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THE METRIC FUGLEDE PROPERTY AND
NORMALITY

R. L. MOORE AND G. WEISS

1. Introduction. In [4], H. Kamowitz considered the condition, to be
satisfied by a bounded operator N on a Hilbert space J# that

INX — XNI| = [IN*X — XN¥||

for all operators X on s Kamowitz discovered that such an N must be
normal and its spectrum must lie on a line or a circle; that is, N must be of
the form aJ + B, where « and B are complex numbers and J is either
Hermitian or unitary. G. Weiss [5] showed that the Hilbert-Schmidt norm
behaves differently: N need only be normal in order that

IN X — XN, = [IN*X — XN*||

for all finite-rank operators X, and in fact this condition is equivalent to
normality. Actually, the result in [S] removes the restriction that X be
finite-rank, that is, if N is normal and X is any bounded operator, then

INX — NX]l, = [IN*X — XN*|],.

It is understood here that if one side of the equation is infinite, so is the
other; in particular, NX — XN is a Hilbert-Schmidt operator if and only if
N*N — XN* is.

A close look at both the Kamowitz and Weiss papers reveals that, for
the most part, it is operators X of rank two that carry the proof; other
ranks are either unnecessary or can be included easily once the rank-two
results are known. One might suspect, therefore, that the facts would be
different provided that N is assumed to satisfy the requirement

INX — XN|| = [IN*X — XN*||

only for rank-one X. We will consider this condition for a large class of
norms, the “uniform” norms defined by Gohberg and Krein [2]. The main
result is that the condition is equivalent to normality. We will also show
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that the “Hilbert-Schmidt” result of [5] is unique in the following way:
Suppose that 1 = p = oo and

INX — XNI||, = [IN*X — XN*||, for all X of rank 1 or 2.

If p # 2, then N must be normal with spectrum on a circle or a line,
whereas if p = 2 [1] then N need only be normal. We remark that related
results have been obtained by Furuta [1].

2. The metric Fuglede property. Our notation is as follows: 5 will
denote a complex Hilbert space, #() the algebra of bounded linear
operators on J# and () the ideal of finite rank operators in Z(¢). If f
and g are vectors in J# the symbol /' ® g denotes the rank-one operator
defined by f ® g (x) = (x, f)g. Recall the following facts:

(a) (af) ® (Bg) = aB(/® g);

(b)) (f®g)* =g®f

© Ilf @ gl = 11/l llglls

O (x®y)=(»/f) x®g);
(e) for any operator A4,

A(f®g)=/®Ag and (f®g)d = (4* ®yg).

Since we will be dealing with many norms on subsets of #(H), we will
denote an arbitrary norm by [|*||y and reserve the symbol ||-|| for the usual
operator norm. Of the many norms that can be defined on #(5¥) (and sets
containing it), the interesting ones from a Hilbert space point of view are
those that respect either the geometry of 5# or the algebraic structure of
H(). One useful minimal condition is that a norm || ||y be a cross norm,
that 1s, that

L/ ®gllo = ILf1 lgll,

or, equivalently, that ||-|| and ||-||, agree on rank-one operators. As is
indicated by Guichardet [3], the “interesting” cross norms are those that
dominate the operator norm: ||A4||y = ||4]| whenever ||4]|, is defined. When
we speak of a cross norm we shall assume the latter condition. If a
cross-norm is defined on some set  such that whenever 4 € _Z then
(4*4)"? € Zand UA € gfor all unitary U, and if

l(A4*4) 2|y = [1UAlly = llAllo,

then we refer to |||y as a uniform norm [2]. All of the Schatten p-norms are
uniform norms.
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Suppose that ||-||y is defined on (at least) #(5#) and let k be an integer.
We will say that an operator N has the rank-k metric Fuglede property with
respect to |||y if

INX — XNllp = [IN*X — XN*[|,

for all X of rank less than or equal to k. We denote the class of all such
operators N by MF(k, ||||y), or simply by MF(k) if the norm is fixed by
context; note that

MFE(k, [Illo) 2 MF (k + 1, [Ilo)-

The name “Fuglede” is invoked because of the Fuglede theorem
concerning normal operators: if N is normal and NX = XN, then N*X =
XN*. One might say that the oridinary Fuglede property (equivalent to
normality) is that [[NX — XN|| and ||[N*X — XN#*|| are equal for any X,
provided one of them is zero. The metric Fuglede property is in one way
stronger (|[NX — XN||y need not be zero) and in another way weaker (the
rank of X is restricted) than the ordinary Fuglede property. The results of
[4] and [S] say that MF (k, ||||») is the set of normal operators, regardless
of k; and MF (2, |I'l) = {@ J + B: a, B are complex and J is either
Hermitian or unitary}. We now proceed to investigate MF(k, |||l;) more
generally. One easy fact is the following:

ProrosITION 1. Let ||'|lg be a uniform norm. If N = a J + B for some
Hermitian or unitary J, then

INX — XNllp = [IN*X — XN*||
for any X for which either side of the equality is defined; in particular
N € MF (k, |I'llo) for all k.
Proof. 1f J is unitary,
WX — Xy = W* (X = XT) J*llo = [1XT* = J*Xllo.

