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CONVEX DIRECTED SUBGROUPS OF A GROUP OF 
DIVISIBILITY 

JOE L. MOTT 

Introduction. If D is an integral domain with quotient field K, the group 
of divisibility G(D) of D is the partially ordered group of non-zero principal 
fractional ideals with aD ^ bD if and only if aD contains bD. If K* denotes 
the multiplicative group of K and U(D) the group of units of D, then G(D) is 
order isomorphic to K*/U(D), where aU(D) ^ bU(D) if and only if b/a G D. 

The study of divisibility of elements of D amounts essentially to the study 
of G(D). In fact, D is a UFD if and only ii G(D) is a cardinal sum of copies of Z. 

But, G(D) reflects more than the properties of factorization of elements of D. 
Krull [14] observed that D is a valuation ring if and only if G(D) is totally 
ordered. Then Jaffard [13] proved that D is a GCD domain if and only if G(D) 
is lattice-ordered. 

Furthermore, there are two theorems which establish one-to-one corres
pondences between certain subsets of an integral domain D and certain subsets 
of G(D). The first theorem ([14, p. 167; 8, p. 184], or [21, p. 40]) is of a rather 
special character, yielding a correspondence between prime ideals of a valua
tion ring D and convex subgroups of the totally ordered group G(D). The 
second is more general [18], and establishes a correspondence between prime 
ideals of a Bezout domain D and prime filters of the positive cone of G(D). 
(In particular, the Krull dimension of a Bezout domain D is revealed by G(D).) 

We ask: does there exist a similar correspondence for arbitrary integral 
domains? If some correspondence exists, does it reduce to the familiar corres
pondences for Bezout domains and for valuation rings? 

Theorem 2.1 and its corollaries answer these questions. Theorem 2.1 estab
lishes a one-to-one correspondence between saturated multiplicative systems 
in an integral domain D and convex directed subgroups of the group of divisi
bility of D. We define the dimension of a partially ordered group and prove 
the Krull dimension of a Prufer domain D is equal to the dimension of G(D). 
Since the dimension of an /-group G is equal to the prime filter dimension of 
G+, we reach Sheldon's conclusion [18]: there is a one-to-one correspondence 
between prime ideals of a Bezout domain D and prime filters in the positive 
cone of G(D). 

In § 3 we obtain information about certain rings, not so much from knowl
edge of their internal structure as from analysis of their groups of divisibility. 
We compute the dimensions of two rings constructed by Heinzer [9] and 
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Sheldon [18]. By the factorization theorem of Weirstrass, we can embed the 
cardinal product of countably many copies of Z in the group of divisibility of 
the ring E of entire functions. By this means, we achieve another proof tha t E 
has infinite Krull dimension. Moreover, t ha t each prime ideal of E is contained 
in a unique maximal ideal follows since G(E) is a complete /-group. 

Acknowledgement. I wish to mention t ha t this paper benefited from conversa
tions with some of my colleagues and s tudents . I am especially grateful for 
many stimulating conversations with Professor Paul Plill on the subject of 
part ial ly ordered groups. I express my grat i tude to Professor Rober t Gilmer 
and to my s tudents Kathleen Levitz and Mike Schexnayder. 

1. Def in i t ions a n d n o t a t i o n s . The notat ion and terminology will essential
ly be the same as t ha t of Ohm's paper [16]. In this paper, all groups are abelian; 
an 0-group is partially ordered, and an /-group is lattice-ordered. A cartesian 
product of 0-groups G\ is called the cardinal product (sometimes called the 
ordered direct product or vector group) if x = (x\) ^ y = (yx) if and only if 
X\ ^ y\ for each X. An 0-group G is a subcardinal product (usually called a 
subdirect sum) of the groups G\ if there is an O-embedding </> of G into Y1\G\ 
such t ha t p\<j)(G) = G\ for each X, where p\ is the canonical projection map of 
T1\G\ onto G\. The cardinal sum of the groups G\, denoted by X A ^ X , is the 
subset of ITxGx of all elements with finite support . Let G @L H denote the 
lexicographic sum of the 0-groups G and H. 

