FUNCTIONALS ON REAL $C(S)$

NiChOLAS FARNUM AND ROBERT WHITLEY

The maximal ideals in a commutative Banach algebra with identity have been elegantly characterized $[\mathbf{5} ; \mathbf{6}]$ as those subspaces of codimension one which do not contain invertible elements. Also, see [1]. For a function algebra A, a closed separating subalgebra with constants of the algebra of complexvalued continuous functions on the spectrum of A, a compact Hausdorff space, this characterization can be restated: Let F be a linear functional on A with the property:

For each f in A there is a point s, which may depend on f, for which $F(f)=f(s)$.

Then there is a fixed point s_{0} with $F(f)=f\left(s_{0}\right)$ for all f in A.
For the space of real-valued continuous functions on a compact Hausdorff space S, property $\left({ }^{*}\right)$ does not generally characterize the multiplicative linear functionals. For example, the functional

$$
F(f)=\int_{0}^{1} f(x) d x, \quad S=[0,1]
$$

has property $\left({ }^{*}\right)[6]$. We are thereby led to characterize exactly those linear functionals which satisfy $\left({ }^{*}\right)$ on the space of real-valued continuous functions on S. We additionally consider a condition which is suggested by $\left({ }^{*}\right)$ in which the value $F(f)$ of the functional is related to the values of f at two points.

In what follows S will be a compact Hausdorff space and $C(S)$ the supremum norm Banach space of real-valued continuous functions on S. For a continuous linear functional F on $C(S)$ there is a unique associated Borel measure μ, with variation norm $|\mu|=\|F\|, F(f)=\int f d \mu$, and with support $\sigma(\mu)[\mathbf{3}]$.

Theorem 1. Let F be a linear functional on the real Banach space $C(S)$. Then F satisfies $\left(^{*}\right)$ if and only if F is a positive linear functional of norm one with the support of the associated measure contained in a connected set.

Proof. If $\sigma(\mu)$ is contained in a connected set C, then

$$
\inf \{f(s): s \text { in } C\} \leqq \int f d \mu \leqq \sup \{f(s): s \text { in } C\}
$$

Since $f(C)$ is connected, there is a point s in C with

$$
f(s)=\int f d \mu=F(f)
$$

[^0]Conversely suppose that F has property $\left(^{*}\right)$. It is clear that F is a positive linear functional with $\|F\|=F(1)=1$. Assume that $\sigma(\mu)$, for the associated positive measure μ, is not contained in a connected set. Then there are points x and y in $\sigma(\mu)$ with disjoint connected components C_{x} and C_{y}. Recall the fact, which will frequently be useful, that a component in a compact space is the intersection of all closed and open, i.e. clopen, sets which contain it [4, p. 246; 2, p. 251]. Since C_{x} and C_{y} are compact, there is a clopen set U containing C_{x} with the complement U^{c} containing C_{y}. The argument used to see this is a version of the standard proof of the normality of a compact Hausdorff space in which clopen sets are used to separate points in C_{x} and C_{y}. Since F satisfies $\left(^{*}\right)$, the values of F on the characteristic functions of the sets U and U^{c}, $F\left(\chi_{U}\right)$ and $F\left(\chi_{U^{c}}\right)$ must be either zero or one, and as $1=F\left(\chi_{U}\right)+F\left(\chi_{U^{c}}\right)$ one of the values must be zero. Then either $\mu(U)=0$ or $\mu\left(U^{c}\right)=0$, which contradicts both x and y belonging to the support of μ.

Thinking about property (*) suggests that we consider functionals F for which $F(f)=a f(s)+b f(t)$. It is too strong to let all of a, b, s, and t vary with f; for if F is any continuous linear functional, $\|F\| \leqq 1$, then, as

$$
f\left(s_{0}\right)=\inf \{f(s): s \operatorname{in} S\} \leqq F(f) \leqq \sup \{f(s): s \operatorname{in} S\}=f\left(t_{0}\right),
$$

$F(f)$ is some convex combination of $f\left(s_{0}\right)$ and $f\left(t_{0}\right)$. It is too easy to fix $s=s_{0}$ and $t=t_{0}$ and let a and b vary; for then, as whenever $f\left(s_{0}\right)=f\left(t_{0}\right)=0$, $F(f)=0$, we must have F a linear combination of the evaluations at s_{0} and at $t_{0}\lfloor\mathbf{3}, \mathrm{p} .421]$. The interesting problem involves those linear functionals F satisfying:

