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OSCILLATIONS OF SECOND ORDER NEUTRAL 
EQUATIONS 

G. LADAS, E. C. PARTHENIADIS AND Y. G. SFICAS 

1. Introduction. Consider the second order neutral differential equa
tion 

d2 

(1) T2 [.HO + py(f - T) ] + qy(t - a) = 0 
at 

where the coefficients p and q and the deviating arguments T and a are real 
numbers. The characteristic equation of Eq. (1) is 

(2) F(X) = X2 4- pX2e~Xr + qe~Xa = 0. 

The main result in this paper is the following necessary and sufficient 
condition for all solutions of Eq. (1) to oscillate. 

THEOREM. The following statements are equivalent: 
(a) Every solution of Eq. (1) oscillates. 
(b) Equation (2) has no real roots. 

On the basis of the analysis which was presented in [3], it suffices to give 
the proof of this theorem in the special case where 

(3) q > 0, T < 0, a < 0 and p < 0. 

2. Proof of the theorem. The proof that (a) =» (b) is obvious. However, 
the proof that (b) =̂> (a) is quite complicated and will be accomplished by 
examining various cases and by establishing a series of lemmas. 

In the sequel we will assume, without further mention, that (3) holds. 
We will also assume that Eq. (2) has no real root and, for the sake of con
tradiction, we assume that Eq. (1) has an eventually positive solution 

.KO-
LEMMA 1. (a) 

(4) o < r. 

(b) There exists a positive constant m such that 

(5) F(k) = X2 + X2pe~Xr + qe~Xa ^ m, for all X e R. 
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Proof, (a) Otherwise, a è T and so 

F{oo) = — oo. 

But F(0) = q > 0. This is impossible because the characteristic equation 
F(X) = 0 has no real roots. 

(b) We have F ( - o o ) = F(oo) = oo and so F(X) > 0 for all X e R 
Hence 

m = min F(X) 

exists and is a positive number which satisfies (5). 

Set 

(6) v(/) = ~[y(t) + py(t - T ) ] . 

LEMMA 2. (a) v(t) is a twice continuously differentiable solution of Eq. (1). 
That is, 

(7) v(/) 4- pv(t - T) + r̂v(/ - a) = 0. 

( b ) £/*/K?r 

(8) v(0 > 0, v(0 < 0, v(/) > 0 

or 

(9) v(/) > 0, v(/) > 0, v(/) > 0 

(c) When (8) holds then p < - 1. 

Proof (a) It follows immediately from the linearity and the autonomous 
character of Eq. (1). 

(b) We have 

(10) v(/) = qy(t - a) > 0 

which implies that v(t) is strictly increasing and so either 

(11) lim v(t) = oo 
t—*oo 

or 

(12) lim v(0 = / G R 
t—^oo 

Clearly (11) implies (9). Now let (12) hold. First we will show that / = 0. 
Indeed, by integrating (10) from t0 to t and letting t —> oo we see that 

/

ex? 

y(s ~ o)ds 
'0 

tfttd lim v(/) = lim v(f) = 0 
t—>oo r—>oo 

^/«J lim v(/) = lim v(/) = oo. 
t—*oo t—>oo 
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which shows that 

y e Ll[t0, 00). 

Hence, 

(13) v e Ll[t0, oo) 

and so / = 0. Thus v(/) increases to zero which implies that eventually 

v(0 < 0. 

But then v(/) decreases and in view of (13), 

lim v(0 = 0. 

Therefore, v(/) decreases to zero which implies that 

v(0 > 0. 

(c) For the sake of contradiction assume that (8) holds and that 
p ~ — 1. From parts (a) and (b) we see that v(/) is a positive solution of 
Eq. (1) and, therefore, 

- [ v ( 0 + pv(t - T ) ] > 0, 

which implies that 

v(0 < - pv(t - T) ^ v(t - T). 

But this contradicts the fact that v(/) is a decreasing function. 
Next, we will define two sets corresponding to whether (12) or (13) is 

satisfied. Let W~ and W^ be the set of all functions of the form 

Ht) = -MO + pv(t - T ) ] 

where v(/) is a twice continuously differentiable solution of Eq. (1) which 
satisfies (8) and (9) respectively. In view of Lemma 2, either W~ or W+ is 
nonempty. Also, an argument similar to that of Lemma 2 shows that each 
function w e W~ U W + i s a four times continuously differentiable 
solution of Eq. (1), that is, w e C 4 and 

(14) w(t) + pw(t - T) H- qw(t - o) = 0. 

Also, there is a solution v G C of Eq. (1) which satisfies (8) if w G W~ 
or (9) if w G W^ such that 

(15) w(t) - qv(t - a). 