Everything else is obvious.

3. The case k = 1. In this section we show that when |||y is a uniform
norm, MF(1, ||-||p) is precisely the set of normal operators. Actually, the
proof that MF(1, ||||o) is a subset of the normal operators requires only
that ||-|| be a cross norm.

THEOREM 2. Let N € MF(1, ||'llp), with ||'|lo a cross-norm. Then N is
normal.
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Proof. Choose a sequence of unit vectors {f,} such that [[Nf,|| — 0.
(Here 0 € 0 o (N) is assumed.) For any vector g, we have

IN* (f, ©® g) — (Ju @ ©)N*|ly = I/, ©® N*g — Nf, © glly
which tends to ||[N*g|| as n — co. On the other hand
IN(, @ g) — (/u ®g) Nllo

which tends to ||Ng|| as n — oco. Hence ||Ng|| = ||[N*g||. By reversing the
role of N and N*, we obtain ||[N*g|| = ||Ng]|.

Let € be a positive number and choose n so that ||[Nf,|| and ||[N*f,|| are both
less than e. Several applications of the triangle inequality show that

LI/, © Ngllo = 11/, @ N*gllo | < 2 [lgll,
which is the same as
| lINgll — [IN*gll | < 2¢ llgl].
The number € can be as small as desired, and we are done.

To prove the converse of Theorem 3 we introduce the further restriction
that ||-]|p be a uniform norm. We require a technical lemma.

LEMMA 3. Let f, e, h be three non-zero vectors such that neither e nor h is a
scalar multiple of f. The following are equivalent:

(a) There exists a unitary operator U such that Uf = f and Ue = h;
(®) llell = lIall and (e, ) = (h, [).

Proof. To see that (a) implies (b), observe that U*h = e and thus

(f.e) = (f. U*h) = (Uf. h) = (/. h).

The other implication is only a trifle harder. On the orthogonal
complement of {f, e, 1} we let U be the identity. By the Gram-Schmidt
process we obtain an orthonormal set {e}, e, e3} such that

S = ae
e=fer tye
h:,Be] +8€2+€€3.
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Because (e, /) = (h, f), the “e;” components of e and /4 are the same, and

because |le|]| = ||A|| we know that |y|*> = [8]* + |/ It is easy to check that
the operator

Lo 0
U=10 &/y —e/v|DI
0 ey O/

satisfies all the requirements.

THEOREM 4. Let |||lg be a uniform norm and suppose that N is normal.
Then |INX — XNl|lg = |IN*X — XN*||y for all rank-one X. Consequently,
MF(1, ||llo) is the set of normal operators.

Proof. Choose appropriate scalars «, 8 such that, if we put M = aN +
B, then (Mf, f) = 0 and (Mg, g) is real. By Lemma 3, there exist unitary
operators W and V such that Wf = f, WMf = M*f, Vg = g, VM*g = Mg.
Thus

V(IM* (f®g) — (f®g) M*) W* = Wf® VM*g — WMf® Vg
=f@Mg - M*®g=M(®g) - (fOg) M

Question. 1s Theorem 4 true if the words “uniform norm” are replaced
by “cross norm”?

4. The case k = 2. In this section we restrict attention to Schatten
p-norms and X of rank two. Recall that if K is any compact operator, the
eigenvalues of (K*K)'? are called the s-numbers of K. Index the
s-numbers to form a decreasing sequence: s; (K) £ s, (K) = ....The
subset %, consists of all those compact operators whose s-number
sequence lies in the sequence space /7, 1 = p < co. The sets €, are ideals
of operators, and a uniform norm |||, is defined on each %, class:

IKll, = (g s} (K)) p,

It is sometimes illuminating to think of the set of all compact operators as
%o (With s-numbers tending to 0) with operator norm playing the part of
I lco-

In the case of rank-two X, the results quoted in Section 1 are that MF
(2, IIllp) 1s the set of all normal operators [5], while MF (2, ||*]|) is the set of
normal operators with spectrum contained in a line or a circle [4]. In many
respects, |||l behaves differently from other p-norms, and that is the
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situation here. Indeed, when p # 2, MF (2, H~|Ip) is the subset of normal
operators with spectrum on a line or circle. The easiest way to prove this
result is to consider first the situation on a Hilbert space of low dimension.
If the dimension is three or less, it is obvious that every normal operator
has specrum on a line or circle, so only the case dim J# = 4 is relevant.

LEMMA 5. Let S be a four-dimensional Hilbert space.

(a) MF (2, ||'l,) is the set of normal operators.

(b) If 1 = p < co,p # 2, then MF (2, ||'l|,) is the set of normal operators
whose spectrum lies on a line or a circle.