Let Z denote the group of integers under the natural order and let R denote 
the addit ive group of real numbers. 

If a0, o>i, . . . , an are elements of an 0-group G, a0 £ sup^nf^fa i , . . . , an}) 
means a0 is an upper bound of the set of all lower bounds of ax, . . . , an (in 
Ohm's notat ion a0 ^ inf^fai, . . . , an}). If G is an /-group, let cup ( V ) and 
cap ( A ) denote sups and infs. H a, b £ G then a\\b means a % b and b % a. 

T h e reader should consult Ohm's paper [16] for the definition of semi-
valuat ion and Gilmer's book [8] for the definition of GCD-domain, and 
Priifer domain. 

2. M a i n resu l t . A multiplicative system ,S in an integral domain D is 
saturated if 5 contains along with an element x all divisors of x. If 5 is sa turated, 
5 is equal to U(DS) H D, where U(DS) is the set of units of the quot ient ring 
Ds. Moreover, each unit of Ds is of the form Si/s2 where sf £ S. 

An 0-group G is directed if for each pair of elements gi, g2 G G there is an 
element g exceeding both, or equivalently, if each g G G is the difference of 
two elements of the positive cone G+ of G. 

T H E O R E M 2.1. Suppose D is an integral and G(D) is its group of divisibility. 
There is a one-to-one correspondence a between saturated multiplicative systems 
in D and convex directed subgroups ofG(D). Furthermore, if S and G s correspond 
under a, then the group of divisibility of Ds is G/Gs. 
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Proof. Suppose 5 is a sa tura ted multiplicative system of D. Let v be the 
canonical semi-valuation of K* onto G(D). Clearly, v(S) is subsemigroup of 
G+. Fur ther , if 0 ^ g ^ v(s), then g = v(x) for some x G D, where xD 2 sD. 
Thus , x divides s, and x G S since 5 is sa tura ted . If 

Gs = {gi - g2\gt G v(S)}, 

then G s is a convex directed subgroup of G with positive cone v(S). 
Next, suppose H is a convex directed subgroup of G. Let 5 = v~l(H+). 

Clearly, S is a multiplicative system in Z). If aD 2 sZ) for s £ S, then 
0 ^ ^ (a) ^ fl(s), where z;(s) G H. Since H is convex, v(a) ^ H so t ha t a G 5 . 
Therefore, 5 is sa tura ted . 

Note t ha t the correspondence as described is between sa tura ted multipli
cative systems and the positive cones of convex directed subgroups (there is 
an obvious correspondence between positive cones and convex directed sub
groups) . If 5 is a sa tura ted multiplicative system, then 

S^v(S) = (Gs)+. 

If i f is a convex directed subgroup of G, then 

We can show t h a t the correspondence is one-to-one if we observe t ha t ar and 
Ta are ident i ty maps on the set of positive cones of convex directed subgroups 
and on the set of sa tura ted multiplicative systems, respectively. Obviously, 
ŒT is the ident i ty map . If 5 is a sa tura ted multiplicative system, ra(S) = S' 
is a sa tura ted multiplicative system of D containing S. If x G S', then 
v(x) G v(S) and v(x) = v(s) for some 5 Ç 5 . Consequently, x and 5 are 
associates, and x G S since S is sa tura ted . 

Finally, if S is a sa tura ted multiplicative system of D, and if G s is the convex 
directed subgroup of G generated by v(S), observe t h a t the group of divisibility 
of Ds is G/Gs- Clearly G(DS) is an order homorphic image of G(D) under the 
map a defined by a(xD) — xDs. Next , observe t h a t the kernel of a is Gs> 
Since each element x G S becomes a uni t in Ds, xDs = Ds, and a(v(S)) is 
the ident i ty element of G(DS). Hence, G s is contained in the kernel of a. 

If g G ker a and if x G K* is such t h a t v(x) = g, then xDs = Ds and x is 
a uni t of Ds. Therefore, x = s1/s2 where st G S, v(x) is an element of Gs, and 
Gs = ker a. 

