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ANALYSIS OF THE AFFINE TRANSFORMATIONS
OF THE TIME-FREQUENCY PLANE

FILIPPO D E MARI AND KRZYSZTOF NOWAK

We consider two aspects of the action of the extended metaplectic representation
of the group G of affine, measure and orientation preserving maps of the time-
frequency plane on L2 functions on the line. On the one hand, we list, up to
equivalence, all possible reproducing formulas that arise by restricting the rep-
resentation to connected Lie subgroups of G. On the other hand, we describe,
in terms of Weyl calculus, the commutative von Neumann algebras generated by
restriction to one-parameter subgroups.

1. INTRODUCTION AND PRELIMINARIES

The time-frequency plane consists of pairs of points (x,£), x, £ € R, where x
denotes time and £ frequency. Its main purpose is to provide time-frequency represen-
tations of signals (one wants to identify essential frequencies at every moment of time).
The basic objects related to it are the extended metaplectic representation, the Wigner
distribution and the Weyl calculus of pseudodifferential operators. In this paper we
examine reproducing formulas coming from restrictions of the extended metataplectic
representation and commutative von Neumann algebras generated by the values of the
extended metaplectic representation on one-parameter subgroups.

We begin by recalling basic operations on functions: time shifts, frequency shifts,
Fourier transform, dilations and multiplications by purely imaginary gaussians, and
by interpreting them as transformations of the time-frequency plane. Later we define
the extended metapletic representation, Wigner distributions, Weyl pseudodifferential
operators, and we present their basic properties. At the end of the section we discuss
our results.

Let / € L2(R). The operations / i-> /(• - q), / »-» e2" '"/ are the time shift by q
and the frequency shift by p. It is intuitively clear that on the level of time-frequency
representations they correspond to the transformations (x, £) H-> (X + q, £), and (x, £) >-»
(z,£ +p). Denote by T the Fourier transform Tf{Q = / ^ f{x)e~2*ix(- dx and by g
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196 F. De Mari and K. Nowak [2]

the Gaussian, normalised in such a way that Tg — g and ||<?||£,2(R) = 1 • The function g
is concentrated in a small neighbourhood of 0 and so is its Fourier transform. For this
reason g may serve as a basic time-frequency block concentrated at the point (0,0),
and the function gqtP(x) — e2ntpxg(x-q) may serve the same purpose for the point
(<7,p). An easy computation shows that Jr~1gq,P — e2vxqvg-.v<q. This means that the
inverse Fourier transform corresponds to the transformation (q,p) i-> {-p,q), that is, to
rotation by IT/2 . Similar arguments show that the time-frequency plane transformations
corresponding to / i-> t~1/2f(-/t), and / i-» e"XT' /(•) are (q,p) i-> (tq,t~1p), and

The above transformations of the time-frequency plane generate the group of mea-
sure and orientation preserving affine maps. This group may be described as the semidi-
rect product K2 xi SL(2, K), where the group operation is given by the formula

The action of the element ( , A 1 on is defined by
VLPJ / UJ

We have defined basic operations on functions and we have assigned to them cor-
responding transformations of the time-frequency plane. This process may be reversed:
we may assign to time-frequency plane transformations corresponding operations on
functions. This reversed assignment may be extended from the five generators to the
whole group R2 x5L(2 , R) just by requiring that compositions of affine maps correspond
to products of operators. What comes out is a projective unitary representation u> of
R2 x 5L(2,R) on L2(M), called the extended metaplectic representation (see [6, 9]).
Summarising, the extended metaplectic representation assigns to every affine measure
and orientation preserving map of the time-frequency plane a naturally corresponding
unitary operator.

The Wigner distribution is a commonly used tool for representing functions on the
time-frequency plane. For / € L2(R) the Wigner distribution Wj is defined as

(1.1) Wf(x,Z) = r e-2^"f(x+p/2)f(x-p/2)dp.
J — oo

It was introduced in physics as a substitute for the nonexistent joint probability distri-
bution of position and momentum. We recall its basic properties.
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Marginal properties

(1.2) r Wf(x,Odx = \Tf(O\\ r Ws{x,OdZ = \}{x)\\
J—oo •/—oo

The Heisenberg inequality

Ff
J — OO J — C

Orthogonality relations

(1.4)

(1-3) / / (\x-a\2+\S-b\2)Wf(x,0dxdti21^-
1 I VI / JV 27T

where by Wf<g we denote the bilinear form generated by the Wigner distribution (re-

place the factor f{x - p/2) by g(x - p/2) in (1.1)),

Faithfulness

if Wf = Wg, then f = eg for some complex c, \c\ — 1,

Invariance with respect to the extended metaplectic representation

(1.5) WUTf = WfoT-1, for T e R2 x S I ( 2 , R ) .

