Suppose $a_{1}-b_{1}$ to be positive and write

$$
y=\left(x+a_{1}\right)\left(x+b_{1}\right)^{2}+c_{1} .
$$

It follows from the above that the minimum turning value is given by $y=c_{1}$.

Next, writing $\quad y=\left(x+a_{2}\right)\left(x+b_{2}\right)^{2}+c_{2}$, we observe that the maximum turning value is given by

$$
y=c_{2} ;
$$

\therefore OX will cut the graph of

$$
y=x^{3}+q x+r
$$

in three different real points if $\frac{c_{1}}{c_{2}}$ is negative, and in one real point and two imaginary points if $\frac{c_{1}}{c_{2}}$ is positive.
There are therefore three different real solutions of the equation, or one real and two imaginary,

	according as	$\frac{c_{1}}{c_{2}}$	is negative or positive,			
\therefore	$"$	$"$	$\frac{c_{1}}{c_{1} c_{2}}$	$"$	$"$	$"$

\therefore according as $4 q^{3}+27 r^{2}$ is negative or positive.

Note on the Problem: To draw through a given point a transversal to (a) a given triangle (b) a given quadrilateral so that the intercepted segments may have (a) a given ratio (b) a given cross ratio.

By P. Pinkerton, M.A.