T h e correspondence, established in Theorem 2.1, generalizes Krull ' s corres
pondence for valuat ion rings. 

COROLLARY 2.2. If D is a valuation ring, there is a one-to-one correspondence 
between prime ideals of D and convex subgroups of G(D). 

Proof. In a valuat ion ring the only sa tura ted multiplicative systems are 
complements of prime ideals. 
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Suppose D is an integral domain, G is its group of divisibility, and G/H is 
totally ordered, where H is a convex directed subgroup of G. Theorem 2.1 
implies that G/H is the value group of some valuation ring of the form Ds, 
where 5 = v~l(H+). By [8, p. 319], S is the complement of a prime ideal P 
of D. On the other hand, if P is a prime ideal of D, the multiplicative system 
5 = D\P corresponds to a convex subgroup H generated by v(S). If, in 
addition, DP is a valuation ring, then G/H = G{DP) is totally ordered. 
Motivated by this observation, we define a convex directed subgroup H of an 
0-group G to be a prime subgroup of G if G/H is totally ordered under the order 
inherited from G. Thus, Theorem 2.1 yields a one-to-one correspondence 
between prime ideals P of D such that DP is a valuation ring and prime 
subgroups of G(D). 

For a totally ordered group G, the dimension of G is n if G contains exactly n 
distinct convex subgroups (VG); otherwise, the dimension of G is infinite. 
For an arbitrary 0-group G, define the dimension of G by 

dim G — sup{dim G/H\H is a prime subgroup of G). 

If P is a prime ideal of an arbitrary domain D such that DP is a valuation 
ring, then dim G(DP) = height of P . Corollary 2.2 implies that the Krull 
dimension of a valuation ring D is equal to the dimension of G(D). In parti
cular, for a Prufer domain D the above can be summarized: there is a one-to-
one correspondence between prime ideals of D and prime subgroups of G(D). 
Then, the following corollary to Theorem 2.1 is immediate. 

COROLLARY 2.3. If D is a Prufer domain, the Krull dimension of D is equal 
to the dimension of the group of divisibility of D. 

In [8, p. 348], Gilmer defines the valuative dimension of an integral domain 
D as the supremum of the dimension of all valuative overrings of D. Clearly 
for a Prûfer domain D, the valuative dimension of D is equal to the dimension 
of G(D). Thus, a result implicitly contained in Corollary 2.3 is that the Krull 
dimension of a Prùfer domain D is equal to the valuative dimension of D. 

The notion of a prime subgroup of an /-group is not new [2; 5]. The definition 
can also be given in terms of prime filters [2, p. 114]. If G is an /-group and G+ 

is the positive cone of G, a filter in G+ is a non-void subset F of G+ such that 
(1) x A y G F for all x, y G F, and 
(2) x G F if x ^ y and y G F. 

A proper filter in G+ is contained in c7+\{0}. A proper filter in G+ is a prime 
filter if 

(3) x + y G F, x and y in G+, implies x G F or y G F. 
Here, we use the term "prime" with respect to the group operation rather 

than the lattice operation of forming join. However, a prime filter in this sense 
is also prime with respect to join since x + y ^ x V y. 

Let us summarize what is known. In an /-group G, there is a one-to-one 
correspondence between prime subgroups of G and prime filters in G+. If H 
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is a prime subgroup of G, G+\H is a prime filter in G+ . If F is a prime filter, 
H = {a — b\a, b £ G+\.F} is a prime subgroup of G. 

In the proof of Corollary 2.3, we observed a one-to-one correspondence 
between prime ideals of a Priifer domain D and prime subgroups of G(D). 
There is a second one-to-one correspondence between prime subgroups of an 
/-group G and prime filters in G+. T h e composition of both correspondences 
establishes Sheldon's correspondence. Combining this result (Corollary 2.4) 
with Corollary 2.2, we conclude: the correspondence of Theorem 2.1 extends 
each of the familiar correspondences. 

