FUNCTIONALS ON REAL C(S)

NICHOLAS FARNUM AND ROBERT WHITLEY

The maximal ideals in a commutative Banach algebra with identity have been elegantly characterized [5; 6] as those subspaces of codimension one which do not contain invertible elements. Also, see [1]. For a function algebra A, a closed separating subalgebra with constants of the algebra of complexvalued continuous functions on the spectrum of A, a compact Hausdorff space, this characterization can be restated: Let F be a linear functional on A with the property:

(*) For each f in A there is a point s, which may depend on f, for which F(f) = f(s).

Then there is a fixed point s_0 with $F(f) = f(s_0)$ for all f in A.

For the space of real-valued continuous functions on a compact Hausdorff space S, property (*) does not generally characterize the multiplicative linear functionals. For example, the functional

$$F(f) = \int_0^1 f(x) dx, \quad S = [0, 1],$$

has property (*) [6]. We are thereby led to characterize exactly those linear functionals which satisfy (*) on the space of real-valued continuous functions on S. We additionally consider a condition which is suggested by (*) in which the value F(f) of the functional is related to the values of f at two points.

In what follows *S* will be a compact Hausdorff space and *C*(*S*) the supremum norm Banach space of real-valued continuous functions on *S*. For a continuous linear functional *F* on *C*(*S*) there is a unique associated Borel measure μ , with variation norm $|\mu| = ||F||$, $F(f) = \int f d\mu$, and with support $\sigma(\mu)$ [3].

THEOREM 1. Let F be a linear functional on the real Banach space C(S). Then F satisfies (*) if and only if F is a positive linear functional of norm one with the support of the associated measure contained in a connected set.

Proof. If $\sigma(\mu)$ is contained in a connected set C, then

$$\inf \{f(s) : s \text{ in } C\} \leq \int f d\mu \leq \sup \{f(s) : s \text{ in } C\}.$$

Since f(C) is connected, there is a point *s* in *C* with

$$f(s) = \int f d\mu = F(f).$$

Received January 11, 1977 and in revised form, October 28, 1977.

490

Conversely suppose that F has property (*). It is clear that F is a positive linear functional with ||F|| = F(1) = 1. Assume that $\sigma(\mu)$, for the associated positive measure μ , is not contained in a connected set. Then there are points x and y in $\sigma(\mu)$ with disjoint connected components C_x and C_y . Recall the fact, which will frequently be useful, that a component in a compact space is the intersection of all closed and open, i.e. clopen, sets which contain it [4, p. 246; 2, p. 251]. Since C_x and C_y are compact, there is a clopen set U containing C_x with the complement U^c containing C_y . The argument used to see this is a version of the standard proof of the normality of a compact Hausdorff space in which clopen sets are used to separate points in C_x and C_y . Since F satisfies (*), the values of F on the characteristic functions of the sets U and U^c , $F(\chi_U)$ and $F(\chi_{U^c})$ must be either zero or one, and as $1 = F(\chi_U) + F(\chi_{U^c})$ one of the values must be zero. Then either $\mu(U) = 0$ or $\mu(U^c) = 0$, which contradicts both x and y belonging to the support of μ .

Thinking about property (*) suggests that we consider functionals F for which F(f) = af(s) + bf(t). It is too strong to let all of a, b, s, and t vary with f; for if F is any continuous linear functional, $||F|| \leq 1$, then, as

$$f(s_0) = \inf \{ f(s) : s \text{ in } S \} \leq F(f) \leq \sup \{ f(s) : s \text{ in } S \} = f(t_0),$$

F(f) is some convex combination of $f(s_0)$ and $f(t_0)$. It is too easy to fix $s = s_0$ and $t = t_0$ and let a and b vary; for then, as whenever $f(s_0) = f(t_0) = 0$, F(f) = 0, we must have F a linear combination of the evaluations at s_0 and at t_0 [3, p. 421]. The interesting problem involves those linear functionals Fsatisfying:

(**) Let a and b be fixed. For each f there are points s and t, which may depend on f, with $s \neq t$ and F(f) = af(s) + bf(t).

The condition $s \neq t$ keeps (*) and (**) distinct.

