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Abstract

The emergence of commercial electron backscatter diffraction (EBSD) equipment ushered in an era of information rich maps produced by
determining the orientation of user-selected crystal structures. Since then, a technological revolution has occurred in the quality, rate detec-
tion, and analysis of these diffractions patterns. The next revolution in EBSD is the ability to directly utilize the information rich diffraction
patterns in a high-throughput manner. Aided by machine learning techniques, this new methodology is, as demonstrated herein, capable of
accurately separating phases in a material by crystal symmetry, chemistry, and even lattice parameters with fewer human decisions. This
work is the first demonstration of such capabilities and addresses many of the major challenges faced in modern EBSD. Diffraction patterns
are collected from a variety of samples, and a convolutional neural network, a type of machine learning algorithm, is trained to autono-
mously recognize the subtle differences in the diffraction patterns and output phase maps of the material. This study offers a path to
machine learning coupled phase mapping as databases of EBSD patterns encompass an increasing number of the possible space groups,
chemistry changes, and lattice parameter variations.
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Introduction

Conventional electron backscatter diffraction (EBSD) is a scan-
ning electron microscope (SEM)-based technique used to deter-
mine the three-dimensional orientation of individual grains in
crystalline materials. At present, the collected electron backscatter
diffraction patterns (EBSPs) are primarily utilized to construct
representative maps of the microstructure, given user-defined
phases. The resulting maps and EBSPs can be further utilized
to study dislocation evolution (Zhu et al., 2018) and geometrically
necessary dislocations (Zhu et al., 2016), among others
(Wilkinson et al., 2006; Schwartz et al., 2009; Engler & Randle,
2010; Wilkinson & Britton, 2012). These analyses are currently
achieved in commercial EBSD utilizing a Hough transform on
each diffraction pattern combined with a look-up table of inter-
planar angles constructed from a set of selected reflectors as spec-
ified by the user (typically up to five phases). In the process, the
Hough transform strips most of the information about the crystal
structure and chemistry from the image (Michael & Goehner,
1999; Dingley & Wright, 2009; Li & Han, 2015; Nolze et al.,
2017). The small subset of information being utilized for differen-
tiating the phases often results in mis-classification of similar
crystal structures (Chen & Thomson, 2010) and orientations
that produce similar diffraction maxima in different crystal

systems (McLaren & Reddy, 2008; Karthikeyan et al., 2013).
Despite its shortcomings, the Hough transform has continued
to be the standard in pattern indexing, even though computing
power has increased exponentially, largely because computer algo-
rithms have previously been incapable of Kikuchi band detection,
or the more challenging problem of autonomously parsing relevant
information for determining chemistry and the crystal structure.

The inability for state-of-the-art Hough-based EBSD systems
to make determinations about individual components of or the
entire crystal structure of a phase has not gone unnoticed in the
scientific community. One proposed solution is a dictionary-
based approach (Park et al., 2013; Chen et al., 2015; Singh &
De Graef, 2017; Ram & De Graef, 2018). Libraries of selected
materials can be selected and simulated with software, such as
EMSoft (Callahan & De Graef, 2013), for the purpose of compar-
ing the experimentally collected diffraction patterns with those
simulated. Through this process, the most similar patterns in
the dictionary determine the phase and orientation of each
EBSD pattern, even for deformed or fine-grained materials
(Ram & De Graef, 2018). These approaches have helped to allay
major challenges in phase differentiation, such as separating mar-
tensite from cementite (Ram & De Graef, 2018). Other types of
phase identification methodologies have been demonstrated,
wherein EBSD is combined with other analytical techniques,
such as energy-dispersive X-ray spectroscopy (EDS) or wave-
length-dispersive X-ray spectroscopy (WDS), given that the
chemical and structural information of the phase exists in a the-
oretical model or crystal database (Goehner & Michael, 1996;
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Nowell & Wright, 2004; Dingley & Wright, 2009). The problem
remains that the collected EBSD images are traditionally pro-
cessed via the Hough transform when attempting to perform
phase identification. As mentioned previously, the down sampling
of this data allows for patterns from multiple crystal structures to
be mistaken for others since the computer algorithms are capable
of finding orientations which may only appear to be correct
(Karthikeyan et al., 2013). In commercial phase identification sys-
tems, the user must also select a limited number of elements, typi-
cally up to 3, from the EDS results before the computer narrows
down the list of possible candidates. The combination of these two
reductions in information results in a multitude of phases, from a
variety of crystal structures, being returned for the user to decide
which is the best fit for each phase present in the microstructure.