The value Wf(x,£) is often interpreted as the intensity of the frequency £ at the
moment x.

The Weyl calculus of pseudodifferential operators is another commonly used time-
frequency tool. For a € S'(R2) the formula

(1-6) (°wf, g) = I" l°° a(x,S)Wf,g{xt0 dx d£
J—oo J—oo

defines an operator from the Schwartz class <S(R) into the space of tempered distribu-
tions S'(R). If f,g € 5(R) , then Wfi9 6 <S(R2), and the integral in (1.6) expresses
the duality between tempered distributions and Schwartz class functions. The operator
aw is called the Weyl pseudodifferential operator with symbol a. The Weyl operator
aw with a bounded symbol a is interpreted in electrical engineering as the localisation
operator which restricts the time-frequency content of a signal to the support of the
symbol a.

The invariance of the Wigner distribution with respect to the extended metaplectic
representation (1.6) has its counterpart in terms of Weyl calculus, namely

(1.7) uTaww;x
 = {G-OT-X)W.
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The meaning of formulas (1.5) and (1.7) may be expressed as follows:

• the action of wT on / corresponds to a change of variables by r " 1 in the
time-frequency representation Wf of / ;

• conjugating the pseudodifferential operator aw with u)T corresponds to
changing variables by T " 1 on the symbol level.

Both formulas (1.5) and (1.7) nicely fit with the interpretations mentioned before, and

indicate once again that the action of the extended metaplectic representation u)T may

be interpreted as the transformation of the time-frequency plane given by r . For details

we refer the reader to [6, 7, 9, 10].

The analysis related to the time-frequency plane splits naturally into three levels:

• the level of time-frequency plane—representing functions on the time-
frequency plane as Wf;

• the operator level—studying the operators wT, aw;
• the group level—formal calculus on the group R2 x SL(2,R).

We stress that the group E 2 xSZ,(2, R) exhausts the list of all afHne transformations
which map Wigner distributions to Wigner distributions. Thus it is the full set of all
possible affine maps of the time-frequency plane into itself. This is the reason why the
group R2 x SL(2,R) and the extended metaplectic representation, which reflects the
actions of the group elements on functions, define a natural context for investigating
time-frequency phenomena.

The first problem we address is: List all possible reproducing formulas which arise
in the context of the extended metaplectic representation. We restrict our attention to
group related reproducing formulas, that is to formulas of the form

= / ( / . Uh<l>)uh<t> dh,
JH

where H is a connected Lie subgroup of R2 x SL(2,R), and / , </> € L2(R). We list
all the connected Lie subgroups of R2 x SL(2, R), we check which of them lead to
reproducing formulas and we formulate explicit admissibility conditions for 4> in each
case. Finally, we show that the conjugacy relation properly classifies subgroups from
the point of view of reproducing formulas. Our results are contained in Section 2 in
Theorems 2.1, 2.2.

Reproducing formulas have a long history in the theory of function spaces and
have a well established role in applications (see [2, 5]). We mention that the Calderon
reproducing formula is essential in Littlewood-Paley theory [8], while the reproducing
formula based on the Schrodinger representation is fundamental in the theory of mod-
ulation spaces [4, 5]. Both formulas appear in our list. Our contribution may also be
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considered as a continuation, on the group theoretic level, of the engineering program

initiated in [1].

Next we show a heuristic argument, which explains why uniform coverings of the

time-frequency plane are closely related to reproducing formulas. Let <ph be a family

of square integrable functions indexed by a parameter h G H, H a set. Let \i be a

measure on H and let us assume that

(1.8) / \ ( i , 0 # ) = 1 for all ar.e.
JH

Then for f,g e L2(R) we have

(1.9) f {f,<Ph)(<t>h,9)d»(h) = f (Wu,Wth)dn(h)
JH JH

= r r
J — OO J — O

In the above argument we used the orthogonality relations (1.4) and the analogue of
(1.2) for Wfg. Clearly the chain of equalities (1.9) leads to the identity

= f{f,<t>h)<t>hdii{h),
JH

that is, to a reproducing formula. Condition (1.8) expresses the fact that the time-
frequency plane is uniformly covered by 4>h • Although the above argument is nice and
simple, it is not formally correct. The change of order of integration in the second step
of (1.9) is not allowed and the argument itself may yield false admissibility conditions.
In our proofs we adapt a different approach, based on Plancherel's formula.

The second problem we address is: Find descriptions, in terms of Weyl calculus, of
the commutative von Neumann algebras generated by restriction of the extended meta-
plectic representation to one-parameter subgroups of R2 x SL(2 ,R) . A restriction of
the extended metaplectic representation to a one-parameter subgroup has a nice de-
scription. Let gt be a one-parameter subgroup of R2 x 51,(2, R). There is precisely one
element P of the algebra Q of real polynomials of x, £ of degree at most 2, modulo
constants, for which

(1.10) ujgt = eMtpW.