The characterization of functionals satisfying (**) will depend on relations between a and b. The following division is necessary.

(+) F(f) = af(s) + bf(t), with $a \ge b > 0$ and a + b = 1, (-) F(f) = af(s) + bf(t), with a > 0, b < 0, a + b > 0, and a - b = 1, (0) F(f) = f(s) - f(t).

Any other values for a and b can be reduced to one of these three cases by dividing F by a suitable scalar.

LEMMA 1. If $\{U_1, U_2, U_3\}$ is a partition of S into three clopen sets and F, with associated measure μ , satisfies (**), then $|\mu|(U_i) = 0$ for at least one of i = 1, 2, 3, ...

Proof. Let χ_{U_j} be the characteristic function of U_j , and let $\alpha_1, \alpha_2, \alpha_3$ be in **R**. Then $\varphi(\alpha_1, \alpha_2, \alpha_3) = F(\sum_j \alpha_j \chi_{U_j}) = \sum_j \alpha_j \mu_j$, where $\mu_j = \mu(U_j)$, and so φ is a continuous function of $(\alpha_1, \alpha_2, \alpha_3)$. Now for a fixed $(\alpha_1', \alpha_2', \alpha_3')$ and renumbering the U's, if necessary, $\varphi(\alpha_1', \alpha_2', \alpha_3') = u(\sum_j \alpha_j' \chi_{U_j}(s)) + u(\sum_j \alpha_j' \chi_{U_j}(s))$ $b(\sum_{j} \alpha_{j}' \chi_{U_{j}}(t)) = a\alpha_{1}' + b\alpha_{2}' \text{ or } (a + b)\alpha_{1}'. \text{ Thus } \alpha_{1}'\mu_{1} + \alpha_{2}'\mu_{2} + \alpha_{3}'\mu_{3} = \alpha_{1}'a + \alpha_{2}'b \text{ or } (a + b)\alpha_{1}' \text{ and by continuity of the left hand side of this equation, either <math>\mu_{1} = a, \mu_{2} = b, \mu_{3} = 0$ or $\mu_{1} = a + b, \mu_{2} = \mu_{3} = 0$. Suppose $|\mu|(U_{3}) \neq 0$. Choose $h \in C(S)$ with support in U_{3} such that $F(h) \neq 0$ and $||h|| \leq 1$. Consider $g = k\chi_{U_{3}} + h$ where k is in $\mathbf{R}, k > 2(|a| + |b|)|a + b|^{-1}$. Then for s, t, s', t' $\in S$, ah(s) + bh(t) = F(h) = F(g) = k(a + b) + ah(s') + bh(t'). From $k|a + b| = |a(h(s) - h(s')) + b(h(t) - h(t'))| \leq 2(|a| + |b|)$, we obtain a contradiction.

LEMMA 2. Let F be a linear functional, on the real Banach space C(S), that is given by a point mass at x.

- 1. If condition (+) holds, then F satisfies (**) if and only if x is not a G_{δ} .
- 2. If condition (0) holds, then F cannot satisfy (**).
- 3. If condition (-) holds, then F satisfies (**) if and only if one of the following hold:
 - i) The point x is not a G_{δ} .
 - ii) The point $x \neq C_x$, the component of x.

Proof. Suppose condition (+) holds. If x is not a G_{δ} , then for any f there is a point $t \neq x$ with f(t) = f(x); thus F(f) = af(x) + bf(t) with $t \neq x$. Conversely, if x is a G_{δ} , there is a continuous f, $0 \leq f \leq 1$, with $f^{-1}(0) = \{x\}$ [2, p. 248]; then $F(f) = f(x) = 0 \neq af(s) + bf(t)$ for any two points s and t. Suppose condition (0) holds. F cannot satisfy (**), for $F(1) \neq 0$.