Let a and b be fixed. For each f there are points s and t, which may depend on f, with $s \neq t$ and $F(f)=u f(s)+b f(t)$.
The condition $s \neq t$ keeps $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ distinct.
The characterization of functionals satisfying (${ }^{* *}$) will depend on relations between a and b. The following division is necessary.
$(+) F(f)=u f(s)+b f(t), \quad$ with $a \geqq b>0$ and $a+b=1$,
$(-) F(f)=a f(s)+b f(t)$, with $a>0, b<0, a+b>0$, and $a-b=1$,
(0) $F(f)=f(s)-f(t)$.

Any other values for a and b can be reduced to one of these three cases by dividing F by a suitable scalar.

Lemma 1. If $\left\{U_{1}, U_{2}, U_{3}\right\}$ is a partition of S into three clopen sets and F, with associated meusure μ, sutisfies $\left({ }^{* *}\right)$, then $|\mu|\left(U_{i}\right)=0$ for at least one of $i=1,2, \because 3$,.

Proof. Let $\chi_{U_{j}}$ be the characteristic function of U_{j}, and let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be in R. Then $\varphi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=F\left(\sum_{j} \alpha_{i} \chi_{U_{j}}\right)=\sum_{j} \alpha_{i j} \mu_{j}$, where $\mu_{j}=\mu\left(U_{j}\right)$, and so φ is a continuous function of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Now for a fixed $\left(\alpha_{1}{ }^{\prime}, \alpha_{2}{ }^{\prime}, \alpha_{3}{ }^{\prime}\right)$ and renumbering the U's, if necessary, $\varphi\left(\alpha_{1}{ }^{\prime}, \alpha_{2}{ }^{\prime}, \alpha_{3}{ }^{\prime}\right)=u\left(\sum_{j} \alpha_{j}{ }^{\prime} \chi_{U j}(s)\right)+$
$b\left(\sum_{j} \alpha_{j}{ }^{\prime} \chi_{U j}(t)\right)=\left(t \alpha_{1}{ }^{\prime}+b \alpha_{2}{ }^{\prime}\right.$ or $(a+b) \alpha_{1}{ }^{\prime}$. Thus $\alpha_{1}{ }^{\prime} \mu_{1}+\alpha_{2}{ }^{\prime} \mu_{2}+\alpha_{3}{ }^{\prime} \mu_{3}=$ $\alpha_{1}{ }^{\prime}\left(l+\alpha_{2}{ }^{\prime} b\right.$ or $(a+b) \alpha_{1}{ }^{\prime}$ and $b y$ continuity of the left hand side of this equation, either $\mu_{1}=a, \mu_{2}=b, \mu_{3}=0$ or $\mu_{1}=a+b, \mu_{2}=\mu_{3}=0$. Suppose $|\mu|\left(U_{3}\right) \neq 0$. Choose $h \in C(S)$ with support in U_{3} such that $F(h) \neq 0$ and $\|h\| \leqq 1$. Consider $g=k \chi_{U_{3}}+h$ where k is in $\mathbf{R}, k>2(|a|+|b|)|a+b|^{-1}$. Then for $s, t, s^{\prime}, t^{\prime} \in S, a h(s)+b h(t)=F(h)=F(g)=k(a+b)+a h\left(s^{\prime}\right)$ $+b h\left(t^{\prime}\right)$. From $k|a+b|=\left|a\left(h(s)-h\left(s^{\prime}\right)\right)+b\left(h(t)-h\left(t^{\prime}\right)\right)\right| \leqq 2(|a|+|b|)$, we obtain a contradiction.

Lemma 2. Let F be a linear functional, on the real Banach space $C(S)$, that is given by a point mass at x.

1. If condition $(+)$ holds, then F satisfies $\left({ }^{(*)}\right)$ if and only if x is not " $G_{\dot{\delta}}$.
2. If condition (0) holds, then F cannot satisfy (**).
3. If condition (-) holds, then F satisfies $\left({ }^{* *}\right)$ if and only if one of the followins hold:
i) The point x is not a G_{δ}.
ii) The point $x \neq C_{x}$, the component of x.

