e. for each f in C(S) there are 
two distinct points s and t, which may depend on f, with F(f) = f(s) — / ( / ) , 
if and only if F is a bounded linear functional with \\F\\ ^ 2 and F (I) = 0 and: 

I. When S is not homeomorphic to a subset of the real line R, then the additional 
conditions on the measure n associated with F are either 

1. The support o-(/x) ÇI Cx ^J Cy, the union of two disjoint components with 
ju(Cr) = I and jx(Cy) = — 1, or 

2. The [x-measure of each component is zero. 
II. In the alternate situation where S is homeomorphic to a subset of R, the 

additional conditions on JJL are either 
1. The same as 1.1 above, or 
2. Here the support o-(/x) C C, C a component. The condition on \x may be 

phrasedby identifying C with the unit interval [0,1], to which it is homeomorphic. 
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Then /x corresponds to a normalized function a of bounded variation on [0, 1] 

with F(f) = Jfd\x = jlfda. Such afunctional F (with \\F\\ ^ 2 and F(l) 

— 0) has the desired form if and only if either a(x) ^ Ofor all x in [0, 1] or 

a(x) !g Ofor all x in [0, 1]. 

Proof. From F if) = fis) -fit) we see tha t \\F\\ g 2 and F(l) = 0. 
Suppose tha t \x(C) ^ 0 for some component C. By the regularity of /x there 

is a neighborhood U of C with n(W - C) ^ /x(C)/2 for C C FT C r . By the 
usual separation argument , using the compactness of C and Ve and the fact 
tha t C is a component, there is a clopen set U between C and I \ and so \x ( £/) 5̂  
0. The only possible values for F(xu) are 0, + 1 , and — 1 , so n(U) — 1 or 
n(U) = - 1 . Because 7^(1) = 0, M ( t / ) = ~v(Uc). Suppose then tha t n(U) = 
1 and ix(Uc) = — 1. The norm of M is bounded by two, so /x is positive on U 
and negative on Uc. Since /x of a clopen subset of U (or Uc) must be zero or 
one (zero or minus one), it follows tha t aifx) O U Q Cx and C(JU) Pi ^ c ^ 
C?y for two disjoint components C r and Cln i.e. O-(JU) Ç C r U Cv with M (C.0 = 
1 and ji(Cy) = — 1. Conversely, if F has this form, then F(f) = J C.r/d/x + 
J Cyfdn = f(s) — fit), with 5 in C r and £ in C//? by Theorem 1. 

I t remains to consider n with the property tha t the measure of each com
ponent is zero. For the collection {C$\ of disjoint components of S, ||/x|| ^ 
SI^KC/g), so there are only countably many components £\, C2, . . . with 
| M | ( C , ) ^ 0; and ||M|| = L |/x|(C,). For / in C(S), l ï / x c - converges to / 
M — a.e. Thus , g i v e n / and e > 0, there is an N with 

I l J Ci I 

Using the Halm decomposition /x = /xi — /X2 for JU, 0 = M (CO = Mi (CO ~ 

/x2(C0> so/*i(CO = M2(C0 = ( M ( ( C 0 / 2 . Using Theorem 1, 

/ yaM = I /rfMl - J / ^ 2 = MI(C0/CO - M2(co/(/), 

with 5 and / in Ct. Then 

f / ^ = ( |M | (Q /2 ) ( / (S ) - / ( / ) ) = (IMKCO/2)^,-); 

£t belonging to the interval It = [mt — M u Mt — w j , where m - = inf 
{/(s) : .v in Cj} and J17* = sup {fis) : s in C?J. Let j be chosen so tha t 7, 3 11 

for 1 ^ t S N. Noting tha t 0 belongs to /,-, X/ V (M ( C 0 / 2 ) (SO is a convex 
combination of points from 7, as L i | M | ( C 0 / 2 g ||/x||/2 = P U / 2 g 1. T h u s 
the sum Xa (£0IM| (CO/2 belongs to 77 and so by Theorem 2 can be wri t ten in 
the form fis) —fit) for s and / in the connected set C ;. Finally for e = l/n, 
there are points {sn\ and {/„} with \Fif) — if(sN) — f(tn))\ ^ l/n. If s0 is a 
cluster point of {sn} and /0 a cluster point of {/„}, then F(f) = f(s{)) — f(to). 
If F if) 7^ 0, then the 5 and / so obtained are distinct. In general they may not 
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be distinct if F(f) = 0. If C(S) contains no one-to-one functions, then for any 

/ , in part icular for / with F(f) = 0, there are distinct points s and / with 

f(s) — fit) = 0 = F(f). Under these circumstances, if the measure of every 

component is zero, then F satisfies (**). 

The case which remains is tha t in which C(S) contains a one-to-one function, 

i.e., as 5 is compact , where 5 is homeomorphic to a compact subset of K. And 

the only measures /x of interest are those which take every component to zero. 

One distinguishing feature of the real line s i tuat ion is t ha t if F satisfies (**), 

there cannot be more than one component C with n(C) — 0 and \\x\ (C) ^ 0. 