Suppose condition (-) holds. If x is not a G_{δ} , then $(^{**})$ follows as above. If $\{x\} \neq C_x$, then for F(f) = 0, the only difficulty occurs when $f(y) \neq 0$ for $y \neq x$. In this case $f(C_x)$ is a nondegenerate interval containing zero. For any non-zero f(y) in $f(C_x)$, (-b/a)f(y) also belongs to $f(C_x)$, i.e., af(y) + bf(t) = 0 = F(f) for some $t \neq y$. Conversely suppose that neither i) nor ii) hold; F is a point mass at x, x is a G_{δ} , and $\{x\} = C_x$. Because C_x is the intersection of all the clopen sets which contain x and because x is a G_{δ} , there is a countable nested collection $U_1 \supseteq U_2 \supseteq U_3 \supseteq \ldots$ of clopen sets with $\bigcap U_n = \{x\}$. If -b/a is rational, consider $f = \sum (1/n^2)\chi U_n - \pi^2/6$. For this f, F(f) = f(x) = 0 and $f(y) \neq 0$ for $y \neq x$. For any $y \neq x$, y does not belong to U_n for large n and so $f(y) = r - \pi^2/6$, r a rational number. Thus we cannot have af(y) + bf(z) = 0 else π^2 would be rational. In the event that -a/b is irrational the function $\sum (1/2^n)\chi U_n - 1$ shows similarly that (**) cannot hold.

THEOREM 2. Let F be a linear functional, with associated measure μ , on the real Banach space C(S), and suppose that F is not a point mass. If F satisfies (**), then when condition (+) holds F must be a positive linear functional of norm 1; and when condition (-) holds F must be a continuous linear functional with $||F|| \leq 1$ and F(1) = a + b. In either case, F will satisfy (**) if and only if, in addition, one of the following holds:

1. The support of μ is contained in a connected set,

2. The support $\sigma(\mu) \subseteq C_1 \cup C_2$, the union of two disjoint connected sets, with $\mu(C_1) = a$ and $\mu(C_2) = b$.

Proof. First suppose that condition (+) holds. If F satisfies $(^{**})$ with a and b positive and a + b = 1 then F is a positive linear functional with ||F|| = F(1) = 1.

Suppose that the measure μ associated with F has support $\sigma(\mu)$ contained in a connected set C. Because F is not a point mass, for x in σ there is an open neighborhood U of x with $0 < \mu(U) < 1$. We have, by Theorem 1,

$$\int_{U \cap c} f d\mu = f(c_1)\mu(U), \quad c_1 \text{ in } C, \text{ and}$$
$$\int_{U^c \cap c} f d\mu = f(c_2)\mu(U^c), \quad c_2 \text{ in } C.$$

Thus $F(f) = \mu(U)f(c_1) + (1 - \mu(U))f(c_2)$ is a point on the line joining $f(c_1)$ to $f(c_2)$. As f(C) is an interval, if $f(c_1) \neq f(c_2)$ there are points s and t in C with F(f) = af(s) + bf(t). If $f(c_1) = f(c_2)$, then we have $F(f) = (1/\mu(U)) \int_U f d\mu$. If this fails to hold for any neighborhood of x of measure less than one, then we can write F in the desired form. On the other hand, if this holds for every such neighborhood of x then, by the regularity of μ , F(f) = f(x). A similar argument applied to a point $y \neq x$ in $\sigma(\mu)$ shows that we are done unless we also have F(f) = f(y). But in this final case, F(f) = f(x) = f(y) = af(x) + bf(y).

If the condition of 2 holds, then (**) follows directly from Theorem 1.

Suppose that *F* satisfies (**) and that $\sigma(\mu)$ is not contained in a connected set. Assume that there are three points *x*, *y*, and *z* in σ with disjoint components C_x , C_y and C_z . As in Theorem 1, there is a clopen partition of *S*, U_x , U_y , U_z , with $C_x \subseteq U_x$, $C_y \subseteq U_y$ and $C_z \subseteq U_z$. By Lemma 1, the measure of one of U_x , U_y , U_z must be zero, which contradicts the corresponding point being in the support of μ . So, say $\sigma \subseteq C_x \cup C_y$. From (**), the only possible values for $F(\chi_{U_x})$ and $F(\chi_{U_y})$ are 0, *a*, *b*, and 1. Since $F(1) = F(\chi_{U_x}) + F(\chi_{U_y})$, 2 follows.