Formula (1.10) follows from the fact that the Lie algebra of R2 x SL(2,R) and the
algebra Q equipped with the Poisson bracket are isomorphic [6].
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At the beginning of Section 3 we observe that by conjugating with the extended
metaplectic representation one may reduce any Pw to one of the following: P™, P™,

P™, Pf, where

(1-11)

The polynomials Pj, J € T = {e,h,d,p,l} correspond to nonconjugate one dimen-
sional subgroups of R2 x SL(2, R).

In view of (1.10) the von Neumann algebras generated by wgt, where gt is a one-
parameter subgroup of R2 x SL(2,R), may be described as

Ap = {M(PW) : M is a bounded function},

where P is the polynomial corresponding to gt- By conjugating with the extended
metaplectic representation, one may reduce the general Ap to one of the Apj . For
each J £ T one may construct a spectral measure diagonalising PJ.

We prove that for a bounded operator aw the following conditions are equivalent:
aw is an element of Ap, the symbol a is constant on the level lines of P, aw commutes
with e

2*ltpW, t € M. In the case when the level lines of P are not connected we need
an extra assumption on aw, namely that aw is a D -class operator with respect to
the decomposition of L2(R) induced by the polynomial P. This result is contained in
Theorem 3.1.

The operators belonging to Ap may be represented both in terms of multipliers
as M(PW) and in terms of Weyl symbols as aw. Theorem 3.2 contains formulas which
allow one to express symbols in terms of multipliers. The algebras Ape, Ap, and Apd

are standard: Apc is the algebra generated by the Hermite operator, Apt is the algebra
of bounded convolution operators, and Apd is a subalgebra of Apt. The whole picture of
operator algebras Ap expressed in terms of affine transformations of the time-frequency
plane and the multiplier-symbol correspondence for Aph, App, however, seem to be
new.

The operators M(PW) have a nice interpretation. For M = X[a,b] they are inter-
preted as localisation operators restricting time-frequency content of functions to the
domain a ^ P(x,£) ^ b.
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2. REPRODUCING FORMULAS

Let H be a locally compact group, dh its left Haar measure, and w a strongly

continuous unitary representation of H on a Hilbert space ~H. A vector <f> G H is called

w -admissible if for all f eH the reproducing formula

(2.1) / = / {f,uh4>)wh4>dh
JJH

holds. The integral is understood in the weak sense. It is easy to observe that a vector
(j> e ~H is u) -admissible if and only if for all / e H

(2.2) \\f\\2 = f\(f,uh4>)\2 dh.

As we mentioned in the introduction, our target is to investigate and classify those
reproducing formulas that come from restrictions of the extended metaplectic represen-
tation to connected Lie subgroups of the semidirect product G — R2 M SX(2, R).

A subgroup H of G is called reproducing if the set of W|# -admissible vectors is
nonempty. The admissible vectors are called if-admissible in this case. Observe that if
two subgroups H\, H2 are conjugate, that is, H\ — g~lH2g for some g 6 G, then H\,
H2 are either both reproducing or both nonreproducing. Moreover 4> is Hi admissible
if and only if ujg<j> is H2 admissible. To see this it is enough to change variables in the
integral

/=

substituting h\ = g~lh2g.

We list now, up to conjugacy, all connected Lie subgroups of G. To this end, let

("s-1 01 , f l 01 m , fcostf - s i n 01
d.= \ n \, s > 0, lt = , J , * € R, kg =\ . Q . , 9 € M.

LEMMA 2 . 1 . [3] Any connected Lie subgroup of G is conjugate to one of the
following non-conjugate subgroups. For each group we indicate the dimension, a
parametrisation of the elements, with parameters q,p,t,6 € R and s > 0, and the
corresponding Haar measure:

a-,) ( [ ! ] • ' ) •
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(l.iii)

(l.iv)

(l.v)

(2.v)

(3-ii)

(3.v)

(C14 *
a01 , \ d6

Jtj,

p

> hd.i/2
dtds

03 •
(
(

oi ,
o ' ^

dpds

dpdt;

dpdt;

dtdsdO
2ns2 '

dp dt ds
;

dq dp ds
s

dq dp d6

2n '

dq dp dt ds
S*

dq dp dt ds d8
2ns2 '

THEOREM 2 . 1 . The only connected reproducing Lie subgroups of G are (2.i),
(2.ii), (2.iii), (2.v), (3.v) and their conjugates. The corresponding admissibility condi-
tions are:
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g = r (̂-x)i2 §=i, r
x Jo x * Jo

(2-v)

(3.v)

PROOF: We first show the positive results and then the negative ones.