The recent advent of machine learning techniques, such as the
convolutional neural network (CNN), offer an opportunity to
address many of the challenges to autonomously extracting infor-
mation from diffraction data (Ziletti et al., 2018; Oviedo et al.,
2019). The reason CNNs are of particular interest is due to
their multiple advantages over classical computer vision tech-
niques, which require a multitude of heuristics (Wang et al.,
2005; Alegre et al., 2006; Lombaert et al., 2014; DeCost &
Holm, 2015; Zhu et al., 2020) — such as detecting Kikuchi
bands, accounting for orientation changes, determining band-
width, and searching for higher-order Laue zones (HOLZ)
rings, and carrying the burden of developing the logic that defines
these abstract qualities. Instead, this deep learning technique
determines its own internal representation of the data, via back-
propagation (Rumelhart et al., 1986), potentially coupled with
one of many possible hyperparameter tuning strategies (Bergstra
& Bengio, 2012), such that it maximizes performance at the dis-
crimination task. This is the underlying principle behind deep
representation learning (i.e., deep neural networks) (LeCun
et al., 2015). Such methods allow the model to find patterns
that may be unintuitive or too nuanced for humans to discern.
Other discovered features might be obvious to experts but difficult
to translate into specific logic (e.g., linking the background signal
to the chemical composition). CNNs are further advantageous
over other machine learning models since they operate on the
image data directly. As an example of other machine learning
models applied to EBSD, a nearest neighbor machine learning
model has been previously explored by Goulden et al. (2017) to
address the challenge of separating ferrite and martensite by
machine learning aided pattern quality analysis, but pattern qual-
ity is too rigid a metric for general use, and the method was reliant
on human analysis and confirmation over multiple rounds of
indexing a single map. Another advantage is the flexibility of
these CNNs, allowing for the transfer of knowledge learned
from discriminating images in other contexts (Gonzalez et al.,
2019; Thompson et al., 2019), the development of models suitable
for application in a highly specific materials space, or deployment
in an application where the phases present are completely
unknown. For example, during the initial analysis of a material,
a pre-trained CNN could be utilized for the determination of
which Bravais lattices or space groups are present (Kaufmann
et al., 2020). Other studies utilizing CNNs in EBSD have demon-
strated the orientation determination (Jha et al., 2018) and phase
classification of several materials that may be easily confused in
traditional EBSD (Foden et al., 2019). The work by Foden et al.
demonstrates the application of simulated patterns for achieving
this goal. Simulated EBSPs may alleviate the challenges associated
with finding suitable materials for data collection, similar to what

is being done in other applications (Ziletti et al., 2018; Oviedo
et al., 2019). In well-known classes of materials, application-
specific models could be developed to distinguish phases tradi-
tional Hough-based EBSD finds nearly indistinguishable, such
as martensite and ferrite. Moreover, modern computing hardware
allows for real-time classification in line with recent advance-
ments in EBSD technology (Goulden et al., 2018).

Herein, it is demonstrated that CNNs can be constructed to
recognize phases based on their structure/symmetry, chemistry,
and even lattice parameter variations; some of these well beyond
the scope of what the Hough transform is capable of, even with
user supplied information about the sample. Several of these
CNN-based demonstrations are meant to serve as proof-of-
concept models for application-specific use cases, while others
such as the Bravais lattice identification model can readily be
applied to materials outside the training set. Further automation
and improved accuracy of the proposed process could be achieved
by the development of diffraction pattern databases, inclusion of
simulated diffraction patterns into the training process, and the
development of standard models for various use cases.