Second, suppose that condition (-) holds. (In this case the measure μ is not necessarily a positive measure. This creates technical problems not present under condition (+).)

If F satisfies (**), then F is bounded with $||F|| \le a - b = 1$ and F(1) = a + b.

It suffices to show that $(^{**})$ holds for g in the null manifold of F, since for any f, g = f - (1/(a + b))F(f) is in the null manifold, and if F(g) = 0 = ag(s) + bg(t), $s \neq t$, then F(f) = af(s) + bf(t).

Suppose that $\sigma(\mu)$ is contained in a connected set *C*. Let *f* be given with F(f) = 0 and define *g* on $C \times C$ by g(s, t) = af(s) + bf(t). Set $m = \inf \{f(s) : s \text{ in } C\}$ and $M = \sup \{f(s) : s \text{ in } C\}$. Let $\mu = \mu_1 - \mu_2$ be the Hahn decomposition of μ into the difference of two positive measures with $|\mu_1| + |\mu_2| = |\mu| = ||F|| \leq a - b = 1$, and note that $|\mu_1| - |\mu_2| = F(1) = a + b$, and so $|\mu_1| \leq a$ and $|\mu_2| \leq -b$. For *s* and *t* in *C*, $am + bM \leq g(s, t) \leq aM + bm$. Also $am + bM \leq am + bM + (m - M)(|\mu_1| - a) = m|\mu_1| - M|\mu_2| \leq m$

 $\int f d\mu_1 - \int f d\mu_2 \leq M |\mu_1| - m |\mu_2| = aM + bm + (M - m)(|\mu_2| + b) \leq aM + bm.$

Continuity of g on the connected set $C \times C$ yields s and t in C with $0 = F(f) = \int f d\mu_1 - \int f d\mu_2 = g(s, t) = af(s) + bf(t)$. If the points s and t are distinct, F(f) satisfies (**). If the points s and t are not distinct, then f(s) = 0. If there is a point $u \neq s$ with f(u) = 0, then F(f) = af(s) + bf(u); if there is no such u then f(C) is a nondegenerate interval which contains zero and an argument as in the first part of this proof establishes (**).

If condition 2 holds, then $a - b \ge |\mu| = |\mu|(C_1) + |\mu|(C_2) \ge |\mu(C_1)| + |\mu(C_2)| = a - b$, from which it follows that μ is a positive measure on C_1 and a negative measure on C_2 . That is to say that μ_1 is the restriction of μ to C_1 and μ_2 is the restriction of $-\mu$ to C_2 . From Theorem 1 (**) follows.

It remains to show that if F satisfies (**) and μ does not have support contained in a connected set, then condition 2 holds.

Suppose that F satisfies (**) and the measure μ does not have support contained in a connected set. Assume that x, y, and z are three points in the support of μ which belong to disjoint components C_x , C_y , and C_z . As above there is a clopen partition U_x , U_y , and U_z of S with $U_x \supseteq C_x$, $U_y \supseteq C_y$, and $U_z \supseteq C_z$. For any clopen set U, $F(\chi_U)$ must be one of the numbers 0, a, b, or a + b by (**). By Lemma 1 one of sets U_x , U_y , and U_z must have variation zero, contrary to the assumption that all of the points belonged to the support of μ . So it must be that, say $\sigma(\mu) \subseteq C_x \cup C_y$; with $\mu(U_x) \neq 0 \neq \mu(U_y)$. As a + b = $\mu(U_x) + \mu(U_y)$, the restrictions on the values for the measures of the clopen sets show that, say $\mu(U_x) = a$ and $\mu(U_y) = b$. As above, since $|\mu| \leq a - b$, we can conclude that u is positive on U_x and negative on U_y ; so $\mu(C_x) = a$ and $\mu(C_y) = b$.

The last case, case (0), is quite distinctive as it has a different character on and off the real line.