COROLLARY 2.4 (Sheldon). If D is a Bezout domain, there is a one-to-one corre
spondence between prime ideals of D and prime filters in the positive cone of G(D). 

Added in proof. An earlier proof of this fact is due to I. Yakabe, On semi-
valuations II, Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 10-28. 

Following Sheldon [18], we define the prime filter dimension of an /-group G 
to be the number of terms in the longest finite chain of prime filters in G+ , or 
infinity if there is no such longest chain. T h e one-to-one correspondence 
between prime subgroups of G and prime filters shows t h a t the dimension of G 
is equal to the prime filter dimension. A conclusion follows a t once: for a 
Bezout domain D, the Krull dimension of D = dimension of G(D) = prime 
filter dimension of the positive cone of G(D). 

Each proper filter of an /-group G is contained in an ultrafilter of G+ , a 
maximal proper filter. Moreover, an ultrafilter is a prime filter. In the corres
pondence of Corollary 2.4, maximal ideals of a Bezout domain correspond to 
ultrafilters and hence to prime subgroups H such t h a t G+\H is an ultrafilter. 
Such a prime subgroup is designated a minimal prime subgroup by Conrad 
and McAlister in [5, p . 198]. (In the case where D is a valuat ion ring, the ultra-
filter corresponding to the maximal ideal of D is G+\{0}.) If G is a latt ice-
ordered group and g G G, g ^ 0, then a value of g is a convex /-subgroup Mg 

such t h a t for any convex /-subgroup H Z) Mg, g £ H. A Zorn's lemma argu
men t shows the existence of a value for any non-zero g G G. I t is well-known 
t h a t M g is a prime subgroup of G [5, p . 188]. In the correspondence between 
prime ideals of a Bezout domain D and prime subgroups of G(D), observe 
t h a t minimal prime ideals of a principal ideal xD correspond to values of 
v(x) in G(£>). 

Suppose t h a t D is a GCD-domain and t h a t v is the canonical semi-valuation 
from K* onto G(D). I t is easy to see t ha t D is a Bezout domain if and only if 
v(Q*) is a filter for each ideal Q of D. We communicated this result to Sheldon 
and he responded t h a t he had observed t h a t Theorem 2.1 could be used to 
prove the following extension of Corollary 2.4. If D is a GCD-domain , then 
these are equivalent : 

(1) D is Bezout. 
(2) v(P*) is a prime filter for each prime ideal P of D. 
(3) v(M*) is an ultrafilter for each maximal ideal M of D. 
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Indeed, this is obvious from Theorem 2.1 for (3) implies that DM is a valuation 
ring for each maximal ideal M of D. Sheldon has obtained several results on 
the prime ideal structure of GCD-domains including the following corollary 
to Theorem 2.1. 

COROLLARY 2.5. Suppose that D is a GCD-domain such that for each pair of 
prime ideals P and Q of D either P Ç Q, Q Ç P , or P + Q = D. Then D is a 
Bezout domain. 

Proof. The conclusion follows if we show that D is a Priïfer domain. If M is 
a maximal ideal of D, the prime ideals of DM are linearly ordered by contain
ment. Thus, the set of saturated multiplicative systems in DM is linearly 
ordered by containment. Theorem 2.1 implies the convex directed subgroups 
of the lattice ordered group G(DM) are linearly ordered by containment. 
Therefore, G(DM) is totally ordered, DM is a valuation ring, and D is Prùfer. 

3. Examples. In this section we will compute the dimensions of some 
lattice-ordered groups. All examples have appeared in the literature, and, in 
some cases (Examples 2 and 3), their dimensions are known. 

1. The cardinal product of countably many copies of Z: If P = Iïi<œ Zt is 
the cardinal product of countably many copies of Z, then P is infinite dimen
sional. Actually, we prove that 

G=U Zi/H Z* 

is infinite dimensional. For any integer k ^ 0, define gk £ P by gk(i) = ik 

for each integer 1 ^ i < co. 
Let a denote the canonical homomorphism of P onto G. For each positive 

integer k and all positive integers n, ik+1 ^ nik except for a finite number of 
values of i. Thus na(gk) ^ <r(gk+i) for all positive integers n. 