Materials and Methods

EBSD Pattern Collection

Six different multiphase materials were selected for demonstrating
the proposed phase-mapping methodology: (1) a rutilated quartz
sample, (2) a sample of the Campo del Cielo meteorite, from the
Chaco Province, Argentina, (3) an arc-melted ingot of
Ni80.8B13.6Si5.4Fe0.2 (at%) blended with 40 wt% eutectic tungsten
carbide (a metal matrix composite) (Maroli & Liu, 2017), (4) an
Fe–Al metallic–intermetallic laminate (MIL) composite (Wang
et al., 2019), (5) a thermally cycled MCrAlY-based thermal barrier
coating (Evans et al., 2001; Mercer et al., 2006; Pollock et al.,
2012), and (6) a sample of 430 stainless steel. Diffraction patterns
from 28 other materials, detailed in Kaufmann et al. (2020), were
utilized for training the CNN-based model for Bravais lattices
demonstrated herein. EBSD patterns (EBSPs) were collected in a
Thermo Fisher (formerly FEI) Apreo scanning electron micro-
scope (SEM) equipped with an Oxford Symmetry EBSD detector
and an Oxford X-MaxN EDS detector. The Oxford Symmetry
EBSD detector was utilized in high-resolution (1244 × 1024)
mode with frame averaging and EDS maps were collected simul-
taneously. The Hough indexing parameters were 12 Kikuchi
bands, a Hough resolution of 250, and band center indexing.
After collecting high-resolution EBSPs from each material, all pat-
terns collected were exported as tiff images. Figure A1 in
Appendix shows example images of the high-resolution diffrac-
tion patterns collected from the six materials utilized in this
study. The collected data was not filtered for pattern quality via
any means, each pattern was individually assessed by the neural
network, and the collection of images for each sample may con-
tain partial or low-quality diffraction patterns, which will decrease
the accuracy of their identification.

Neural Network Architecture and Phase-Mapping Procedure

The well-studied CNN architecture Xception (Chollet, 2017) was
selected for fitting a model that determines from which phase or
crystal structure a diffraction pattern originated. Figure A2 in
Appendix details a schematic of the CNN operating on an
EBSP. Training was performed using Adam optimization
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(Kingma & Ba, 2014), with batches of 32 images, and a minimum
delta of 0.001 as the validation loss employed for early stopping
criteria. Categorical cross-entropy was used as the loss function.
All training data labels were created using validated phases in
combination with combined EBSD/EDS and, where applicable,
X-ray diffraction (XRD). In the cases where training data was col-
lected from multiphase materials, such as the MIL composite, it is
possible that a small number of diffraction patterns could have
been attributed to the incorrect class. If a substantial number of
patterns were mislabeled, we expect to see poor performance
from the model. The CNNs were implemented using Python
3.5 with TensorFlow (Abadi et al., 2016) and Keras (Chollet,
2015). The conversion from neural network predictions to
phase maps is accomplished using MATLAB R2018B. The histo-
gram plot and pattern quality phase map were also made using
MATLAB R2018B.

The rutilated quartz specimen was mapped using a CNN previ-
ously trained to differentiate the crystal symmetry of the 14 Bravais
lattices (Kaufmann et al., 2020). This model was trained using the
same hyperparameters used for all other models in this work. The
model was not trained using quartz diffraction patterns.

For the Campo del Cielo meteorite sample, EBSPs were col-
lected from taenite, schreibersite, iron, and regions without any
evidence of a diffraction pattern (i.e., containing only background
noise). The model was trained on 500 randomly selected patterns
from each of these phases.

Diffraction patterns for three of the five phases present in the
Ni80.8B13.6Si5.4Fe0.2 plus 40 wt% eutectic tungsten carbide sample
were collected from separate samples of the pure phases (Ni,
W2C, and WC), similar to a “standard” library. Diffraction pat-
terns from the other two phases, Ni3B and W2NiB2, were col-
lected directly from the sample owing to the challenge of
making pure specimens of these two phases. The model was
trained to differentiate 500 randomly selected patterns from
each of these phases.

The Fe–Al MIL composite is presented herein as four distinct
phases. This material was fabricated via diffusion controlled
growth from a “multiple-thin foil” configuration and a two-stage
reaction process described elsewhere (Wang et al., 2019). This fab-
rication strategy yields layers of pure iron, an Al-enriched α-Fe
layer, an Fe-enriched FeAl B2 layer, and a near-equiatomic
(∼48 at.% Fe) FeAl B2 layer. Multiple layers of the sample were
mapped using Hough-based EBSD alone, with reference chemis-
tries from EDS for each phase, and separately with the convolu-
tional neural network (CNN-based) EBSD approach. Diffraction
patterns for training the CNN were collected from each of these
regions and separated into four groups based on the chemistry
at that location. The model was trained to recognize the subtle dif-
ferences caused by chemistry and structure changes using 500
randomly selected patterns from each of these phases.