POSITIVE RESULTS. Cases (2.i), (2.iii) are standard and we do not include their proofs.

CASE (2.ii). Since

and for F € L2(K)

(2.3) / / F(x)e-«ltx dx dt=
J-ooU-oo J0

we obtain

(2.4)

\{f,wh<}>)\2dh

,-nitx'

+ 2 Re f{x)J{-x

for 0 € L2(R) and / bounded, with support contained in {x €

0 < r < R < oo. Case (2.ii) follows easily from (2.4).

CASE (2.V). Since

: r ^ |x| < R},

for 0 , / € L2(R) we have

\(f,Ljh4>)\2dh = [\ f
—oo J— oo'J—oo

= r r
J —oo J —o
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C A S E (3.V). Observe that

By case (2.i) we obtain

\(f,Uh<f>)\2dh = - L I " | | / | £ 2 \\ujkg<t>\^ = \\f\\2
L2

NEGATIVE RESULTS: In each remaining case we show that formula (2.2) fails, hence
(2.1) fails as well. One dimensional results are relatively straightforward, so we include
only the proof of case (l.iv).

oo
CASE (l.iv). Let <f> = J2 Xmem be the expansion of 0 in terms of the Hermite

m=0

system defined in (3.1). Since

(2.5) ojk9<j>

(see for example [6]), for / € L2(K) we obtain

f \(f,ujh<p)\2dh=~ r

where j m = (/, em). By (2.6), no <j> € L2(R) satisfies condition (2.2).

CASE (2.iv). Since

by Plancherel

f \{f,whcj>)\tdh= r r

The last integral in (2.7) either diverges or vanishes.
oo

C A S E (3.i). Let <j> = Yl Xmem be the expansion of <j> in terms of the Hermite
m=0

system. Clearly

(2.8) u,
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An application of (2.5), Parseval's formula, (2.3) and (2.8) leads to

(2.9) / \(f,ujh(j>)\2dh =

Jo
f(x)f(-x)dx em(s)em(-s)^\,

for / bounded with suppor t contained in { x £ K : r ^ | x | ^ i ? } , 0 < r < R < oo.

Observe tha t (2.9) implies A2 m = 0 , for m = 0 , 1 , 2 , . . . . Indeed,

I e2m{s)\ - j = oo,
0 s

because e2m(0) ^ 0. Formula (2.9) implies also that

(2.10) J2 lA2-+i|2 / e2m+1(s)e2m+1(-s) - | = 0.
m Jo S

Since the functions e2 m+i are odd, it follows from (2.10) that A2m+i = 0, for m —

0 ,1 ,2 , . . . . This finishes the proof of case (3.i).

The remaining cases (3.ii), (3.iii), (3.iv), (4.i), (5.i) are straightforward conse-
quences of Plancherel's theorem. We omit their proofs. D

Now we classify the reproducing subgroups of G taking the reproducing formulas
themselves as criteria for classification. We show that two subgroups generate repro-
ducing formulas differing by an affine transformation of the time-frequency plane if and
only if they are conjugate.

Let H\, Hi be two connected Lie subgroups of G. We say that H? is equivalent
to Hi if there is a group isomorphism $ : Hi -> Hi such that for every H\ -admissible
4> there is tp € L2 such that for all / S L2

(2.11) (f,u)h<t>)wh<t>= (/,w*(/l)V')w*(/v)i/'-

This condition simply means that after a change of variables given by $ the coefficients
in the reproducing formulas are the same. It is easy to see that if Hi is equivalent
to H\ then ip — <j> modulo a phase factor, H? — H\ and $ = id. Indeed, if Hi is
equivalent to H\ then by putting h = e in (2.11) we see. that ip = cf> modulo a phase
factor. It follows that for all admissible 4> one has w^ty = UJ^^)4> modulo a phase factor
and this implies Q(h) = h.
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Let g € G. We say that H2 is g -equivalent to Hi if there is a group isomorphism
$ : Hi —• H2 such that for every Hi -admissible <j> there is ip € L2 such that for all

/ei2

The above condition means that after transforming the time-frequency plane by g the
reproducing formulas become equivalent. A similar argument as before shows that if
H2 is p-equivalent to Hi, then ip = ug4> modulo a phase factor and $(/i) = ghg~l.

By combining this with the previous discussion about conjugate subgroups, we obtain

THEOREM 2 . 2 . Let Hi, H2 be connected Lie subgroups of G and let g e G.

The subgroup H2 is g -equivalent to Hi if and only if Hi = g~1H2g.

COMMENTS.

(i) It follows easily from our proof that the group 5L(2,R) (case (3.i) in our
notation) provides reproducing formulas on L2(R+) and L2(R_).

