Suppose $a_1 - b_1$ to be positive and write

$$y = (x + a_1)(x + b_1)^2 + c_1.$$

It follows from the above that the minimum turning value is given by $y = c_1$.

Next, writing $y = (x + a_2)(x + b_2)^2 + c_2$, we observe that the maximum turning value is given by

 $y=c_2;$

... OX will cut the graph of

 $y = x^3 + qx + r$

in three different real points if $\frac{c_1}{c_2}$ is negative,

and in one real point and two imaginary points if $\frac{c_1}{c_2}$ is positive. There are therefore three different real solutions of the equation, or one real and two imaginary,

	according	as	$\frac{c_1}{c_2}$	is	negative	or	positiv	e,
	• • • •	,,	$\frac{c_1^2}{c_1c_2}$	"	**	"	,,	
	,,,	,,	$c_1 c_2$,,	,,	,,	,,	
	***	,, (r	$(r-a_1b^2)(r-a_2b^2)$,,	,,	"	"	
۰.	,,	"	$r^2 + a_1 a_2 b^4$	"	,,	,,	,,	$(\because a_1+a_2=0)$
	""	,,	$r^2 - a^2 b^4$	"	"	,,	,,	
· .•.	,,,	,,	$r^2 - 4b^6$	"	,,	"	,,	b y (1')
.•.	,,,	,,	$r^2 + \frac{4}{27}q^3$,,	,,	"	,,	by $(1')$ and $(2')$
.•.	according	88	$4q^3 + 27r^2$ is	neg	ative or	pos	sitive.	

Note on the Problem: To draw through a given point a transversal to (a) a given triangle (b) a given quadrilateral so that the intercepted segments may have (a) a given ratio (b) a given cross ratio.

By P. PINKERTON, M.A.