The thermal barrier coating sample contains five face-centered
cubic (FCC) phases, all space group 225, and one rhombohedral
structure. The FCC phases are Ni, yttria-stabilized zirconia (YS–
ZrO2), TaC, Cr23C6, and Hastelloy X. The rhombohedral phase
is the thermally grown oxide (TGO) Al2O3. The sample was
phase mapped using standalone Hough-based EBSD, EBSD com-
bined with chemistry information from EDS assigned to each
phase, and separately with the CNN-based EBSD approach. Five
hundred diffraction patterns were randomly selected from each
phase to train the model.

A section of 430 stainless steel (max 0.12 wt% carbon) was
selected to study the methodology’s ability to separate martensite

from ferrite. The lattice parameters for phase mapping via tradi-
tional EBSD were determined from XRD and the well-defined
dependence of the lattice parameter c on carbon content (Xiao
et al., 1995). Diffraction patterns used to train the model were col-
lected from out-of-sample “standards” of pure Fe and rapidly
quenched lath martensitic steel (Dougherty et al., 2009). The
training patterns from the lath martensitic steel (max 0.15 wt%
carbon) were filtered such that they were of the same high
quality as the pure Fe patterns. Five hundred high-quality diffrac-
tion patterns from each phase were then selected to train the
model.

For each of the six materials, each diffraction pattern collected
in an EBSD map was evaluated in a random order by the corre-
sponding trained CNN model without further information. The
output classification of each diffraction pattern was recorded
and saved in a (.csv) file. A custom Matlab script was used to
assign an RGB color value to the predicted class for each diffrac-
tion pattern and assign the color value to the corresponding pixel
in the EBSD map. Unlike the results obtained from the commer-
cial Oxford Aztec software, no smoothing algorithm was
employed for interface boundaries between phases, making the
CNN-based maps look more pixelated than their commercial
counterpart.

Results and Discussion

Figure 1 demonstrates the CNN-based EBSD method’s ability to
overcome the first major challenge traditional Hough-based
EBSD is presented with: “What crystal symmetries are present
in this material?” The electron image in Figure 1b clearly displays
the two-phase nature of a rutilated quartz sample. When using a
commercially available EBSD software package, such as Oxford’s
Aztec application, the user must first select a list of phases, which
serve as the Hough transform libraries, for determining the phase
and crystallographic orientation of each diffraction pattern.
Assuming the phases are known, the user can select the quartz
and rutile libraries to produce the phase map in Figure 1a.
However, there is often uncertainty as to which crystal structures
are present in a sample. To alleviate this concern, a CNN-based
model that analyzes each diffraction pattern and returns the
most likely Bravais lattice, out of the 14 possible choices, is devel-
oped. Figure 1c demonstrates the model applied to the same high-
resolution diffraction patterns collected from the rutilated quartz
specimen. The trained CNN can determine, autonomously, the
correct Bravais lattice with a high degree of accuracy, reproducing
the original user-selected phase map with a high degree of fidelity.
This achievement is made more significant by the fact that the
CNN was not trained on any diffraction patterns from quartz.
When comparing the pixels that differ between the phase maps
generated by the traditional Hough-based EBSD (Fig. 1a) and
the CNN-based EBSD (Fig. 1c), it is immediately evident that
the diffraction patterns classified as neither hexagonal nor prim-
itive tetragonal tend to be located on the boundary between the
two phases or in pores. This also tends to be the case for the non-
indexed pixels (black) in the traditional Hough-based phase map.
The CNN-based approach is also able to identify a number of
these non-indexed pixels as belonging to primitive tetragonal
(rutile) or hexagonal (quartz). Unlike the Hough-based method,
this implementation is required to choose from one of the 14
Bravais lattices; it does not yet have the option to leave a pixel
non-indexed based on pattern quality or other metrics. This is a
feature that will be explored later in this work. It is important
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to note that this CNN-based EBSD approach is autonomous,
wherein the user is not involved in any phase selection or the
crystal structure decision-making process.