Clearly, every function w G W~ satisfies 

(16) w(t) > 0, w(t) < 0, w(t) > 0 and lim w(t) = lim w(t) = 0 
t—*oo /—>oo 

while every function w ^ W^ satisfies 
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(17) w(t) > 0, w(t) > 0, w(t) > 0 and lim w(t) = lim w(t) = oo. 
t—>oo t-^oo 

Furthermore, 

w(0 G ^ ~ ^ > - [ w ( 0 4 pw(t - T ) ] G W 

and 

w(t) Œ W+ =* ~[w(t) 4 />w(f - T ) ] e W + . 

Finally, Wj and w2 G W (respectively in W+) and a, b > 0 =̂> AM^ 4 
bw2 ^ W (respectively in W ) . 

With each function w ^ W~ U W define the set 

A(w) = {A ^ 0: w(t) - X2w(t) ^ 0}. 

Clearly, 0 G A(W) and if A e A(w) then [0, A] ç A(w). That is, A(w) is 
a nonempty subinterval of R+ . 

First, we will assume that W~~ = 0 (i.e., W+ ¥* 0) and we will show 
that this leads to a contradiction. 

LEMMA 3. (a) Let w G W + . 77?^ A0 = (ql -p)vl G A(w). 

(b) A(w) w bounded above by a positive constant /A, /or <2/ry w ^ W . 
(c) Le/ w G W^ and A G A(H>). Then 

w(t) - Aw(0 ^ 0. 

Proof, (a) From (14) and the fact that w(t) > 0 we have that 

(18) pw(t - T) 4 #w(/ - a) < 0 

or 

w(t) 4 -w( / 4- (T - a ) ) > 0. 

The increasing nature of w(t) and the fact that T > a imply that 

w(0 4 -w(0 > 0 

which shows that 

r 
(b) By integrating (18) from t — a to t, with a > 0 we find 

A0 s ( -^-) 1 / 2 G A(w). 

\v(0 - w(f ~ a) 4 - / w(s 4 (T - a) )<fc > 0 
p J t a 

which yields 
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w(t) + -aw(t - a + (T - a ) ) > 0. 

By integrating again from t — ft to t, with j8 > 0 we find 

w(t) - w(/ - /?) + -a I _ w(s - a + (T - o)ds) > 0 
p J l p 

which implies 

w(t) + -apw(t - (a + j8) + (T - a) ) > 0. 

Choose 

a = p = (j - a ) /2 > 0. 

Then 

q (r — o)2 I T — a\ 

p 16 \ 2 / 

or 

(19) w( t + -
^ ) 

< >lw (0 

where 

,4 
<?(T 

-16/7 

- a) 
2 > 0. 

Now let /c 6 N be such that — a ^ (r — o/2)k. Then (19) and the increas
ing nature of w(t) imply that 

(20) w(t - a) ^ wit + ^—-fc ) < Awlt + ^ ^ ( ^ - 1) 

< . . . < ^*w(f). 

By integrating (15) from t — a to t, with a > 0 we find 

w(t) — w(t — a) = / _ #v(.y — a)tfe > gav^ — a ~ a) 

or 

w(/) > gav(/ ~ a — a). 

By integrating again from / — /? to /, with /? > 0 we find 

w(/) — w(/ — /?) > J qav(s — a — o)ds 

> 2a/*v(f ~ (a + ft) - o) 
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or 

w(t) > qafiv(t — (a + fi) - a). 

Choose a = /3 = — a/2 > 0. Then 

qo2 

(21) W ( r ) > l r v ( 0 . 
4 

By combining (15), (20) and (21) we have that 

4 4/1* 
w(t) = qv(t — a) < ~2>v(/ — a) < —2"W(/) 

or 

/24* /2\2 

w(0 - w(t) < 0 

which shows that 

2Ak/2 

fi = <£ A(H') for any w ^ W 

proving (b). 
(c) Set 

0(0 = e~X/w(/). 

Then 

0(0 = e~Xt[w(t) - Xw(t) I 

0(0 = e~X/[w(0 - 2\w(r) + X2w(t) ] 

and 

(22) 0(/) + 2X0(0 = e~Xt[w(t) - X2w(t) ] â 0. 

From (22) we see that 0(O^2 ' is a nondecreasing function and so if the 
conclusion in part (c) were false, then 

(23) 0(0 < 0. 

From (22) and (23) we see that 

0(0 > 0 

and so 

w(t) - 2Xw(t) + X2w(t) > 0 

which together with the hypothesis that 

w(t) - X2w(t) ^ 0 
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implies that 

(24) w(t) - Xw(t) > 0. 

Set 

u(t) = —[w(t) — \w(t) ]. 

Then u(t) is a solution of Eq. (1) and because of (23) and (24) 

(25) u(t) > 0 and U{t) < 0. 