T o see this we will first show tha t if U is clopen and n(U) = 0, then either 

|ju|(c7) = 0 or | M | ( ^ C ) = 0. Suppose not. Then , for 5 Ç [cu c2], consider 

F((x — CiYxu)- If this were always zero, then F{P(x)xu) would be zero for 

each polynomial P and, consequently, | M | ( ^ ) = 0. So for some n, 

F((x — CiYxu) J* 0, t ha t is to say there is a one-to-one function hi with 

F(h\Xu) ^ 0. By symmet ry there is a one-to-one function h2 with F(h2xw) ^ 
0. Let 

g = (cti + lhhi)xu + {(i 2 + b2h2)xur, 

where ai, (i2, lh, and b2 will be chosen shortly. By hypothesis , F(xu) = 0 = 
F(xu<), thus F(o) = biFihxu) + b2F(h2Xu*)- Since neither F(hlXu) nor 
F(h2Xuc) are zero, there are non-zero scalars b\ and b2 for which F(g) — 0; 
let bi and b2 be so chosen. Choosing cii large and positive and a2 large and nega
tive makes g one-to-one. We then have F(g) = 0 bu t cannot have g(s) — 
g(t) = 0 for .v T£ /, contradict ing proper ty (**) for F. Suppose tha t x and y 
belong to different components and to the suppor t of /x. Then we can find clopen 
disjoint neighborhoods Ux and Uy. The measure of the clopen set Ux mus t be 0, 

1, or — 1 . I t cannot be zero, for then, by what we have jus t shown, either 
\/JL\(UX) = 0, and x is not in the support of /x, or \IJ.\(U},) = 0 and y is not in 

the suppor t of jti. Thus , say, n(Ux) = 1 and JU(£/?/) = — 1. This leads to pt(C,) = 
1 and /x(C?/) = — 1 , as in the first par t of this proof; a case which we have 
already handled and therefore have excluded, being now interested only in 
those measures which are zero on each component . So we see t h a t such a mea
sure must have suppor t in a single component C which, by identification via 
homeomorphism we may take to be the closed interval [0, 1]. 

In the final case remaining we then have a linear functional F on the real 
valued continuous functions on [0, 1] and we want to know under what condi
tions F can, for e a c h / , be wri t ten in the form 7^(/) = f(s) — / ( / ) for dist inct .v 
and /. Of course, as before, we have \\F\\ S 2 and 7^(1) = 0. Given F there is 
a normalized function a of bounded variat ion on [0, 1] with 7 /( /) = jo1]da [7]. 
In a previous par t of the proof we have seen tha t if F(f) 9^ 0, then F(f) = 

f(s) — J(t) for some s and /, which are necessarily distinct. T h u s F has the 
proper ty (**) if and only if its null manifold N(F) contains no one-to-one 
function. We will show tha t this holds if and only if either a is non-posit ive on 
[0, 1] or non-negative on [0, 1]. 
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Suppose tha t a(x) ^ 0 for x in [0, 1]. A one-to-one f u n c t i o n / on [0, 1] is 
either increasing or decreasing; by cons ider ing / or —/ we may suppose tha t 
it is increasing. Let a(x) = oti(x) — a2(x), the difference of two normalized 
monotone functions. The left-continuity of a guarantees tha t there is an inter
val (c, d] on which a is strictly positive, and so ai(x) > a2(x) there. Then 

F(f) = I fdcLi - I fda2 = I adf ~ l aidf, 
J o Jo Jo Jo 

after an integration by par ts , using the information that , by the normalization, 

a (0) - a i (0) = <*2(0) = 0, and F(1) = a(l) = <*i(l) - a 2 ( l ) = 0. Then 

Hi) I a2df - I aidf g I (a2 - ai)df < 0. 
J o J 0 J c. 

Hence N(F) contains no one-to-one function. And similarly if a(x) ^ 0 for 
s i n [ 0 , 11. 

T o complete the proof suppose tha t F has property (**) on C[0, 1]. Let h 
be strictly positive and continuous and set fix) = Jo h(t)dt. Integrat ing by 
par ts , 

/''(/) = )fda= - )cdj=- fa 
J o J o J n 

(t)h(t)dt. 

T h e functional value / y ï / ) cannot be zero a s / is one-to-one. More is true. We 
cannot have F(fi) < 0 and F(f2) > 0 for two such functions fi and / 2 ; else 
F(cfi + (1 — c)f2) = 0 for some 0 < c < 1 and a one-to-one function c/i + 
(1 — c)f2. So, say, F(f) S 0 for a l l / ' s so given by strictly positive h's. Then the 
m a p G ( g ) = J o a(t)g(t)dt is a positive linear functional on C[0, 1]. Consequently 
the measure a{t)dt is a positive measure and a(t) ^ 0 for all t except perhaps 
those in a set of Lebesgue measure zero. Because a is continuous from the left, 
a{t) ^ 0 for all / in [0, 1]. If F(f) ^ 0 for all / of the type described, then 
a(t) è 0 for all tin [0, 1]. 

There are many variations and generalizations of our considerations which 
lead to interesting problems in analysis. We mention characterizing those F 
on real C(S) which satisfy, for fixed au . . . , ain F(f) = J^ (hf(si) for distinct 
points si, . . . , sn which may vary w i t h / , and characterizing those F satisfying 
(**) on complex C(S) or on a given function algebra. 
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