In contrast to the previous example, which is designed to be
the most broadly applicable, the following examples demonstrate
the versatility of CNNs through a series of application-specific
demonstrations, and their ability to address even more challeng-
ing crystal structure classification problems encountered in EBSD.

The first example explores a geological specimen with large
variation in pattern quality. Figure 2 compares the performance
of the traditional Hough-based approach versus our CNN-based
EBSD approach on a sample of the Campo del Cielo meteorite.
This specimen contains an Fe-rich matrix with isolated regions
of taenite and schreibersite throughout. The first challenge is
that the sample becomes deeply recessed in a section of the schrei-
bersite phase as seen in the lower right corner of the electron

Fig. 1. Phase-mapping rutilated quartz based on Bravais lattices. (a) Hough transform EBSD map with rutile and quartz as user-selected phases. (b) Electron image
showing the two-phase microstructure. (c) Phase map generated from the CNN-based model’s analysis of each diffraction pattern individually. Scale bars = 250 μm.
There are 11,700 total EBSPs (pixels).

Fig. 2. Phase mapping the Campo del Cielo meteorite. (a) Hough transform EBSD map with user-selected phases. (b) Electron image showing the two-phase micro-
structure. (c) Phase map generated from the CNN-based model’s analysis of each diffraction pattern individually. (d) Pattern quality map. (e–k) EDS maps of the
analyzed region. Scale bars = 50 μm. There are 40,784 total EBSPs (pixels).
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image (Fig. 2b). This significantly impacts the pattern quality in
this region and eventually the collected patterns contain only
background noise. Therefore, it is important that the
CNN-based model has a method for deciding when there is insuf-
ficient information in a captured diffraction pattern to make an
accurate classification. This is accomplished by adding a zero-
solution class as one of the available outputs, as detailed in the
methods section. Comparing the output phase map from each
method, it is immediately evident that the overall features are
very similar. Upon further inspection, it is observed that the
CNN-based method is able to fill in a greater percentage of the
data from the recessed schreibersite phase, up to the point
when the CNN method determines the diffraction patterns do
not contain sufficient information to make a classification
(Fig. 2c). Moreover, the sections of taenite are more complete
along the zero-solution boundaries, including the section below
the schreibersite phase, which traditional Hough-based EBSD
was unable to map. In the middle left section of the electron
image, it is evident that there exists a two-phase structure that tra-
ditional Hough-based EBSD identifies only as taenite. The EDS
maps (Figs. 2d–2k), particularly Cu, Co, Fe, and Ni, confirm
that the chemistry in this region is indicative of two phases.
The CNN identifies the second-phase regions as schreibersite,
which is a good match chemically and crystallographically,
upon inspection of the diffraction patterns captured from that
region. In the Hough-based phase map, there are four thin
black lines that are not identified due to low-quality patterns
and diffraction overlap (Fig. 2a). The CNN-based EBSD phase
map identifies these regions as a mixture of taenite and schreiber-
site, and the EDS maps confirm these thin sections to be primar-
ily taenite. In summary, the machine learning-based method is
found to be robust to large variations in pattern quality and can
be architected with a no solution class.

Figure 3 compares the performance of traditional Hough-
based approach versus our CNN-based EBSD approach on an arc-
melted metal matrix composite. This example demonstrates the
ability to train the CNN-based model on diffraction patterns

collected from “standards” of each phase (Ni, W2C, and WC)
and apply the model to identify these phases in a complex multi-
phase sample (described in the Methods section). The 89,280 dif-
fraction patterns collected for Figures 3a and 3c are independently
analyzed by the CNN, which results in a high-fidelity map of the
material. Between Figures 3a and 3c, only ∼5,000 pixels (or 5.6%)
have a different label and most of these differences are located
where the traditional Hough-based method produced no solution.
The CNN-based model excels at applying the information it
learned from other systems, or “standards” onto a very different
system with a high degree of accuracy.

