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Introduction
The number  is perhaps the most famous irrational number. This

constant is equal to the ratio of the circumference of a circle to its diameter.
One of the most well-known mathematical problems of antiquity, which is
related to , is how to construct by using a ruler and compasses a square
which has the same area as a circle. This particular problem cannot be solved,
due to the fact that  is a transcendental number, which means that it cannot
be obtained as the root of a polynomial equation with rational coefficients.  It
was Euler in the 18th century who established the notation .
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It is noteworthy that  is related to a famous problem in probability

theory, the Buffon needle. In particular, suppose that a needle is thrown on a
plane which has parallel lines drawn at equal distance from each other. The
probability  of the needle intersecting one parallel line is provided by an
expression which involves , the length of the needle and the distance of the
parallel lines [1]. If  were known, it would be possible to solve for .
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The probability  can be approximated by conducting the experiment of

throwing the needle many times and calculating the frequency of hits of the
needle on any parallel line. There is however, an alternative way to proceed:
the random experiment of the throw of the needle can be mathematically
simulated. Whether or not the simulated needle intersects a parallel line is
recorded.  By running a large number of simulations through a computer
program such as Excel, , and hence , can be fairly well approximated.
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A short history of π
A large number of mathematicians have tried to calculate , as

described in [2].  In ancient Egypt, the Rhind papyrus, which dates from
1650 BC, stated that if we take 8/9 of the diameter of a circle and form a
square, then the area of the square is equal to the area of the circle. This is
equivalent to taking  to be . In the Old Testament
(I Kings) the value of  is considered to be approximately 3. The first
systematic approximation of  dates to the ancient Greek mathematician
Archimedes. Archimedes in his study Measurement of Circle

 used circumscribed and inscribed regular polygons
(96-polygons) in order to approximate the area of a circle [3]. Based on this

approach, he calculated  to be between  and . In China at the end of

5th century AD, Zu Chongzhi showed that  is between the numbers
3.1415926 and 3.1415927. The Indian mathematician Aryabhata provided

the approximate value , which yields 3.1416.
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In continuation, during the 16 th century in France, Viette employed
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regular polygons with 392 216 sides in order to show that 

< π < .3.1415926535 3.1415926537

In 1751 the Swiss mathematician Lambert showed that  is irrational and,
sometime later, in 1759, Legendre provided another stricter proof of this
fact. During the 18 th century, a number of mathematicians, such as the
Englishman Machin, were able to express  as an expansion of an infinite
series based on trigonometric functions. In 1882, Lindemann proved that
is transcendental. In our time, using computers,  has been calculated with
great precision. For example, in 1999, Kanada and Takahashi calculated the
first 68 719 470 000 digits of . Unfortunately no rule exists which fully
describes the digits of , as they appear not to follow any particular pattern.
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The problem of Buffon's needle
Georges Louis Leclere, Count of Buffon (1707-1788), posed a problem

[4], which is the first application of probability theory in a geometric setting,
and can be described as follows: On a table, we draw parallel lines at equal
distances  among them. Then we randomly throw on the table a needle of
length  (less than ) and seek to find the probability  that the needle will

touch any of the parallel lines. This probability is found to be . The

derivation can be found in  [1].
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Mathematical simulation of the throw of the needle
We will attempt an approximation of  by throwing a needle virtually.

We consider an orthogonal Cartesian system on which we draw a square
taking  from 0 to 1 and  from 0 to 1. This square represents the surface of
the table on which the needle is thrown. The parallel lines are drawn
perpendicularly to the -axis at distance . Figure 1 shows how the
needle could appear after being thrown.
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x c = 0.1

The length of the needle is 0.08. For the simulation, we randomly take a
point  on the plane to be the location of the sharp end of the needle.
To determine the orientation of the needle, we randomly generate the angle

 of the needle with respect to the -axis. Figure 2 depicts the location of the
needle.