Proof. Suppose condition $(+)$ holds. If x is not a G_{δ}, then for any f there is a point $t \neq x$ with $f(t)=f(x)$; thus $F(f)=a f(x)+b f(t)$ with $t \neq x$. Conversely, if x is a G_{δ}, there is a continuous $f, 0 \leqq f \leqq 1$, with $f^{-1}(0)=\{x\}$ [2, p. 248]; then $F(f)=f(x)=0 \neq u f(s)+b f(t)$ for any two points s and t.

Suppose condition (0) holds. F cannot satisfy $\left({ }^{* *}\right)$, for $F(1) \neq 0$.
Suppose condition (-) holds. If x is not a G_{δ}, then $\left({ }^{* *}\right)$ follows as above. If $\{x\} \neq C_{x}$, then for $F(f)=0$, the only difficulty occurs when $f(y) \neq 0$ for $y \neq x$. In this case $f\left(C_{x}\right)$ is a nondegenerate interval containing zero. For any non-zero $f(y)$ in $f\left(C_{x}\right),(-b / a) f(y)$ also belongs to $f\left(C_{x}\right)$, i.e., $a f(y)+b f(t)=$ $0=F(f)$ for some $t \neq y$. Conversely suppose that neither i) nor ii) hold; F is a point mass at x, x is a G_{δ}, and $\{x\}=C_{x}$. Because C_{x} is the intersection of all the clopen sets which contain x and because x is a G_{δ}, there is a countable nested collection $U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \ldots$ of clopen sets with $\cap U_{n}=\{x\}$. If $-b / a$ is rational, consider $f=\sum\left(1 / n^{2}\right) \chi U_{n}-\pi^{2} / 6$. For this $f, F(f)=f(x)=0$ and $f(y) \neq 0$ for $y \neq x$. For any $y \neq x, y$ does not belong to U_{n} for large n and so $f(y)=r-\pi^{2} / 6, r$ a rational number. Thus we cannot have af $(y)+b f(z)=0$ else π^{2} would be rational. In the event that $-a / b$ is irrational the function $\sum\left(1 / 2^{n}\right) \chi_{U_{n}}-1$ shows similarly that $\left(^{(* *)}\right.$ cannot hold.

Theorem 2. Let F be alinear functional, with associated measure μ, on the real Banach space $C(S)$, and suppose that F is not a point mass. If F satissies (**), then when condition $(+)$ holds F must be a positive linear functional of norm 1; and when condition (-) holds F must be a continuous linear functional with $\|F\| \leqq 1$ and $F(1)=a+b$. In either case, F will satisfy $\left({ }^{(* *)}\right.$ if and only if, in addition, one of the following holds:

1. The support of μ is contained in a connected set,
2. The support $\sigma(\mu) \subseteq C_{1} \cup C_{2}$, the union of two disjoint connected sets, with $\mu\left(C_{1}\right)=a$ and $\mu\left(C_{2}\right)=b$.

Proof. First suppose that condition (+) holds. If F satisfies (**) with a and b positive and $a+b=1$ then F is a positive linear functional with $\|F\|=$ $F(1)=1$.

Suppose that the measure μ associated with F has support $\sigma(\mu)$ contained in a connected set C. Because F is not a point mass, for x in σ there is an open neighborhood U of x with $0<\mu(U)<1$. We have, by Theorem 1,

$$
\begin{aligned}
& \int_{U \cap C} f d \mu=f\left(c_{1}\right) \mu(U), \quad c_{1} \text { in } C, \text { and } \\
& \int_{U^{c} \cap C} f d \mu=f\left(c_{2}\right) \mu\left(U^{c}\right), \quad c_{2} \text { in } C .
\end{aligned}
$$

Thus $F(f)=\mu(U) f\left(c_{1}\right)+(1-\mu(U)) f\left(c_{2}\right)$ is a point on the line joining $f\left(c_{1}\right)$ to $f\left(c_{2}\right)$. As $f(C)$ is an interval, if $f\left(c_{1}\right) \neq f\left(c_{2}\right)$ there are points s and t in C with $F(f)=u f(s)+b f(t)$. If $f\left(c_{1}\right)=f\left(c_{2}\right)$, then we have $F(f)=$ $(1 / \mu(U)) \int_{U} f d \mu$. If this fails to hold for any neighborhood of x of measure less than one, then we can write F in the desired form. On the other hand, if this holds for every such neighborhood of x then, by the regularity of $\mu, F(f)=$ $f(x)$. A similar argument applied to a point $y \neq x$ in $\sigma(\mu)$ shows that we are done unless we also have $F(f)=f(y)$. But in this final case, $F(f)=f(x)=$ $f(y)=u f(x)+b f(y)$.