Furthermore, due to the significant difference in hardness
(Maroli & Liu, 2017), the phases in the nickel-based matrix and
tungsten carbide particles are susceptible to vastly different pol-
ishing rates. This typically reduces pattern quality in protected
areas, such as within the WC particles seen in the electron
image. The phase map generated via the traditional approach
shows that much of this region produces partial EBSD patterns
that the Hough-based approach cannot match to a look-up
table of interplanar angles. However, the CNN-based model can
utilize the information that is present to identify these EBSPs
and primarily classifies them as either W2C or W2NiB2. The
EDS maps in Figures 3d–3g, as well as the measured chemistry
(not shown), support these classifications. The maps of W and
C show that neither of the regions identified as W2C or
W2NiB2 contain as much carbon as the regions mapped to WC
in either phase map. Furthermore, the map of Ni shows that it
does indeed diffuse into the large WC particles, where it causes
the W2NiB2 phase to form near the perimeter. The combined
achievements on this material show that the CNN is robust to
partial patterns and can be trained using other samples as
“standards”.

The next demonstration of the CNN-based EBSD approach is
perhaps one of the most challenging types of problems encoun-
tered in EBSD. The four phases present in the Fe–Al sample
are formed as the result of a diffusion couple style experiment
between Fe and Al foils (described in the Methods section).

Fig. 3. Phase mapping a metal matrix composite. (a) Hough transform EBSD map with user-selected libraries. (b) Electron image showing the multiphase micro-
structure. (c) Phase map generated from the CNN-based model’s analysis of each diffraction pattern individually. (d–g) EDS maps of the analyzed region. Scale
bars = 25 μm. There are 89,280 total EBSPs (pixels).
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This results in two body-centered cubic phases (space group 229),
pure Fe and α-Fe from the Al substitution in the lattice, and two
primitive cubic phases (space group 221), nearly equiatomic FeAl
B2 and the non-equiatomic B2 solid solution. The backscattered
electron image in Figure 4a shows the alternating layers of the
material and gives an early indication that multiple phases are
present in the sample. Figure 4b provides a reference Fe map
and the bright columns indicate where pure Fe layers remain
after the reaction. If the FeAl B2 and pure Fe diffraction libraries
are selected by the user, the Hough-based EBSD is unable to dif-
ferentiate between the two phases, and a phase map as shown in
Figure 4c is produced. Because the diffraction maxima are so sim-
ilar between these two phases, every diffraction pattern is identi-
fied as both phases with equal confidence, and the software
selects, by default, the second phase on the user-selected list.
Figure 4d demonstrates a representative result from a user assign-
ing a reference chemistry from within each phase, using point
EDS, to each of the four phases present. If the user selects the ref-
erence chemistry for each phase, with the best of intentions and
accuracy, a resultant map as shown in Figure 4d can be achieved.
While the four phases are now each present, the phase map does
not accurately describe what is observed in the chemistry analysis.
Instead, the pure Fe and α-Fe (Fe-SS) layers are interspersed ran-
domly (rather than layers), and the B2-SS is scattered throughout
the region known to be near-equiatomic FeAl B2. After consider-
able “optimization” (repeatedly changing the reference chemistry
selected in point EDS for each phase), the user can eventually
reach a phase map (as shown in Fig. 4e) that looks similar to
the known microstructure; this of course can only be achieved
because the microstructure in this case is known in advance.

By comparison, a CNN trained on a small subset of patterns
belonging to each phase produces the phase map seen in
Figure 4f. While the phases are not as perfectly linear as in
Figure 4e, it is likely that the merging of phases at their borders
is real to some degree according to the analysis performed by

Wang et al. (2019) and their observation that crystal orientation
influences the diffusion rates. Otherwise, the phase map is in
good agreement with the expected results, and the CNN-based
EBSD method is adept at separating diffraction patterns based
on space groups and small changes in chemistry within the
same space group.