If Mff(go) is a value of a (go) in G, then Gi = G/Ma(90) is totally ordered and 
infinite dimensional since G\ contains infinitely many positive elements 
{gi}t=\ such that ngk ^ gn+i for each positive integer n, and g/ g Mçk> for 
/ ^ k, where MQi> is the value of g{ in G\. 

2. Complete integral closure and the examples of Heinzer and of Sheldon: 
If G is an 0-group and g is a non-zero element of G+, then g is said to be bounded 
if there is an element h £ G such that ng ^ h for each positive integer n. The 
set of all bounded elements forms a convex semigroup of G, and generates 
a convex directed subgroup, 

B(G) = {a — b\a, b are bounded elements of G}, 

called the bounded closure of G. (Note that if G is an archimedean /-group, 
then B (G) = 0 . ) Thus, if D is an integral domain, G ÇD) its group of divisibility, 
and v the canonical semi-valuation, define x 6 D to be bounded if v(x) is a 
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bounded element of G(D). Theorem 2.1 implies the set B(D) of all bounded 
elements of D is a sa tura ted multiplicative system and G/B(G) is the group 
of divisibility of DB(D). A slight modification of the proof of a theorem of 
Sheldon [18] shows t h a t if the complete integral closure D* of D is a quot ient 
ring of D, then D* = DB{D). Since every overring of a Bezout domain D is a 
quot ient ring of D, we conclude the following corollary of Theorem 2.1. 

COROLLARY 2.6. / / D is a Bezout domain, G is its group of divisibility, and 
B(G) is the bounded closure of G, then G/B(G) is the group of divisibility of the 
complete integral closure of D. 

Obviously, the complete integral closure of a Bezout domain D is completely 
integrally closed if and only if G/B(G) has trivial bounded closure. 

Define the groups G{n) recursively by 

G(»+i) = GW/B(GW) 

for each non-negative integer n (G° = G). 
Corollary 2.6 has part icular relevance to two integral domains-one con

structed by Heinzer [9] and the other by Sheldon [18]. 
These domains are similar in several respects. Each domain Dt (i = 1 , 2 ) 

is constructed using the Krull-Kaplansky-Jafrard-Ohm Theorem [13, p. 64] 
and an /-group Gt such tha t Gt

{l) has nontrivial bounded closure; thus , each 
example shows tha t the complete integral closure of a Bezout domain need not 
be completely integrally closed. Moreover, each group Gt is such t h a t Gf

i2) 

has trivial bounded closure; thus , D** is completely integrally closed for each i. 
Nevertheless, the two domains have some different characterist ics. In 

part icular, Heinzer 's example is infinite dimensional, while Sheldon's is two-
dimensional. We proceed to compute their dimensions. 

Heinzer [9] considers the group H of all functions / : Z + —-> Z @L Z such 
t ha t if f(n) = (an, bn), then an = 0 for all bu t a finite number of values of n. 
Alternately, H is a subgroup of the cardinal product of countably many copies 
of Z @L Z containing the cardinal product P of countably m a n y copies of Z 
such t h a t H/P is a cardinal sum of copies of Z. More precisely, if (Z 0 ^ Z)z-
is generated by positive elements ct and du where dt generates the only non-
trivial convex subgroup of (Z 0 ^ Z)u then P is the cardinal product of the 
groups (dt), and H/P is the cardinal sum of the groups (ct). 