If the condition of 2 holds, then $\left({ }^{* *}\right)$ follows directly from Theorem 1.
Suppose that I satisfies $\left({ }^{* *}\right)$ and that $\sigma(\mu)$ is not contained in a connected set. Assume that there are three points x, y, and z in σ with disjoint components C_{x}, C_{y} and C_{z}. As in Theorem 1, there is a clopen partition of S, U_{x}, U_{y}, U_{z}, with $C_{x} \subseteq U_{x}, C_{y} \subseteq U_{y}$ and $C_{z} \subseteq U_{z}$. By Lemma 1, the measure of one of U_{x}, U_{y}, U_{z} must be zero, which contradicts the corresponding point being in the support of μ. So, say $\sigma \subseteq C_{x} \cup C_{y}$. From (${ }^{* *}$), the only possible values for $F^{\prime}\left(\chi_{U_{x}}\right)$ and $F\left(\chi_{U_{y}}\right)$ are $0, u, b$, and 1 . Since $F^{F}(1)=F\left(\chi_{U_{r}}\right)+F\left(\chi_{V_{y}}\right), 2$ follows.

Second, suppose that condition (-) holds. (In this case the measure μ is not necessarily a positive measure. This creates technical problems not present under condition (+).)

If F satisfies $\left({ }^{* *}\right)$, then F is bounded with $\|F\| \leqq \Perp-b=1$ and $F(1)=$ $a+b$.

It suffices to show that ${ }^{(* *)}$) holds for g in the null manifold of F, since for any $f, g=f-(1 /(a+b)) F(f)$ is in the null manifold, and if $f(g)=0=$ $a g(s)+b g(t), s \neq t$, then $F(f)=a f(s)+b f(t)$.

Suppose that $\sigma(\mu)$ is contained in a connected set $(C$. Let f be given with $F(f)=0$ and define g on $C \times C$ by $g(s, t)={ }^{\prime \prime} f(s)+b f(t)$. Set $m=\inf$ $\{f(s): s$ in $C\}$ and $M=\sup \{f(s): s$ in $C\}$. Let $\mu=\mu_{1}-\mu_{2}$ be the Itahn decomposition of μ into the difference of two positive measures with $\left|\mu_{1}\right|+$ $\left|\mu_{2}\right|=|\mu|=||F|| \leqq a-b=1$, and note that $\left|\mu_{1}\right|-\left|\mu_{2}\right|=F(1)=a+b$, and so $\left|\mu_{1}\right| \leqq a$ and $\left|\mu_{2}\right| \leqq-b$. For s and t in $C, u m+b M \leqq g(s, t) \leqq a M+$ $b m$. Also $a m+b M \leqq a m+b M+(m-M)\left(\left|\mu_{1}\right|-a\right)=m\left|\mu_{1}\right|-M\left|\mu_{2}\right| \leqq$
$\int f d \mu_{1}-\int f d \mu_{2} \leqq M\left|\mu_{1}\right|-m\left|\mu_{2}\right|=a M+b m+(M-m)\left(\left|\mu_{2}\right|+b\right) \leqq$ $a M+b m$.

Continuity of g on the connected set $C \times C$ yields s and t in C with $0=$ $f(f)=\int f d \mu_{1}-\int f d \mu_{2}=g(s, t)=a f(s)+b f(t)$. If the points s and t are distinct, $F(f)$ satisfies ${ }^{(* *)}$. If the points s and t are not distinct, then $f(s)=0$. If there is a point $u \neq s$ with $f(u)=0$, then $F(f)=u f(s)+b f(u)$; if there is no such u then $f(C)$ is a nondegenerate interval which contains zero and an argument as in the first part of this proof establishes $\left({ }^{* *}\right)$.