CNNs applied to EBSD can resolve another challenging prob-
lem that phase identification including EDS reference chemistry
for each phase does not completely resolve. The electron image
for a cycled thermal barrier coating containing five FCC phases
and one rhombohedral phase is shown in Figure 5c. The top
layer is yttria-stabilized zirconia (YS–ZrO2), followed by the ther-
mally grown oxide layer (Al2O3). In the middle section is a com-
plex bond coat containing Ni, a chrome-carbide phase (Cr23C6),
TaC, and a small amount of Al2O3. The bottom layer is the nickel-
based superalloy Hastelloy X with Cr23C6 at the grain boundaries
from thermal cycling. Except for the Al2O3 phase, each of these
phases belongs to space group 225, meaning that their crystal
symmetries are the same, but the lattice parameters can be differ-
ent. As seen in Figure 5a, the Hough transform method alone is
unable to reliably differentiate the FCC phases and indexes them
primarily as Hastelloy X with some interspersed YS–ZrO2. The
phase fraction of TaC (the brightest spots in the electron
image) is much too large (based on the known chemistry) and
is incorrectly included in the substrate. The Hough transform per-
forms reasonably well at identifying the band of Al2O3, which is
not surprising given its rhombohedral structure. Including refer-
ence chemistry for each of the phases improves the overall quality
of the Hough-based EBSD phase map, as shown in Figure 5b. The
band of TGO is further defined and the YS–ZrO2 layer contains
much fewer erroneous pixels. However, the Hastelloy X substrate
has large grains and twins that are being identified as TaC and the
Hastelloy X is indexed as approximately 40% of the bond coat
layer (center section). Furthermore, the phase fraction of TaC in
the bond coat is still much higher than what is observed to be

Fig. 4. Phase mapping an Fe–Al MIL composite. (a) Electron image showing the multiphase microstructure. (b) EDS map of Fe. (c) Hough transform EBSD map with
user-selected libraries. (d) Phase map generated by Hough transform combined with non-optimized EDS measurements. (e) Phase map generated by Hough trans-
form combined with optimized EDS measurements as reference chemistry. (f) Phase map generated from the CNN-based model’s analysis of each diffraction pat-
tern individually. Scale bars = 500 μm. There are 10,164 total EBSPs (pixels).
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present in the electron image. Figure 5d is the result of training a
CNN-based model to differentiate these phases. While not free of
errors, the resulting phase map is observed to be a higher-fidelity
mapping of the area shown in the electron image than traditional
Hough-based EBSD offers. Comparison with the EDS maps in
Figures 5e–5l further confirms the increased plausibility of the
phase fractions and the credible identification of each diffraction
pattern. The YS–ZrO2 layer is nearly completely indexed as such
with most of the errors present residing at pores and cracks in the
oxide. The Al2O3 is now indexed as a continuous band of ther-
mally grown oxide in good agreement with the morphology of
the Al EDS map. The central region is almost entirely indexed
as Ni with interspersed TaC, Cr23C6, and Al2O3. Careful compar-
ison with the EDS maps for Ta, Cr, Al, and O reveal the chemistry
to overlap well with the presence, or absence, of the respective
phase in the CNN-based phase map. The Hastelloy X substrate
is well confined and interlaced with Cr23C6 particles that were
not identified in Figures 5a and 5b but are clearly present in
the Cr EDS map.

The final demonstration of the potential for CNNs to revolu-
tionize EBSD technology is perhaps the most universally known
limitation: the challenge of separating martensite from ferrite.
This problem has traditionally been resolved by setting band con-
trast (or pattern quality) thresholds and accepting some degree of
misindexing. The determination of the threshold value is biased
by human criterion and can result in drastically different maps
and phase fractions depending on the user-selected threshold.
Another applicable method for mapping tetragonality in martens-
itic steels, called high (Angular) resolution EBSD (HR-EBSD),
uses a reference pattern to measure the relative strain rate of all
other patterns (Tanaka & Wilkinson, 2018). While this technique
achieves high sensitivity (∼10−4) and can be used to back calcu-
late relative c/a ratios, the absolute strain and c/a ratio of the

reference pattern is typically unknown. This method is not com-
pared herein owing to the need for a dictionary of simulated pat-
terns for the initial calibration. The microstructure of commercial
430 stainless steel is displayed in Figure 6a. While not yet obvious
from the electron image alone, the martensite regions appear
raised compared to the ferrite. The band contrast map in
Figure 6b confirms both the location of the martensite as well
as the overlap in pattern quality between the martensite and fer-
rite. This is the same problem encountered in the previous work
(Goulden et al., 2017) and explains why their pattern quality-
based model was dependent on iterative phase discrimination
and “locking” pixels the user deemed correctly identified before
re-analysis. The region depicted in Figure 6a is mapped via tradi-
tional EBSD (Fig. 6c) using ferrite and martensite libraries gener-
ated based on the lattice parameter from XRD and
well-established equations from the literature (Xiao et al., 1995)
(refer to the Methods section for more information). The
Hough-based method results in nearly all the 12,236 collected dif-
fraction patterns being identified as martensite. In contrast, the
machine learning model trained on “standards” for martensite
and ferrite produces a phase map (Fig. 6d) with strong correlation
to what is observed in the band contrast map. As seen in
Figure A1, the martensite and iron diffraction patterns used to
train the model as out-of-sample “standards” are of considerable
quality. Therefore, unlike the previous study (Goulden et al.,
2017), our CNN-based model is not reliant on pattern quality
metrics as a singular variable and each diffraction pattern is
indexed in one pass through the data. A histogram of the band
contrast values is shown in Figure A3. A comparison to the com-
mon thresholding method is made in Figure 6e. A threshold of
band contrast <45 is applied to map the lowest quality patterns
to martensite. This threshold was selected using the histogram
as a guide. The machine learning model compares favorably to