(x1, y1)

θ x

Approximation of π
In Excel, the coordinates  and  are defined by the function

. To determine the line of the needle completely, the angle  of
the needle with the -axis is generated (in degrees) by the formula = 360*
RAND(). The -coordinate of the blunt end of the needle is given by

.

x1 y1
= RAND() θ

x
z

x2 = x1 + l cos θ
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FIGURE 1: The needle thrown on the square
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FIGURE 2: Determination of the location of the needle

We now divide  and  by the distance between the parallel lines . In
the case that  or  is integer, one end of the needle is exactly located
on a parallel line. The integer part of , denoted by  provides the
rank number of the parallel line at the left of . Similarly,
corresponds to the rank number of the parallel line to the left of . Note
that, if  is negative, .

x1 x2 c
x1 / c x2 / c

x1 / c [x1 / c]
x1 [x2 / c]

x2
x2 [x2 / c] = −1

We define . When , there is a parallel
line lying between  and  and as a result, the needle intersects this
particular parallel line. Similarly, when , no internal point of the
needle intersects any parallel line.

D = [x1 / c] − [x2 / c] |D| = 1
x1 x2

D = 0

Finally, we need to account for the event that the needle intersects a
parallel line. We define the binary variable , which takes the value of 1X
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when the needle intersects a parallel line, and 0 otherwise. We observe that
 in the following cases:X = 1

(a) An internal point of the needle intersects a parallel line, which holds
when ;|D| = 1

(b) Only the sharp end of the needle is on a parallel line, so that  is an
integer but  is not an integer;

x1 / c
x2 / c

(c) Only the non-pointed end of the needle is on a parallel line, so that
is an integer but  is not an integer. 

x2 / c
x1 / c

(d) The complete needle is on a parallel line, in which case both  and
 are equal integers.

x1 / c
x2 / c

It is noteworthy that since the length of the needle is less than the distance
between the parallel lines, only one of the above alternatives is possible.

Simulation results
In our simulation, 10 cycles of 3 000 and of 10 000 iterations of needle

throws were generated, respectively. The probability  that the needle
intersects a parallel line can be approximated by the sum of the  variable
over all the iterations divided by the total number of iterations of each cycle.

Since , the value of   is given by . In our study,  and

. For the exact value of  the theoretical probability  is almost
50.9296%. The average value of  for the 10 cycles was also calculated. The
results of the simulation are summarised in Table 1.

p
X

p =
2l
πc

π
2l
πc

l = 0.08

c = 0.1 π p
π

Cycles of 3 000 iterations Cycles of 10 000 iterations

For 
and 

l = 0.08
c = 0.1

Estimated
probability p

π Estimated
probability p

π

1st cycle 51.8% 3.0888 50.12% 3.1923
2nd cycle 50.6% 3.1621 51.23% 3.1232
3rd cycle 50.067% 3.1957 51.81% 3.0882
4th cycle 49.967% 3.2021 50.45% 3.1715
5th cycle 50.967% 3.1393 51.11% 3.1305
6th cycle 50.233% 3.1851 50.39% 3.1752
7th cycle 50.9% 3.1434 50.65% 3.1589
8th cycle 50.133% 3.1915 51.22% 3.1238
9th cycle 49.867% 3.2086 51.43% 3.1110

10th cycle 52.133% 3.0691 50.38% 3.1759

Average of 
10 cycles

50.667% 3.1586 50.879% 3.1451

TABLE 1: Results of the simulation for the calculation of  in 10 simulation cycles π
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Evaluation of the accuracy of the approximation
Even though the number of iterations in our simulation was relatively

large (3 000 and 10 000 iterations respectively), considerable variability was
present in the approximation of the probability  and consequently in the
calculation of . By increasing the number of iterations from 3 000 to
10 000, it is expected that the variability will be reduced. Indeed, each
iteration was produced by generating random numbers independently from
the other iterations. As a result, for each cycle, our estimated probability  is
the average of independent realisations of the  variable. Therefore, the
variability of  should be inversely proportional to the square root of the

number of iterations. In particular, since , cycles of 3 000

iterations are expected to present 82.6% more variability in the estimation of
 compared to cycles of 10 000 iterations. 

p
π

p
X

p
10 000
3 000

≈ 1.826

p
From Table 1 it is evident, that the variability of the approximation of

was reduced when the number of iterations increased to 10 000, although the
second decimal digit of  continued to be fluctuating.