If condition 2 holds, then $a-b \geqq|\mu|=|\mu|\left(C_{1}\right)+|\mu|\left(C_{2}\right) \geqq\left|\mu\left(C_{1}\right)\right|+$ $\left|\mu\left(C_{2}\right)\right|=a-b$, from which it follows that μ is a positive measure on C_{1} and a negative measure on C_{2}. That is to say that μ_{1} is the restriction of μ to C_{1} and μ_{2} is the restriction of $-\mu$ to C_{2}. From Theorem $1\left({ }^{* *}\right)$ follows.

It remains to show that if F satisfies $\left({ }^{* *}\right)$ and μ does not have support contained in a connected set, then condition 2 holds.

Suppose that F satisfies $\left({ }^{* *}\right)$ and the measure μ does not have support contained in a connected set. Assume that x, y, and z are three points in the support of μ which belong to disjoint components C_{x}, C_{y}, and C_{z}. As above there is a clopen partition U_{x}, U_{y}, and U_{z} of S with $U_{x} \supseteq C_{x}, U_{y} \supseteq C_{y}$, and $U_{z} \supseteq C_{z}$. For any clopen set $U, F\left(\chi_{U}\right)$ must be one of the numbers $0, a, b$, or $a+b$ by ${ }^{(* *)}$. By Lemma 1 one of sets U_{x}, U_{y}, and U_{z} must have variation zero, contrary to the assumption that all of the points belonged to the support of μ. So it must be that, say $\sigma(\mu) \subseteq C_{x} \cup C_{y}$; with $\mu\left(U_{x}\right) \neq 0 \neq \mu\left(U_{y}\right)$. As $a+b=$ $\mu\left(U_{x}\right)+\mu\left(U_{y}\right)$, the restrictions on the values for the measures of the clopen sets show that, say $\mu\left(U_{x}\right)=\|$ and $\mu\left(U_{y}\right)=b$. As above, since $|\mu| \leqq a-b$, we can conclude that u is positive on U_{x} and negative on U_{y}; so $\mu\left(C_{x}\right)=a$ and $\mu\left(C_{y}\right)=b$.

The last case, case (0), is quite distinctive as it has a different character on and off the real line.

Theorem 3. Let F be alinear functional on the real Banach space $C(S)$. Then F satisfies (**) in the case $a=1$ and $b=-1$, i.e. for each f in $C(S)$ there are two distinct points s und t, which muy depend on f, with $F(f)=f(s)-f(t)$, if and only if F is a bounded linear functional with $\|F\| \leqq 2$ and $F(1)=0$ and:
I. When S is not homeomorphic to a subset of the real line \mathbf{R}, then the additional conditions on the measure μ associated with F are either

1. The support $\sigma(\mu) \subseteq C_{x} \cup C_{y}$, the union of two disjoint components with $\mu\left(C_{x}\right)=1$ and $\mu\left(C_{y}\right)=-1$, or
2. The μ-measure of each component is zero.
II. In the alternate situation where S is homeomorphic to a subset of \mathbf{R}, the udditional conditions on μ are either
3. The same as I. 1 above, or
4. Here the support $\sigma(\mu) \subseteq C, C$ a component. The condition on μ may be phrasedbyidentifying C with the unit interval $[0,1]$, to which it is homeomorphic.

Then μ corresponds to a normalized function α of bounded variation on $[0,1]$ with $F(f)=\int f d \mu=\int_{0}^{1} f d \alpha$. Such a functional $F($ with $\|F\| \leqq 2$ and $F(1)$ $=0$) has the desired form if and only if either $\alpha(x) \geqq 0$ for all x in $[0,1]$ or $\alpha(x) \leqq 0$ for all x in $[0,1]$.