Fig. 5. Phase mapping a thermal barrier coating. (a) Hough transform EBSD map with user-selected libraries. (b) Phase map generated by Hough transform com-
bined with optimized EDS measurements as reference chemistry. (c) Electron image showing the multiphase microstructure. The Hastelloy X substrate is at the
bottom of the image. (d) Phase map generated from the CNN-based model’s analysis of each diffraction pattern individually. (e–l) EDS maps of the analyzed
region. Scale bars = 100 μm. There are 45,052 total EBSPs (pixels).
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this method and many of the most obvious regions overlap.
However, the patterns on which the two models disagree are
not strictly band contrast-dependent. In fact, several medium or
low band contrast regions are identified as ferrite by the machine
learning model (Fig. 6d), while the same regions are mapped to
martensite when classified by pattern quality (Fig. 6e).

The distinction between ferrite and martensite in EBSD has
routinely been considered one of the grand challenges in EBSD.
With support from well-designed machine learning models, the
technique is demonstrated to be capable of highly accurate, auton-
omous classification of these two phases.

Conclusion

In this paper, a CNN-based approach to accessing latent signals in
EBSPs is developed and demonstrated. The flexibility and utility
of this methodology is established by designing training sets for
a variety of cases that are challenging problems in traditional
Hough-based EBSD, but for which the information is present in
the diffraction pattern. The output of the trained CNNs is com-
pared to phase maps generated using state-of-the-art Hough-
based EBSD systems and practices. In each case, the model is
demonstrated to perform well at the task of properly identifying
phases, while validating the flexibility of the new methodology.

Major improvements offered by the CNN-based phase-
mapping approach are the identification of crystal symmetry
(e.g., Bravais lattices or space groups), the correct identification
of phases from incomplete or otherwise low-quality diffraction
patterns, and the ability to distinguish crystallographically similar
phases with subtle differences in the chemical composition or the
lattice parameter. Even martensite and ferrite, which have a nearly
equivalent crystal structure, can be distinguished using this meth-
odology. Moreover, these are accomplished without the need for

additional inputs to the model. Further development of this tech-
nology is expected to yield a significant number of advancements
to the EBSD platform, specifically this approach can move EBSD
from a user-dependent methodology, to an autonomous phase
identifying microstructure characterization platform. This work
demonstrates these potential capabilities using in-house develop-
ment of models and available diffraction patterns. The methodol-
ogy can readily be applied by other researchers for the
development of new models. Inclusion of simulated diffraction
patterns may help accelerate the process. In the future, we foresee
commercial EBSD systems being equipped with standardized
models, and potentially even on-demand modeling capabilities,
for working with specific use cases or elucidating information
about unknown materials.
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APPENDIX

Figures A1–A3

Fig. A2. Schematic of the neural network. In convolutional layers, a learnable filter is convolved across the image and the scalar product between the filter and the
input at every position is computed to form a feature map. Pooling layers are placed after convolutional layers to down sample the feature maps and produce
coarse grain representations and spatial information about the features in the data. A traditional dense neural network is placed as the last layer, where the prob-
ability that the input diffraction pattern belongs to a given class is computed. These outputs are used to construct a phase map.

Fig. A1. Representative diffraction patterns from each phase in the six materials studied. All patterns shown are collected from the material studied. The sample
number is noted to the left of each group of patterns.
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Fig. A3. Histogram of band contrast values for the 430 stainless steel map. Band contrast values are binned in groups in steps of 5, starting from 0. The left-edge
value is included in the count for each bin, but not the right-edge value.
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