Now using u instead of y in (6) and the hypothesis that W~ = 0 we see, 
as in the proof of (9), that 

lim [~[u(t) + pu(t — T) ] ] = oo. 
t—*oo 

But (25) implies that 

lim u(t) G R, 

and this contradiction completes the proof of Lemma 3. 

By integrating both sides of (14) from t0 + o to / we find 

[w(t) + pw(t — r) ] — [w(t0 + a) + /?H>(/() -f a — T) ] 

+ q I , w(s — aWs = 0 

or 

ft-a 

(26) -[vv(0 + pw(t - T)] = c + q I ^ w(s)ds, 

where 
(27) c = ~[w(t0 + a) + />w(f0 + a - T) ]. 

As w(f) is a solution of Eq. (1), with w(t) satisfying (17), it follows from 
(26) that iîw ^ W+ then 

ft-a 
c + q w(s)ds e W + 

where c is the constant given by (27). 

LEMMA 4. Let w <= W+ and X <E A(w). SW 

m 
A = > 0 

2(-pe~^r + é>^a) 
where m is the constant defined in Lemma 1(b), and \i is the constant defined 
in Lemma 3(b). Then 

(X2 + A01/2 €= A(z). 
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where 

ft'0 c\ 
(28) z(t) = - [ w ( 0 + pw(t - T ) ] + X / w ( s ) * + — 

J h q 
and c is the constant given by (27). 

Proof. Clearly z(t) is an element of W+. From Lemma 3(c), we have 

(29) w(t) - Xw(t) ^ 0. 

This, together with (28), yields 

(30) z(t) = qw(t - o) + Xw(t - o) ^ (q + X2)w(t - a). 

By integrating (29) from t0 to /, we find 

0 ^ w(t) - X / w(s)ds 

/

t-a Çt-a 

w(s)ds + X I w(s)ds 
and so 

(31) - w ( 0 + X / w(s)<fc ^ X / w(s)<fe. 

Using (28), (30), (31), the increasing nature of w(t) and the fact that 

t0 < t < t - 7 < / - a, 

we see that 

z (0 - (X2 + N)z(t) ^ (q + X2)w(f - a) 

- (X2 + N)X J t ° w(s)ds + (X2 + #)/>w(f - T) + cj 

where 

c, = - (X2 + N)-. 
q 

Set 

<K0 = w(t)e~Xt. 

Then 

<K0 = e~Xt[w(t) - Xw(t) ] ^ 0 

which shows that <p(t) is nondecreasing and so 

X J t ° w(s)ds = X J t eXs<P(s)ds ^ <p(t - a) J ' ° Xe^ds 

= q>(t - o)eXt[e~Xo - 1]. 
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Then 

z(t) ~ (A2 + N)z(t) 

â (q + \2)<p(t - o)eX{t~o) - (A2 + N)<p(t - a)eXt[e~Xa - 1] 

+ (A2 + N)p<p(t - o)eMt~T) + c, 

<p(/ - o)e M 
qe 

-Xa Xa I \ 2 2n-\r Ne~Aa + \z + N + \zpe~KT 

-Xa 

+ Npe~Xr + 
w(/ — a) 

S tv(/ — a)^ Xa 
-Xa 

(A2 + /?£>~AT + qe~Xa) + 
vv(/ — a) 

- N(-pe~Xr + e"Xa) 

^ w(t — a y Xa m + 
C\e 

-Xa 

w(t — a) 
- N(-pe~^T + e - ^ ) 

As 

lim w(t) = oo 

we see that for sufficiently large /, 

m 4- m 
w(t - a) 2 

Then 

z(t) 4- (A2 + # ) z ( 0 ^ w(/ - a y Xa 

"2 "2 J 
0 

which completes the proof of Lemma 4. 

Now consider the sequence of functions 

zn(t) = - [ z I I _ , (0 + pzn_](t-T)] + \ l zn_ 
J to 

}(s)ds + 
c„A„ 

« = 1, 2, . . . 

where z0(t) is the function defined by (28), A0 is the number defined in 
Lemma 3(a), 

N m 
2{-pe~^ + e~^Y 
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K = <K-i + N) 
1/2 

and 

A repeated application of Lemma 4 shows that 

\n e A ^ ^ ) , for n = 1, 2, 

Clearly 

lim Xw = oo 
M—»oo 

which contradicts the fact proved in Lemma 3(b) that 

Xn ta ju, for all « = 1, 2, . . . . 

This completes the proof of the Theorem when W~ = 0. 
Next we assume that W~ ^ 0. Then in view of Lemma 2 (c), p < — 1. 

LEMMA 5. (a) Let w e W~ ««J k & N be such that — AT > T — a. 

xA + l 

1/2 
A(w). 

(b) Let w e W~ and A G A(W). 7% «̂ 

vv(0 4- Xw(t) g 0. 

(c) A(w) zs bounded above by a positive constant X2, /or any w & W . 