Proof. From $F(f)=f(s)-f(t)$ we see that $\|F\| \leqq 2$ and $F(1)=0$.
Suppose that $\mu(C) \neq 0$ for some component C. By the regularity of μ there is a neighborhood V^{\prime} of C with $\mu(W-C) \leqq \mu(C) / 2$ for $C \subseteq W \subseteq I$. By the usual separation argument, using the compactness of C and V^{c} and the fact that C is a component, there is a clopen set U between C and I , and so $\mu(U) \neq$ 0 . The only possible values for $F\left(\chi_{U}\right)$ are $0,+1$, and -1 , so $\mu(U)=1$ or $\mu(U)=-1$. Because $F(1)=0, \mu(U)=-\mu\left(U^{c}\right)$. Suppose then that $\mu(U)=$ 1 and $\mu\left(U^{c}\right)=-1$. The norm of μ is bounded by two, so μ is positive on U and negative on U^{c}. Since μ of a clopen subset of U (or U^{c}) must be zero or one (zero or minus one), it follows that $\sigma(\mu) \cap U \subseteq C_{x}$ and $\sigma(\mu) \cap U^{c} \subseteq$ C_{y} for two disjoint components C_{x} and C_{y}, i.e. $\sigma(\mu) \subseteq C_{x} \cup C_{y}$ with $\mu\left(C_{x}\right)=$ 1 and $\mu\left(C_{y}\right)=-1$. Conversely, if F has this form, then $F(f)=\int C_{r} f d \mu+$ $\int C_{y} f d \mu=f(s)-f(t)$, with s in C_{x} and t in C_{y}, by Theorem 1.

It remains to consider μ with the property that the measure of each component is zero. For the collection $\left\{C_{\beta}\right\}$ of disjoint components of $S,\|\mu\| \geqq$ $\sum|\mu|\left(C_{\beta}\right)$, so there are only countably many components C_{1}, C_{2}, \ldots with $|\mu|\left(C_{i}\right) \neq 0$; and $\|\mu\|=\sum|\mu|\left(C_{i}\right)$. For f in $C(S), \sum_{1}^{n} f \chi_{C_{i}}$ converges to f μ - a.e. Thus, given f and $\epsilon>0$, there is an N with

$$
\left|F(f)-\sum_{1}^{N} \int_{C_{i}} f d \mu\right| \leqq \epsilon .
$$

Using the Hahn decomposition $\mu=\mu_{1}-\mu_{2}$ for $\mu, 0=\mu\left(C_{i}\right)=\mu_{1}\left(C_{i}\right)-$ $\mu_{2}\left(C_{i}\right)$, so $\mu_{1}\left(C_{i}\right)=\mu_{2}\left(C_{i}\right)=|\mu|\left(C_{i}\right) / 2$. Using Theorem 1,

$$
\int_{C_{i}} f d \mu=\int_{C_{i}} f d \mu_{1}-\int_{C_{i}} f d \mu_{2}=\mu_{1}\left(C_{i}\right) f(s)-\mu_{2}\left(C_{i}\right) f(t)
$$

with s and t in C_{i}. Then

$$
\int_{C_{i}} f d \mu=\left(|\mu|\left(C_{i}\right) / 2\right)(f(s)-f(t))=\left(|\mu|\left(C_{i}\right) / 2\right)\left(\xi_{i}\right) ;
$$

ξ_{i} belonging to the interval $I_{i}=\left[m_{i}-M_{i}, M_{i}-m_{i}\right]$, where $m_{i}=\inf$ $\left\{f(s): s\right.$ in $\left.C_{i}\right\}$ and $M_{i}=\sup \left\{f(s): s\right.$ in $\left.C_{i}\right\}$. Let j be chosen so that $I_{j} \supseteq I_{i}$ for $1 \leqq i \leqq N$. Noting that 0 belongs to $I_{i}, \sum^{N}\left(|\mu|\left(C_{i}\right) / 2\right)\left(\xi_{i}\right)$ is a convex combination of points from I_{j} as $\sum_{i}^{i}|\mu|\left(C_{i}\right) / 2 \leqq\|\mu\| / 2=\|F\| / 2 \leqq 1$. Thus the sum $\sum_{1}^{N}\left(\xi_{i}\right)|\mu|\left(C_{i}\right) / 2$ belongs to I_{j} and so by Theorem 2 can be written in the form $f(s)-f(t)$ for s and t in the connected set C_{j}. Finally for $\epsilon=1 / n$, there are points $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ with $\left|F(f)-\left(f\left(s_{n}\right)-f\left(t_{n}\right)\right)\right| \leqq 1 / n$. If s_{0} is a cluster point of $\left\{s_{n}\right\}$ and t_{0} a cluster point of $\left\{t_{n}\right\}$, then $F(f)=f\left(s_{0}\right)-f\left(t_{0}\right)$. If $F(f) \neq 0$, then the s and t so obtained are distinct. In general they may not
be distinct if $F(f)=0$. If $C(S)$ contains no one-to-one functions, then for any f, in particular for f with $F(f)=0$, there are distinct points s and t with $f(s)-f(t)=0=F(f)$. Under these circumstances, if the measure of every component is zero, then F satisfies $\left({ }^{* *}\right)$.