π

π
The average of the findings of the 10 cycles, with 3000 repetitions each,

provides the approximate value of 3.1586 while the average of the cycles,
with 10 000 iterations each, was 3.1451. This should be compared against
the theoretical value 3.1415926. Therefore, together the 10 cycles of
simulation allow accuracy in the second decimal digit of . In general, we
conclude that the random throw of the needle exhibits great variability. Thus
the accuracy in the approximation of  can be enhanced only by conducting
a large number of simulated or actual needle throws. 

π

π

Comparison with other approximations
The first person to calculate  using Buffon's method was the Swiss

mathematician Wolf in 1850, who ran 5000 throws of a needle of length 36
mm with parallel lines at 45 mm distance from each other. In this way, the
probability  was found to be approximately 50.64%, which yields the value
of 3.1596 to . Similar experiments were conducted by Ambrose Smith in
1855 with 3204 throws deriving the value of 3.1553 to  [5].  In 1864,
Captain O. C. Fox, while recovering from a wound, experimented with
different needles and distances of parallel lines [6]. After performing 590
tosses, he was able to approximate  by the value 3.1416.

π
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π
Our calculation of , with 3 000 simulation iterations, is certainly

comparable with the results of Smith as the number of throws is similar and
the precision in the calculation of  does not extend further than the second
decimal digit. Likewise, our findings are similar to the approximation of
Wolf. The approximation of Fox, on the other hand, raises a number of
questions for its incredible precision as it is based on 590 throws and
achieves a precision up to the third decimal digit. Given the high variability
which is observed from the simulation study, we conclude that Fox was
particularly lucky in the experiment that he conducted.

π

π
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Conclusion
We developed a computer simulation of the experiment of the throw of

Buffon's needle problem. The probability that the needle touches one of the
parallel lines drawn on the plane was calculated, providing an
approximation to . Our findings are comparable with previous
approximations of , conducted by various researchers. We established that
the experiment of tossing the needle presents considerable variability in the
measurement of .

π
π

π
It would be of interest to develop a similar simulation for the extension

to the problem of Buffon needle given by Laplace, with equal orthogonal
rectangles rather than parallel lines drawn on the plane. The probability that
the needle intersects the sides of any of these rectangles, as calculated by
Arrow [7], depends on . Therefore a similar simulation can be developed to
approximate .

π
π

References
1. H. Dorrie, 100 Great problems of elementary mathematics, their

history and solution, Dover Publications, New York (1965).
2. D. Wilson, History of Pi, Rutgers University, (2000) available at 

https://www.math.rutgers.edu/~cherlin/History/Papers2000/wilson.html
3. A. W. Hirshfeld, Eureka man: the life and legacy of Archimides,

Walker and Company (2010).
4. G. Buffon, Histoire naturelle, générale et particulière, Supplément 4

(1777) pp. 46-123.
5. Augustus de Morgan, A budgetof paradoxes, Volume 1 (1872), Second

Edition by D. E. Smith (editor), Dover Publications, New York (2007).
Available by Project Gutenberg at:
https://www.gutenberg.org/files/23100/23100-h/23100-h.html

6. G. A. Holton, Value-at-risk (2nd edn.) (2014). Available at
https://www.value-at-risk.net/title-page/

7. B. J. Arrow, On Laplace extension of the Buffon needle problem, The
College Mathematics Journal 25(1) (1994) pp. 40-43. Available at:
http://www.math.udel.edu/~pelesko/Teaching/Math308_Spring_2006/
buffon.pdf

10.1017/mag.2019.13 ATHINA LORENTZIADI
Hellenic American Foundation, Psychiko College,

 3rd Grade High School, Athens, Greece
e-mail: athinalori@gmail.com

https://doi.org/10.1017/mag.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2019.13