(ii) The class of distinct subgroups which are conjugate to a given subgroup
H of G may be described in terms of the normaliser N(H) of H in G,
since it is in bijective correspondence with the quotient G/N(H). On
the other hand, we know that conjugacy corresponds to equivalence with
respect to reproducing formulas. The form of N(H) for the subgroups H
of K2 xi SL(2,R) listed in Theorem (2.1) (which form a complete set of
representatives under conjugacy) are given in [3].

3. COMMUTATIVE OPERATOR ALGEBRAS Ap

Let Q denote the algebra of real polynomials of x, £ of degree at most 2. For
P £ Q, let Pw denote the Weyl pseudodifferential operator defined by the symbol
P. The operator Pw maps the Schwartz class 5(R) continuously into itself and it
extends to a continuous operator on the space of tempered distributions 5(R). As we
have indicated in the introduction, we want to represent, in terms of Weyl calculus, the
commutative von Neumann algebras Ap — {M(PW) : M bounded} and describe the
correspondence between multiplier and symbol representations. Recall that by G we
denote the group R2 » SL(2, R) and that for T e G

The general strategy, in order to achieve the desired descriptions, will be to use the
above formula and reduce the problem to the case of the five main algebras correspond-
ing to the polynomials defined in (1.11). The following proposition shows that for any
P € Q one may choose an appropriate change of coordinates r e G and bring P to
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one of the five forms Pj, J e T = {e,h, d,p, 1}. On the level of operators this means
that by conjugating with the extended metaplectic representation one may reduce any
Pw to one of the PJ.

PROPOSITION 3 . 1 . For any P e Q there are T € G, J e T and A,c € R

such that

PROOF: The proof follows by an easy computation and we omit it.

It is easy to check that the explicit forms of the operators Pf are:

= X + D,
XD + DX

h ~ 2
P? = D2,

fp - D - A ,

nw ?-\

where * / ( s ) = x/(x), D/(x) = (l/2ni)f'(x).
Next we introduce the following systems of functions:

(3.2) lx(x) - e2viXx, A G R,

(3.3) hx(x) = (Ax)~1/2e27r i l°8 Alog x, A > 0,

(3.4) pA(i) - e2-<(^+(-3/3))) A e R -

Clearly, all systems are defined on R except (3.3) which is defined on the positive
half line. System (3.1) gives an orthonormal basis of L2(R), called the Hermite basis.
It is well known that it diagonalises the Hermite operator P™, and that

m + 1/2
7T

System (3.2) is also standard. It diagonalises P™,

induces the spectral measure

Et(A)f = / {f,l\)lxd\, ACR,
JA
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and defines a selfadjoint extension TJ of Pf", namely

T,= f XdE,(X).
J-oo

The symbol calculus for P{» is defined as follows: for M e L°°(R)

M(T,) = J'M{X)dE,(X) = CMt

where CM is the operator of convolution with the inverse Fourier transform of M.
Systems (3.3), (3.4) play similar roles for P%, P™ as (3.2) for Pf, as illustrated below.

PROPOSITION 3.2.

Ph
Mhx = log A h x , P?Px = XPx.

P R O O F : The proof follows easily by direct differentiation. D

P R O P O S I T I O N 3 . 3 . The formulas

= f°
J-

define unitary maps Th : L2(R+) -» L2(M+), Tv : L2(K) -> L2(R) which satisfy the
relations

WhTh = TWh, Tv = FWP,

where Wh : L2{R+) -> L2(R) is defined by Whf{w) = }{ew)ew'2, and Wp : L2(R) -»

L2(R) is defined by Wpf{x) - f{x)e~2^x3/3).

PROOF: The proof follows directly from Plancherel's theorem. D

P R O P O S I T I O N 3 . 4 . (i) The formulas

Eh{A)f= [ (f,hx)hxdX, ACR+, Ep(B)g= f (g,Px)pxd\, BcR,
JA JB

define spectral measures on L 2 (R + ) and L2(R), respectively. After conjugating with
Wh and Wp, the spectral measures Eh and Ep reduce to Ei,

1 = Et(logA), and WpEp{B)Wv~
l = Et(B).