The case which remains is that in which $C(S)$ contains a one-to-one function, i.e., as S is compact, where S is homeomorphic to a compact subset of R. And the only measures μ of interest are those which take every component to zero. One distinguishing feature of the real line situation is that if F satisfies (**), there cannot be more than one component C with $\mu(C)=0$ and $|\mu|(C) \neq 0$. To see this we will first show that if U is clopen and $\mu(U)=0$, then either $|\mu|(U)=0$ or $|\mu|\left(U^{c}\right)=0$. Suppose not. Then, for $S \subseteq\left[c_{1}, c_{2}\right]$, consider $F\left(\left(. x-c_{1}\right)^{n} \chi_{U}\right)$. If this were always zero, then $F\left(P(x) \chi_{U}\right)$ would be zero for each polynomial P and, consequently, $|\mu|(U)=0$. So for some n, $F\left(\left(x-c_{1}\right)^{n} \chi_{U}\right) \neq 0$, that is to say there is a one-to-one function h_{1} with $F\left(h_{1} \chi_{U}\right) \neq 0$. By symmetry there is a one-to-one function h_{2} with $F\left(h_{2} \chi_{U^{c}}\right) \neq$ 0. Let

$$
g=\left(a_{1}+b_{1} h_{1}\right) \chi_{U}+\left(a_{2}+b_{2} h_{2}\right) \chi_{U^{c}}
$$

where a_{1}, a_{2}, b_{1}, and b_{2} will be chosen shortly. By hypothesis, $F\left(\chi_{U}\right)=0=$ $F\left(\chi_{U^{c}}\right)$, thus $F(g)=b_{1} F\left(h_{1} \chi_{U}\right)+b_{2} F\left(h_{2} \chi_{U^{c}}\right)$. Since neither $F\left(h_{1} \chi_{U}\right)$ nor $F\left(h_{2} \chi_{U^{c}}\right)$ are zero, there are non-zero scalars b_{1} and b_{2} for which $F(g)=0$; let b_{1} and b_{2} be so chosen. Choosing a_{1} large and positive and a_{2} large and negative makes g one-to-one. We then have $F(g)=0$ but cannot have $g(s)$ $g(t)=0$ for $s \neq t$, contradicting property $\left(^{* *}\right)$ for F. Suppose that x and y belong to different components and to the support of μ. Then we can find clopen disjoint neighborhoods U_{x} and U_{y}. The measure of the clopen set U_{x} must be 0 , 1 , or -1 . It cannot be zero, for then, by what we have just shown, either $|\mu|\left(U_{x}\right)=0$, and x is not in the support of μ, or $|\mu|\left(U_{y}\right)=0$ and y is not in the support of μ. Thus, say, $\mu\left(U_{x}\right)=1$ and $\mu\left(U_{y}\right)=-1$. This leads to $\mu\left(C_{x}\right)=$ 1 and $\mu\left(C_{y}\right)=-1$, as in the first part of this proof; a case which we have already handled and therefore have excluded, being now interested only in those measures which are zero on each component. So we see that such a measure must have support in a single component C which, by identification via homeomorphism we may take to be the closed interval $[0,1]$.

In the final case remaining we then have a linear functional F on the real valued continuous functions on $[0,1]$ and we want to know under what conditions F can, for each f, be written in the form $F(f)=f(s)-f(t)$ for distinct s and t. Of course, as before, we have $\|F\| \leqq 2$ and $F(1)=0$. Given F there is a normalized function α of bounded variation on $[0,1]$ with $F(f)=\int_{0}{ }^{1} f d \alpha[7]$. In a previous part of the proof we have seen that if $F(f) \neq 0$, then $F(f)=$ $f(s)-f(t)$ for some s and t, which are necessarily distinct. Thus F has the property $\left({ }^{* *}\right)$ if and only if its null manifold $N(F)$ contains no one-to-one function. We will show that this holds if and only if either α is non-positive on $[0,1]$ or non-negative on $[0,1]$.