THEOREM 3. Let F be a linear functional on the real Banach space C(S). Then F satisfies (**) in the case a = 1 and b = -1, i.e. for each f in C(S) there are two distinct points s and t, which may depend on f, with F(f) = f(s) - f(t), if and only if F is a bounded linear functional with $||F|| \leq 2$ and F(1) = 0 and:

I. When S is not homeomorphic to a subset of the real line **R**, then the additional conditions on the measure μ associated with F are either

1. The support $\sigma(\mu) \subseteq C_x \cup C_y$, the union of two disjoint components with $\mu(C_x) = 1$ and $\mu(C_y) = -1$, or

2. The μ -measure of each component is zero.

II. In the alternate situation where S is homeomorphic to a subset of \mathbf{R} , the additional conditions on μ are either

- 1. The same as I.1 above, or
- 2. Here the support $\sigma(\mu) \subseteq C$, C a component. The condition on μ may be phrased by identifying C with the unit interval [0,1], to which it is homeomorphic.

Then μ corresponds to a normalized function α of bounded variation on [0, 1]with $F(f) = \int f d\mu = \int_0^1 f d\alpha$. Such a functional F (with $||F|| \leq 2$ and F(1)= 0) has the desired form if and only if either $\alpha(x) \geq 0$ for all x in [0, 1] or $\alpha(x) \leq 0$ for all x in [0, 1].

Proof. From F(f) = f(s) - f(t) we see that $||F|| \leq 2$ and F(1) = 0.

Suppose that $\mu(C) \neq 0$ for some component *C*. By the regularity of μ there is a neighborhood *V* of *C* with $\mu(W - C) \leq \mu(C)/2$ for $C \subseteq W \subseteq V$. By the usual separation argument, using the compactness of *C* and *V*^e and the fact that *C* is a component, there is a clopen set *U* between *C* and *V*, and so $\mu(U) \neq$ 0. The only possible values for $F(\chi_U)$ are 0, +1, and -1, so $\mu(U) = 1$ or $\mu(U) = -1$. Because F(1) = 0, $\mu(U) = -\mu(U^e)$. Suppose then that $\mu(U) =$ 1 and $\mu(U^e) = -1$. The norm of μ is bounded by two, so μ is positive on *U* and negative on U^e . Since μ of a clopen subset of *U* (or U^e) must be zero or one (zero or minus one), it follows that $\sigma(\mu) \cap U \subseteq C_x$ and $\sigma(\mu) \cap U^e \subseteq$ C_y for two disjoint components C_x and C_y , i.e. $\sigma(\mu) \subseteq C_x \cup C_y$ with $\mu(C_x) =$ 1 and $\mu(C_y) = -1$. Conversely, if *F* has this form, then $F(f) = \int C_x f d\mu +$ $\int C_y f d\mu = f(s) - f(t)$, with *s* in C_x and *t* in C_y , by Theorem 1.

It remains to consider μ with the property that the measure of each component is zero. For the collection $\{C_{\beta}\}$ of disjoint components of S, $||\mu|| \ge \sum |\mu|(C_{\beta})$, so there are only countably many components C_1, C_2, \ldots with $|\mu|(C_i) \neq 0$; and $||\mu|| = \sum |\mu|(C_i)$. For f in C(S), $\sum_{i=1}^{n} f\chi_{C_i}$ converges to f μ – a.e. Thus, given f and $\epsilon > 0$, there is an N with

$$\left| F(f) - \sum_{1}^{N} \int_{C_{i}} f d\mu \right| \leq \epsilon.$$

Using the Hahn decomposition $\mu = \mu_1 - \mu_2$ for μ , $0 = \mu(C_i) = \mu_1(C_i) - \mu_2(C_i)$, so $\mu_1(C_i) = \mu_2(C_i) = |\mu|(C_i)/2$. Using Theorem 1,

$$\int_{C_i} f d\mu = \int_{C_i} f d\mu_1 - \int_{C_i} f d\mu_2 = \mu_1(C_i) f(s) - \mu_2(C_i) f(t),$$