T h a t H is infinite dimensional follows since P is infinite dimensional. In 
fact, if G is any lattice-ordered group containing an infinite dimensional sub
group K as a sublatt ice, then G is infinite dimensional. We t ranslate the 
problem to the more familiar total ly ordered si tuation. Thus , if n is any positive 
integer, there is an element kn of K and a value Kn of kn in K such t ha t K/kn 

is total ly ordered of dimension = n . Thus , if Gn is a value of Kn in G such t ha t 
Kn = GnC\ K, then G/Gn is total ly ordered and contains K/Kn. T h a t G/Gn 

has dimension ^n is clear since each convex subgroup of K/Kn is the inter
section of a convex subgroup of G/Gn with K/Kn. 
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In [18] Sheldon considered the group 5 of all functions / : Z + —» Z ®L Z 
for which there exists a, b £ Z such tha t f(n) = (0, an + 6) for all positive 
integers n outside a finite set. Sheldon showed t h a t 5 is two-dimensional by 
exhibiting all possible prime filters of the group. We offer an easier proof t ha t 
5 is two-dimensional. 

We observe t h a t 5 is a subcardinal product of (Z @L Z)t for i £ Z+ and 
contains X * (Z ©z, Z)* (for let a = 0 and & = 0 in the above description of 
an / £ 5 ) . Fur thermore , 5 / 2 * (Z ©z, Z)* is isomorphic to Z © L Z since the 
map a : 5 —» Z © L Z, where <r(/) = (a, 6) it f(n) = (0, a^ + 6) for n outside 
a finite set, is an /-map with kernel 2 * (^ ©z, Z)*. 

T h a t 5 is two-dimensional follows from the following general proposition. 

PROPOSITION 3.1. Suppose G is a lattice-ordered subcardinal product of G\ 
such that X A -^X £ G, where H\ is a convex subgroup of the totally ordered group 
G\ for each X. If each totally ordered l-homorphic image of G / X A H\ is an l-homo-
morphic image of some G\, then the same is true for G. 

Proof. Suppose a is an /-homomorphism of G onto a totally ordered group T 
with kernel K. If K 3 2 H\, then T is an 0-homomorphic image of G/]Tx H\. 
If K 2 Z A # x , then H\0 £ K for some X0. Then if h\Q £ H\Q\K and if /̂ x0 is 
positive, let H be the subgroup of I lx G\ of all elements with X0 coordinate 0. 
Note t ha t h\0 A h = 0 for any h £ H and, in particular, for any h £ H C\ G. 
Thus , (i(h\0) A a(h) = 0 and o-(ft) = 0 since T is totally ordered. Hence, 
H C\ G Ç^ K and 2" = G/K is an image of G/H P\ G. Fur thermore, since G 
is a subcardinal product of Gx, G/H C\ G = p\0(G) = Gx0, where £\0 is the 
projection of I lx Gx onto Gx0. Consequently, T is an image of some Gx, and 
the proposition is proved. 

3. Eventual ly constant real sequences: By Proposition 3.1, the /-group G 
of all eventually constant real sequences is one-dimensional since G/Y^i R i — R 
where R and R* denote the group of reals. 

The /-group H of all integral valued eventually constant sequences is also 
one-dimensional. Since H/J^i Z* ^ Z, Proposition 3.1 implies t ha t all totally 
ordered homomorphic images of H are isomorphic to Z. One can also compute 
all prime subgroups of H as in [5, p . 202]. 

4. Free /-groups: Weinberg [20] has shown tha t a free abelian /-group of 
rank a exists. The definition and construction are as follows. If F is free abelian 
group on a generators, then a free abelian /-group over F is an /-group Ff 

together with an i somorphism/ : F —> F', such tha t for each /-group G and each 
homomorphism a : F —> G, there is an /-homomorphism r : F' —> G such t ha t 
rf = a. T h e tradit ional model is obtained by taking all possible total orders 
T\ on F and letting F' be the /-subgroup of the cardinal product of the total ly 
ordered groups (Z7, 7 \ ) generated by the diagonal [4, p . 49]. Then, in this 
context, F is identified with the diagonal of Yl\ (F, T\) under the map / . 
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Each element of F' is of the form 

A V aijy where a tj G F. 
i j 

P R O P O S I T I O N 3.2. / / n is a positive integer, then any free abelian l-group on n 
generators has dimension n. 