Suppose that $\alpha(x) \geqq 0$ for x in $[0,1]$. A one-to-one function f on $[0,1]$ is either increasing or decreasing ; by considering f or $-f$ we may suppose that it is increasing. Let $\alpha(x)=\alpha_{1}(x)-\alpha_{2}(x)$, the difference of two normalized monotone functions. The left-continuity of α guarantees that there is an inter$\operatorname{val}(c, d]$ on which α is strictly positive, and so $\alpha_{1}(x)>\alpha_{2}(x)$ there. Then

$$
F(f)=\int_{0}^{1} f d \alpha_{1}-\int_{0}^{1} f d \alpha_{2}=\int_{0}^{1} \alpha_{2} d f-\int_{0}^{1} \alpha_{1} d f,
$$

after an integration by parts, using the information that, by the normalization, $\alpha(0)=\alpha_{1}(0)=\alpha_{2}(0)=0$, and $F(1)=\alpha(1)=\alpha_{1}(1)-\alpha_{2}(1)=0$. Then

$$
F(f)=\int_{0}^{1} \alpha_{2} d f-\int_{0}^{1} \alpha_{1} d f \leqq \int_{c}^{a}\left(\alpha_{2}-\alpha_{1}\right) d f<0
$$

Hence $N(F)$ contains no one-to-one function. And similarly if $\alpha(x) \leqq 0$ for x in $[0,1]$.

To complete the proof suppose that F has property (${ }^{* *}$) on $C[0,1]$. Let h be strictly positive and continuous and set $f(x)=\int_{0}^{x} h(t) d t$. Integrating by parts,

$$
F(f)=\int_{0}^{1} f d \alpha=-\int_{0}^{1} \alpha d f=-\int_{0}^{1} \alpha(t) h(t) d t
$$

The functional value $F(f)$ cannot be zero as f is one-to-one. More is true. We cannot have $F\left(f_{1}\right)<0$ and $F\left(f_{2}\right)>0$ for two such functions f_{1} and f_{2}; else $F\left(c f_{1}+(1-c) f_{2}\right)=0$ for some $0<c<1$ and a one-to-one function $c f_{1}+$ $(1-c) f_{2}$. So, say, $F(f) \leqq 0$ for all f 's so given by strictly positive h 's. Then the map $G(g)=\int_{0}^{1} \alpha(t) g(t) d t$ is a positive linear functional on $C[0,1]$. Consequently the measure $\alpha(t) d t$ is a positive measure and $\alpha(t) \geqq 0$ for all t except perhaps those in a set of Lebesgue measure zero. Because α is continuous from the left, $\alpha(t) \geqq 0$ for all t in $[0,1]$. If $F(f) \geqq 0$ for all f of the type described, then $\alpha(t) \leqq 0$ for all t in $[0,1]$.

There are many variations and generalizations of our considerations which lead to interesting problems in analysis. We mention characterizing those F on real $C(S)$ which satisfy, for fixed $u_{1}, \ldots, u_{n}, F(f)=\sum u_{i} f\left(s_{i}\right)$ for distinct points s_{1}, \ldots, s_{n} which may vary with f, and characterizing those l satisfying $\left.{ }^{(* *}\right)$ on complex $C(S)$ or on a given function algel)ra.

Acknowledgement. I would like to thank the referee for his advice and for the proof of Lemma 1.

References

1. A. Browder, Introduction to function algebras (Benjamin, 1969).
2. J. Dugundji, Topology (Allyn and Bacon, 1966).
3. N. Dunford and J. Schwartz, Linear operators I (Interscience, 1958).
4. L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand, 1959).
5. A. Gleason, A characterization of maximal ideals, J. D'Analyse Math. 19) (1967), 171-172.
6. J. P. Kahane and W. Zelazko, 1 characterization of maximal ideals in commutatice Banach algebras, Studia Math. 29 (1968), 340-343.
7. A. Taylor, Introduction to functional analysis (Wiley, 19.5s).

University of California at Irvine, Irvine, California 92717

[^0]: Received January 11, 1977 and in revised form, October 28, 1977.