Proof, (a) Let A e N be such that — AT > T — a > 0. For w e H^~ we 
have 

(32) - [ w ( 0 + /w( / - T ) ] > 0 

and so 

w(t) < -pw(t - T) < (~p)kw(t - kr) < (-p)kw(t + (T - a) ) 

which together with (18) implies that 

4 w(f) -
(-/>)' 

£+1 w(0 ^ 0. 

(b) Set 

i//(0 = w(t) + Xw(f). 

Then 

i^(0 - XiKO = w(0 - X2w(t) ë 0 
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and so 

dt 
-Xfi 

showing that \p(t)e {is a nondecreasing function. 
Now observe that 

lim ty(t)e~Xt] = 0 
f—>oo 

which implies that 

W)e~Xt ^ 0 

and so 

(c) Otherwise 

X2 = — ln(—/?) G A(w), for some w e W - . 
— T 

Then from part (b) 

w(t) + \ 2 w(0 È 0 

which shows that the function 

w(t)eX^ 

is nonincreasing and so 

w(t)eX^ ^ w(f - r)^'^ 

or 

w(0 S e~À2Tw(/ - r) - -pw(t - r) 

contradicting (32). The proof of Lemma 5 is complete. 

For any function w e W~ by integrating (14) from t to /l5 twice, and by 
letting *! —» oo and using (16), we find that 

/

oo /*oo 

/ w(£ - o)d£ds 

or 

/

oo /"oo 

*-T J s w(&)d£ds. 

This shows that the right-hand-side of (33) is an element of W~, and so 
for any w e W~ the function 

/

oo /*oo 

iTJs wH)dids 

is an element of W~. 
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LEMMA 6. Let w e W and let A e A(w) with 

À g X0 s [q/(-p)k + l]U2-

Set 

K = m 

P + <7/*o 

where m is the constant defined in Lemma 1(b). Then 

(A2 + K)U2 e A(z) 

where z is the function defined by (34). 

Proo/. Clearly z(f) G H / _ . Also as A G A(W), 

/

oo /"oo 

f — 0 »/ 5 

/

oo /"oo 
/ w(&&fc = 0 

t — o J s 

or 

/

oo /"oo 
/ w(i)dèds. 

t~a J s 

By using (35) we have 

z(t) - (A2 4 K)z(t) 

= <?w(f - a) 4 (7w(^ - T) + (A2 4- K)w(t) 4 (A2 4 JQ/w(f - T) 

/

oo Too 

( T J V *(&&& 

/

oo /"oo 

/ - a J v w(&d&s + ?w(* - T) 4 A 2w(0 4 X2pw(t - T) 

/

oo A x 

t-T J S 

/
oo /"oo 

r-r J s W^d&S 

f A - a /"oo I 

= ^ | j r - T J V ^ © ^ ^ + ^ - T) + A2W(/) 

4 A>w(/ - T) 4 Kpw(t - T) - - f A2 J t_r J s w(Od(£)ds 

^ / , - , / , H&dids 

Now set 

<t(t) = w(t)ex'. 
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Then 

«HO = eXt[w(t) 4 Xw(t) ] ^ 0 

which shows that <p(/) is nonincreasing and so 

/

t-a Ax> ft-a 

,-rJs emends ^ ^ - r)\ J t_T -

= <p(/ - T) ![__[ ~ Xe'^ds = <p(t -T)e-Xit~T\e-X{T~o) - 1] 

= w(t ~ r)[e'X(T'a) - 1]. 

Also the nonincreasing nature of <p(t) implies that 

e^ds 

J^t w(t)eAl ^ w(t - r)é - .AJ^-T) 

or 
- A T (37) w(t) ^ w(t - r)e~ 

By using (35), (36) and (37) we find 

z(t) - (A2 4- K)z{t) 

^ qw(t - T)[e~X(r~a) - 1] + qw(t - T) 4 X2w(i - r)e~ 

4 X2pw(t — T) 4 A/nv(f - T) - —|w(/ - T) 

AT 

= w(t — r)e 

^ w(t - r)e 

. A C T 

v0 

(qe*° 4 X' 4 W 7 ) " *(J> ~ / ^ 

-AT m — K\—p + -J 

= w(t — r)e r[m — m] 

= 0 

which completes the proof of Lemma 6. 

Now consider the sequence of functions 

/

oo Ax> 

« = 1, 2 , . . . , 

where z0(f) is the function z(t) defined in (34), 
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[ g f1 

k~P)k+x\ ' 
m 

-P + ?/*o 

X„ = (\2-, + K)v\ 
A repeated application of Lemma 6 shows that 

\n G A(zw_!) for « = 1 , 2 , . . . . 

Clearly 

lim Xn = oo 

contradicting the fact proved in Lemma 5 (c), that A(w) is bounded above 
for any w G W~. This contradiction completes the proof of the 
theorem. 
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