Proof. Clearly, if F is free on n generators the total ly ordered group T of 
dimension n with the lexicographic ordering is a homomorphic image of F. 
This map can be lifted to a lattice homomorphism of F' onto T. Thus , 
dim F' ^ n. On the other hand, if a is an /-map of F' onto a totally ordered 
group T', then a\F' the restriction of a to F, is a homomorphism of F into F'. 
Moreover, any x £ F' is of the form 

A V atj, where a ^ £ F, 
i j 

and 

<r(x) = A V vifiij). 
i j 

For some i and j , <r(x) = a(ai])y since F' is totally ordered. Therefore, a\F 
maps JF onto 2"' and the rat ional rank of F' is less than or equal to n. By 
[21, p . 50], dim J1' ^ n, and dim ^ ; = n. 

5. T h e ring £ of entire functions: T h e question of the dimensionality of E 
has an interesting history. Helmer [10] showed t ha t £ is a Bezout domain in 
1940. In 1946, Schilling [17] claimed to have shown tha t E is one-dimensional, 
but , in 1952, Kaplansky showed t ha t its dimension was a t least two (Kaplan-
sky's proof appears in [11]). Henriksen studied the ideal s t ructure in [11; 12], 
and in [12], he showed t ha t PM, the set of prime ideals contained in a free 
maximal ideal M, is linearly ordered by inclusion and has cardinal i ty a t least 
2 X l . This should have settled the question; bu t in 1965, Fus ter [7] claimed to 
show t h a t E is one-dimensional. Enochs reviewed Fus ter ' s paper for Zentral-
b la t t and, in 1969 [6], published another proof t ha t E is a t least two-dimen
sional. Laplaza [15] offers ye t another proof t h a t E is infinite dimensional. 
Other proofs have been obtained by Ailing [1] and Banaschewski [3]. 

We prove t ha t E is infinite dimensional by embedding in G(E) a cardinal 
product of countably m a n y copies of Z . T h e factorization theorem of Weir-
strass [19, p . 298] is the clue to this embedding. 

I f / É E , let 

^ ( / ) = {(z> k)\z is a zero of / of mult iplici ty k}. 

P R O P O S I T I O N 3.3. Fhe group of divisibility of the ring of entire functions 
contains a cardinal product of countably many copies of Z . In particular, the ring 
of entire functions is infinite dimensional. 
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Proof. Choose a countable set of points {wn}n=i in C tha t satisfy the 
hypothesis of Weirstrass ' Factorization Theorem, tha t is, {wn} is closed, 
discrete subset of C. Then, Weirstrass ' Theorem implies t ha t for any countable 
set of non-negative integers {kn)n=\, there is an entire function / such t ha t 
Z(f) = {(wn>K)}%=i- Fur thermore, for g £ E, Z(f) = Z(g) if and only if 
/ and g are associates in E. 

Now, if p = (pi, . . . , pn, . . .) is an element of the cardinal product P of 
countably many copies of Z , let pt = kt — lu where kt and lt are non-negative 
integers. Then, l e t / i a n d / 2 be entire functions such tha t Z ( / i ) = {(wn, kn)}n=i 
and Z ( / 2 ) = {(wn, /J}~=i. Define a : P -> G(E) by a(p) = f/gE. Then, a is 
an /-isomorphism of P into G(E), and the proposition is proved. 

In [10, p . 349], Helmer showed tha t G(E) is a complete /-group. For an 
arbi t rary integral domain D, it is easy to see tha t G(D) is complete if and 
only if each non-zero z>-ideal of D is principal, and, in this case, D mus t be 
completely integrally closed. 

In a complete /-group each prime filter contains a unique ultrafilter 
[2, p . 121]. Thus , Corollary 2.4 leads immediately to Proposition 3.4 and 
subsequently to a result of Henriksen [12]. 

P R O P O S I T I O N 3.4. / / D is a Bezout domain with complete group of divisibility, 

then each non-zero prime ideal of D is contained in a unique maximal ideal. 

COROLLARY 3.5 (Henriksen). Each non-zero prime ideal of the ring of entire 
functions is contained in a unique maximal ideal. 
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