(ii) The operators

fh = r log A dEh(X), Tp= r X dEp(X)
JO J-oo

https://doi.org/10.1017/S0004972700019274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019274


[15] AfRne transformations 209

with domains

D[fh) = {/ G L2(R+) : J°° (log A)2|(/,/iA)|2dA < oo},

D{TP) = {9 G L2(R) : P A2|<ff,pA>|2dA < 00}
J —OO

are selfadjoint extensions of P%, P™; for f € C ~ ( R + ) , 5 € C~(R)

(iii) Let M € L°°(K). After conjugating with Wh and Wp, respectively, the

operators

M(fh) = f°° M(log A) dEh(X), M(TP) = f° M(A) dEp(X)
v ' JO J-00

f
O

reduce to standard convolution operators, namely

;X - CM-

PROOF: The proof follows easily from Propositions 3.2, 3.3 and standard properties

of spectral measures. U

In the above proposition we have defined Th and Tp, the selfadjoint extensions
of PMCOO and P™. We extend the operator T/, to T/,, from the half line, to the
whole line, by symmetry. By Te, Ti, Td we denote the selfadjoint extensions of P^°,
Pf", P^" defined in terms of the corresponding spectral measures. The unitary groups
Tje = enitTe ^ yh = e1nitTh Tjl = ^vitT, > jjd = e2nitTd a r e v e r y w e U k n o w n T h e y a r e :

the Hermite group

Vff = sin"1/2

the dilation group

the translation group

uif = n-+t),
and the group of convolutions with imaginary gaussians

Uff = T-le2nit:2T.

Finally, the group U* = e2nitT" has the form Uff = e-
2™('-2+*2 ) / ( . + t).

As in the case of the extended metaplectic representation we identify unitary op-
erators which differ by multiplicative constants.

The standard fact that the operators commuting with translations are convolution

operators, has its counterparts for [//* = e2vttTh and Uf •
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PROPOSITION 3 . 5 .

(i) A bounded operator T defined on L2(R+) commutes with Up, for all t €

R, if and only if there is a function M <E L°°(K) such that f = M(YK\ ,

(ii) A bounded operator T defined on L2(E) commutes with Uf, for all
t € R, if and only if there isafunction M € L°°(R) such that T = M{Tp).

PROOF: The proof follows by an adaptation of the standard argument. D

Let now Up and gp denote the unitary group and the one-parameter subgroup of
G corresponding to the polynomial P € Q, respectively, and let a G <S'(R2). We want
to describe the geometric conditions on the symbol a that reflect the commutativity
property Ut

pawUp
t = aw.

PROPOSITION 3 . 6 . Let a € <S'(R2) and let / ,g € 5(R). Then

PROOF: This is a special case of (1.7). D

Let us look again at the five basic polynomials. Recall that, as we know from
(1.10), the unitary groups £//, J € T, are the restrictions of the extended metaplectic
representation to the one-parameter subgroups gf. The explicit forms of gj are:

f cos t — sin 11 [ x
= .

[ sin t cos t J [ £Si

9t

9t

9t

X

.£.
X

.€.
x'

A.

e-f 0"
0 el

•1 -«1

.0 l j
x -

C-a;2 +
x - t

The orbits of <?/ parametrise the connected components of the level lines of Pj.
By Proposition 3.1, this fact holds in general and we are led to the following definition.

Let P e Q and let a € <S'(R2). We say that the distribution a is constant on the
level lines of P if:

(i) in the case of connected level lines of P {e,p,l and conjugate cases):
a o gp does not depend on t,
in the case of non-connected level lines of P {h,d and conjugate cases):
aogp does not depend on t and cror is even, r is an affine transformation
bringing P to the form Ph or P j .

(ii)
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We stress that in case (ii) the level lines have two components, and the orbits
parametrise only one component. This is why one needs an extra symmetry condition.

Next we define decompositions of L2(R) and D-class operators corresponding to

P £ Q. Since both these notions reflect the structure of level lines of P, we present

them together. We do it first for Pj, J € T , and then, by conjugation, for all P € Q.

There are two types of level lines of Ph: the connected line x£ — 0, and the

non-connected lines x£ — c, c # 0. The set R 2 \ {(x,£) : x£ = 0} has four components:

/ = {(x,0 : x,£ > 0}, II = {(x,0 : x < 0, £ > 0},
/ / / = {(s.fl : *,£ < 0}, IV = {(x,0 : x > 0, £ < 0}.

The direct sum

L2 (R) =HiQ nii 8 Hiu © Hiv,

where

U, = {f£ L2(R+) : JFh/(A) = 0 for A > l} ,

Hiv - {/ 6 £2(R+) : Thf{\) - 0 for A < l} ,

« / / = { / ( - ) : / e « / v } , « / / / = {/(-) : / e Tij},

corresponds to the decomposition K2 \ {(x,0 : x£ = 0} = / U II U / / / U IV, and
is called the decomposition of L2(K) induced by Ph (for an intuitive explanation of
this correspondence see the comments following this section). We say that a bounded
operator T acting on L2(K) is D-class with respect to the decomposition induced by
Ph if ~HK is an invariant subspace of T for K = / , / / , / / / , IV and

Tmiu = v-lT\n,V TIHII = v-%Ulvv,

where Vf(x) = f(-x).