with s and t in C_i . Then

$$\int_{C_i} f d\mu = (|\mu|(C_i)/2)(f(s) - f(t)) = (|\mu|(C_i)/2)(\xi_i);$$

 ξ_i belonging to the interval $I_i = [m_i - M_i, M_i - m_i]$, where $m_i = \inf \{f(s) : s \text{ in } C_i\}$ and $M_i = \sup \{f(s) : s \text{ in } C_i\}$. Let j be chosen so that $I_j \supseteq I_i$ for $1 \leq i \leq N$. Noting that 0 belongs to $I_j, \sum^N (|\mu|(C_i)/2)(\xi_i)$ is a convex combination of points from I_j as $\sum_{i=1}^N |\mu|(C_i)/2 \leq ||\mu||/2 = ||F||/2 \leq 1$. Thus the sum $\sum_{i=1}^N (\xi_i) |\mu|(C_i)/2$ belongs to I_j and so by Theorem 2 can be written in the form f(s) - f(t) for s and t in the connected set C_j . Finally for $\epsilon = 1/n$, there are points $\{s_n\}$ and $\{t_n\}$ with $|F(f) - (f(s_n) - f(t_n))| \leq 1/n$. If s_0 is a cluster point of $\{s_n\}$ and t_0 a cluster point of $\{t_n\}$, then $F(f) = f(s_0) - f(t_0)$. If $F(f) \neq 0$, then the s and t so obtained are distinct. In general they may not be distinct if F(f) = 0. If C(S) contains no one-to-one functions, then for any f, in particular for f with F(f) = 0, there are distinct points s and t with f(s) - f(t) = 0 = F(f). Under these circumstances, if the measure of every component is zero, then F satisfies (**).

The case which remains is that in which C(S) contains a one-to-one function, i.e., as S is compact, where S is homeomorphic to a compact subset of R. And the only measures μ of interest are those which take every component to zero. One distinguishing feature of the real line situation is that if F satisfies (**), there cannot be more than one component C with $\mu(C) = 0$ and $|\mu|(C) \neq 0$. To see this we will first show that if U is clopen and $\mu(U) = 0$, then either $|\mu|(U) = 0$ or $|\mu|(U^c) = 0$. Suppose not. Then, for $S \subseteq [c_1, c_2]$, consider $F((x - c_1)^n \chi_U)$. If this were always zero, then $F(P(x)\chi_U)$ would be zero for each polynomial P and, consequently, $|\mu|(U) = 0$. So for some n, $F((x - c_1)^n \chi_U) \neq 0$, that is to say there is a one-to-one function h_1 with $F(h_1\chi_U) \neq 0$. By symmetry there is a one-to-one function h_2 with $F(h_2\chi_{U^c}) \neq$ 0. Let

$$g = (a_1 + b_1 h_1) \chi_U + (a_2 + b_2 h_2) \chi_{U^c},$$

where a_1, a_2, b_1 , and b_2 will be chosen shortly. By hypothesis, $F(\chi_U) = 0 =$ $F(\chi_{U^c})$, thus $F(g) = b_1 F(h_1 \chi_U) + b_2 F(h_2 \chi_{U^c})$. Since neither $F(h_1 \chi_U)$ nor $F(h_2\chi_{U^c})$ are zero, there are non-zero scalars b_1 and b_2 for which F(g) = 0; let b_1 and b_2 be so chosen. Choosing a_1 large and positive and a_2 large and negative makes g one-to-one. We then have F(g) = 0 but cannot have g(s) – g(t) = 0 for $s \neq t$, contradicting property (**) for F. Suppose that x and y belong to different components and to the support of μ . Then we can find clopen disjoint neighborhoods U_x and U_y . The measure of the clopen set U_x must be 0, 1, or -1. It cannot be zero, for then, by what we have just shown, either $|\mu|(U_x) = 0$, and x is not in the support of μ , or $|\mu|(U_y) = 0$ and y is not in the support of μ . Thus, say, $\mu(U_x) = 1$ and $\mu(U_y) = -1$. This leads to $\mu(C_x) =$ 1 and $\mu(C_{\nu}) = -1$, as in the first part of this proof; a case which we have already handled and therefore have excluded, being now interested only in those measures which are zero on each component. So we see that such a measure must have support in a single component C which, by identification via homeomorphism we may take to be the closed interval [0, 1].