The polynomial P& also has connected and non-connected level lines. After remov-

ing the connected level line we get the two components:

/ = {(*,0 -i > 0}, / / = {(x,0 :f < 0}.

This decomposition induces the direct sum

L2(R)=VI(BVII,

where

= {/ € L2(R) : J7(A) = 0, A > 0},

= 0 , A < 0 } .
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A bounded operator T is called D-class with respect to the decomposition induced by
Pd if Vj, £>// are its invariant spaces and

The polynomials Pe, Pp, Pi have only connected level lines and they induce the
trivial decomposition, just L2(R).

Finally, let P € Q be arbitrary and let r e G be an affine transformation which

brings P to one of the forms Pj, J € T •

If J = h we define the decomposition of L2(E) induced by P as

and a bounded operator T is called D-class if UI~1TCJT is D-class with respect to Ph.

If J — d the decomposition is defined as

and a bounded operator is called D-class if LJ~1TUJT is D-class with respect to Pd.

In the other cases the decomposition is trivial and the D-class condition is void.

We are now in a position to give a characterisation of the commutative von Neu-
mann algebras we are interested in. For J € T the algebras Ap3 are formally defined

by
APJ = {M(TJ):M€L°°(R)}.

For general P £ Q take r € G which conjugates P to one of the Pj and put

AP = UJTAPJ<JJ*T.

THEOREM 3 . 1 . Let P € Q and let T be a bounded operator on L2(K). Assume
that T is D-class with respect to the decomposition of L2(K) induced by P and let
a € <S'(R2) be such that T = crw. The following conditions are equivalent:

(i) TeAp,
(ii) T commutes with Uf,

(iii) a is constant on the level lines of P.

PROOF: The proof follows by reduction to the five basic cases. The cases e, I, d

are known. The proof of the cases h, p follows from Propositions 3.5, 3.6 and the fact
that operators with even kernels have even Weyl symbols. D

Our next target is to give a description of the multiplier-symbol correspondence.
We do it by means of the Wigner distribution. This correspondence is well-known in
the cases e, I, d, as we now recall.
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The Wigner distribution Wem is:

where z - (x ,0 and L ^ = f) f(m!)/((m - fc)!(fc!)2))(-x)fc is the j t h Laguerre
fc=OV '

polynomial. As for £x, Wtx e S'(K2) and for F e 5(R 2 )

F(x,X)dx.

For a bounded, measurable M we denote by aj{M) the tempered distribution
corresponding to M(Tj), that is, the distribution for which <ry(M) = M{Tj). The
symbols which correspond to the multiplier M have the form:

(3.5) ae(M)(F) = Yl M{m)Wem{F)

where Fr(s) = l/(2n) f*n F(seu) dt,

(3.6) at{M){F)= f M{X)W,x{F)d\= f M(X) f F(x,X)dxdX.
*/—oo J — oo J — oo

In the first cases the symbol is given by the expansion in terms of Laguerre functions.
In the second and the third cases the symbols are constant on the horizontal lines £ = A
and take the values M(X), M(A2) on them.

Our final target is to complete the list of multiplier-symbol correspondences in the
remaining cases. We start by computing Wigner distributions in the cases h and p.

PROPOSITION 3 . 7 . Let /ij(x) = h\(x) for x > 0, 0 for x < 0, and hl(x) =
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h^(-x). For F 6 S(R2) we have

(3.8) Wh+(F) = \ f°° r
x A J-oo J-ooo J-oo

(3.9) Wh-(F) = \ f
A A J-oo J-oo

x (-£±*Lt-e* + ey\e-2-dogA)(v-x)dxdy>

(3.10)

f
—oo J—oo

where T2 denotes the Fourier transform with respect to the second variable.

PROOF: This follows easily from the definition of the Wigner distribution on
S'(R). D

In the final formulation of our result we shall need the following map H'.

P R O P O S I T I O N 3 . 8 . The map

HF = cosh (-/2)

transforms 5(R) into S(R). Its adjoint H', defined by the equation H'M(F) =
M(HF), where M € 5'(R) and F 6 <S(R), maps S'(R) into «S'(R). If M is a
polynomially bounded function then

H'M{F) -

For P € Q the symbol Tp denotes the selfadjoint extension of Pw defined in terms
of the spectral measure corresponding to P.

THEOREM 3 . 2 . Let P 6 Q and let r e G be an afRne transformation bringing
P to the form Pj, that is,

P = \Pjo r"1 + c, A, c € R, J € T.

Given a bounded function M , let op{M) be the tempered distribution for which

<jp(M)w = M(Tp). One may express crp(M) in terms of M as follows:

(3.11) <7P(M) = (Jj{MXiC) o T~\ where Mx,c{x) = M{Xx + c).
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For F € 5(R2) and J e {e, I, d}, aj(M){F) is given by formulas (3.5), (3.6) and (3.7),
respectively, while for J 6 {h, p}:

oh{M){F) = r M(log \)(Wh+{F) + Wh-(F)) dX
JO XX

(3.12) = lim YimFH'?Mn ( f°° Fr (t, -) ^ + f°° Fr (-t, --) ^-) ,
n-»+oor-»0 \J0 \ t) t JQ \ tJ t J

where Fr(x,0 = ( l - h{x/r))(\ - h{£/r))F{x,(,), h e C c °°(E) , O^h^l, h = l on
some neighbourhood of 0 , Mn(x) = M(x)x(-nin)(x)

(3.13) <rp(M){F)= [ M{\)WPX(F)d\

J -co

= 7-l e-2"-3/ l2^rM ff°° F ( U ) . + U2

PROOF: Since P = XPj o T~l + c, we get TP = wT{\Tj + CI)UJ~1 . It follows that

(3.14) ap{M)w = M(TP) = wTM(XTj + c / ) ^ 1

= UrMx^Tj)^1 = (<Jj{MXtC) o r~l)W.

Clearly (3.14) proves (3.11).

Let f,g £ S(R). The orthogonality relations for the Wigner distribution and the
spectral representation of Th imply

(3.15) /°°M(log A) (Wh+ (Wf<g) + Wh- (Wft9)) dX
Jo \ x / x

= f°°M(\og X)((f,h+)(h+,9) + (f,h^)(h^,g)) dX
Jo

= (M(Th)f,g).

Formula (3.15) proves the first equality in (3.12). In order to prove the second equality
in (3.12), put

Lr(x, y) =

and for any positive integer n let Mn(t) = M(t)x(-n,n)(t)- Since Mn(t) -* M(t)
pointwise and Mn £ i 1 (R) . by applying (3.8) and dominated convergence twice we
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obtain the following equalities

f°° M{log X)W. + (F)dX = lim / Mn{t) f [ e
Jo * n^+°°J-oo J-ooJ-oo

i ^ ) ¥ , e e A e d x d y d t
(3.16) \ 2 )

[= lim lim / Mn(t) [ f Lr(x,y)

Observe that for any L € 5 (R 2 )

/•OO rOO rOO

(3.17) / / / L(x,y)e-
J — OO J — OO J —OO

so that, on applying the Fourier transform to both sides of (3.17), the expression inside
the double limit in (3.16) becomes

J—
dt= [ (^Mn)(t)^Lr(t) dt

J— OO

(3.18) =TMn(f 2̂-Fr

Now, since x >-* /0
+°° T2Fr(t,tx)dt is a Schwartz function, by applying Proposition

(3.8) to (3.18) we obtain

r

Clearly, combining this with (3.15) and (3.16) the second equality in (3.12) follows,
whereby one uses (3.9) in place of (3.8) to treat Wh- (F).

The proof of the first equality in (3.13) goes similarly as in the case of (3.12). As
for the proof of the second equality in (3.13), an application of (3.10) and (3.17) gives
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the following expression for the integral / ^ M{X)WVx{F) dX:

f00 M(\) r re2^x3l3)-
J-oo J-oo J -oo

( _ . ) d

F(u, • + u2) du\

COMMENTS, (i) The letters e, h, d, p, I stand for elliptic, hyperbolic, degenerate,
parabolic, linear and refer to the geometric loci associated to the corresponding poly-
nomials. The orbits of the one-parameter subgroups gf and the level lines of Pj are,
respectively: circles centred at the origin, hyperbolas, horizontal lines, parabolas and
again horizontal lines.

(ii) The derivatives of phase functions are called istantaneous frequencies. They in-
dicate what the frequency is at a given time. The graphs of the istantaneous frequencies
of the systems h\, eA, PA are hyperbolas, horizontal lines and parabolas.

(iii) In the hyperbolic case the graphs of the istantaneous frequencies corresponding
to %K fill o u t the whole quadrant K. Thus the quadrant K corresponds to HK • In
the degenerate case the domains corresponding to Vj, VJJ are the upper and lower
half planes.

(iv) All of the distributions ap(M) involve geometric ingredients, that is integrals
over the level lines of P .

(v) Let / € CC(K) be fixed. For P e Q, 4> € L2(R) define the operator

The operator Tp^Tp^ is simply an average of one dimensional projections on the vector
u> p<j). One can show (see [11]), that for all 0 < p < oo

Sp denotes the p-Schatten class. The operator X[n,n+i](2V) is interpreted as a restric-
tion to the region n ^ P(x, £) ^ n + 1 of the time-frequency plane.
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