In the final case remaining we then have a linear functional F on the real valued continuous functions on [0, 1] and we want to know under what conditions F can, for each f, be written in the form F(f) = f(s) - f(t) for distinct s and t. Of course, as before, we have $||F|| \leq 2$ and F(1) = 0. Given F there is a normalized function α of bounded variation on [0, 1] with $F(f) = \int_0^1 f d\alpha [7]$. In a previous part of the proof we have seen that if $F(f) \neq 0$, then F(f) = f(s) - f(t) for some s and t, which are necessarily distinct. Thus F has the property (**) if and only if its null manifold N(F) contains no one-to-one function. We will show that this holds if and only if either α is non-positive on [0, 1] or non-negative on [0, 1].

Suppose that $\alpha(x) \ge 0$ for x in [0, 1]. A one-to-one function f on [0, 1] is either increasing or decreasing; by considering f or -f we may suppose that it is increasing. Let $\alpha(x) = \alpha_1(x) - \alpha_2(x)$, the difference of two normalized monotone functions. The left-continuity of α guarantees that there is an interval (c, d] on which α is strictly positive, and so $\alpha_1(x) > \alpha_2(x)$ there. Then

$$F(f) = \int_{0}^{1} f d\alpha_{1} - \int_{0}^{1} f d\alpha_{2} = \int_{0}^{1} \alpha_{2} df - \int_{0}^{1} \alpha_{1} df,$$

after an integration by parts, using the information that, by the normalization, $\alpha(0) = \alpha_1(0) = \alpha_2(0) = 0$, and $F(1) = \alpha(1) = \alpha_1(1) - \alpha_2(1) = 0$. Then

$$F(f) = \int_0^1 \alpha_2 df - \int_0^1 \alpha_1 df \leq \int_c^d (\alpha_2 - \alpha_1) df < 0.$$

Hence N(F) contains no one-to-one function. And similarly if $\alpha(x) \leq 0$ for x in [0, 1].

To complete the proof suppose that *F* has property (**) on C[0, 1]. Let *h* be strictly positive and continuous and set $f(x) = \int_0^x h(t)dt$. Integrating by parts,

$$F(f) = \int_0^1 f d\alpha = - \int_0^1 \alpha df = - \int_0^1 \alpha(t) h(t) dt.$$

The functional value F(f) cannot be zero as f is one-to-one. More is true. We cannot have $F(f_1) < 0$ and $F(f_2) > 0$ for two such functions f_1 and f_2 ; else $F(cf_1 + (1 - c)f_2) = 0$ for some 0 < c < 1 and a one-to-one function $cf_1 + (1 - c)f_2$. So, say, $F(f) \leq 0$ for all f's so given by strictly positive h's. Then the map $G(g) = \int_0^1 \alpha(t)g(t)dt$ is a positive linear functional on C[0, 1]. Consequently the measure $\alpha(t)dt$ is a positive measure and $\alpha(t) \geq 0$ for all t except perhaps those in a set of Lebesgue measure zero. Because α is continuous from the left, $\alpha(t) \geq 0$ for all t in [0, 1]. If $F(f) \geq 0$ for all f of the type described, then $\alpha(t) \leq 0$ for all t in [0, 1].

There are many variations and generalizations of our considerations which lead to interesting problems in analysis. We mention characterizing those Fon real C(S) which satisfy, for fixed a_1, \ldots, a_n , $F(f) = \sum a_i f(s_i)$ for distinct points s_1, \ldots, s_n which may vary with f, and characterizing those F satisfying (**) on complex C(S) or on a given function algebra.

Acknowledgement. I would like to thank the referee for his advice and for the proof of Lemma 1.

References

- 1. A. Browder, Introduction to function algebras (Benjamin, 1969).
- 2. J. Dugundji, Topology (Allyn and Bacon, 1966).
- 3. N. Dunford and J. Schwartz, Linear operators I (Interscience, 1958).
- 4. L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand, 1959).

N. FARNUM AND R. WHITLEY

5. A. Gleason, A characterization of maximal ideals, J. D'Analyse Math. 19 (1967), 171-172.

6. J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 340-343.

7. A. Taylor, Introduction to functional analysis (Wiley, 1958).

University of California at Irvine, Irvine, California 92717

498