The proof of Lemma 5 makes use of the next fact, which is surprising
only in that the case p = 2 is an exception. The proof shows “why” the
exception occurs.

LEMMA 6. Let a and c be non-negative real numbers and let b be complex,
with ac — |b|> > 0. Suppose that | = p < oo, p # 2, and that

(E b)l/z (a 0)1/2
b ¢ 0 ¢

Then b = 0.

Proof. The p-norm of a 2 X 2 positive matrix with eigenvalues d;, d, is
(di + d5)''P. Consequently the equality of the norms of the square roots
of the matrices above yields the equation

p =

P

(1/2(a + ¢+ V(a — ¢ + 4|b[H)r?
+(1/2a+ ¢ — Via—c +41bP))r? =ar? + 2

It does no harm to assume that ¢ = ¢, and we can then define a positive
number € so that

Via—c}+4|bP =(a—c)+ 2.

Since
(a*c)2+4|b[2=(a+c)2—4(ac—|b|2),

we know that (a — ¢) + 2¢ = a + ¢ and thus € = ¢. The equation above
becomes

(a + e)"’/2 + (¢ —e)p/2 = @ + P2,
Consider the function

f(x)=(a+ x)P?+ (c—x)P?—at? — P2 0=x=c
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We have f(0) = 0 and
[ = (/) [+ )7 = (e = )P

If p > 2 then [ is strictly increasing (recall that a = ¢); if p < 2, f'is
strictly decreasing. In either case, f (x) = 0 has only one solution, namely
x = 0, which means that ¢ = 0.

It is surprising to note that not only does the proof fail when p = 2, but
every positive matrix provides a counterexample (look at the first equation
in the proof).

Proof of Lemma 5. Part (a) is the result in [5], so suppose that p # 2. In
view of Proposition 1 we need only prove that if N € MF (2, ||-||,). then
o(N) lies on a line or a circle. N is normal by Theorem 2, and we can
choose a basis in which N is diagonal, with eigenvalues A, Ay, Az, and A4.
Any three points lie on a line or circle, so we assume that the four
eigenvalues are distinct. Let

I 1
1 r
0 0 ’
0 0

OO OO
[Nl el e}

where r will be chosen later. As before, let T = NX — XN and T = N*X
— XN*. Then

and

A AP + MNP
rer | A A A= A :)f ra = A) A — Ay
0

A =AM A+ r M) — A
[N — Ag 1P + LrP Ay — Ay
0
0

(=Nl
SO OO
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For any %, norm, the norm of (T*T)"? is the same as the norm of the
square root of the 2 X 2 upper left corner. Now choose r so that the
off-diagonal entries are 0, that is,

B (Zl - 53) A\ — A
A2 = A3) (A — Ay)
With this choice,
71, = (A1 = AP+ Ay — Ah)P72
S VI e S W e

Observe that T*T has the same form as T*7T, with A; and )\
interchanged; thus the diagonal entries of 7*T and T*T are the same. An
application of Lemma 6 shows that the off-diagonal terms of T*T must
also be zero, that is,

A = A3) (}El - 54)
A2 = M) Ay — Ay
Thus the expression (A\; — A3) (A} — As) Ay — A3) (\; — Ay) must be real.
But this quantity is a real multiple of the cross-ratio (A}, Ay, A3, Ag) and it

follows that the four numbers {A|, A,, A3, A4} lie either on a line or a
circle.

r= -

THEOREM 7. Let #be an infinite-dimensional Hilbert space. If 1 = p <
0o, p # 2, then MF (2, |Ill,) is the set of normal operators whose spectrum
lies on a line or a circle, whereas MF (2, ||||,) is the set of all normal
operators.

Proof. The second statement is the result of [5]. Let N € MF (2, [||[,)
for p # 2. By Theorem 2 N is normal, and by the spectral theorem N can
be approximated in operator norm by diagonal operators. (Use the version
that pictures N as a multiplication operator.) Let € be a positive number
and suppose that A|, Ay, A3, A4 lie in the spectrum of N. By a judicious
choice of the diagonal operator D we can ensure both that A; € o (D) for
j = 1,2, 3,4 and that |[N — D|| < e. Let f}, /5, f5, [4 be orthonormal
vectors such that Dj/ = }\ij for j = 1, 2, 3, 4. Let r be defined as in
Lemma 7 and let X be the rank-two operator defined by the equations

Xfy =fi +f Xfa=fi+rfh and X = 0iff L {fs, fa}).

This X is unitarily equivalent to the direct sum of the matrix X of Lemma
5 with the zero operator. We have
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IIDX — XD||, — ||ID*X — XD*||,
= [INX — XN, + (N — D)X — X (N — D),
= (IIN*X — XN*[|, — [(N* — D¥*) X — X (N* — D¥)l|,)
=N = D)X — X(N — D),
+ (v = D*) X — X (N* — D*)ll,
= 4 el|lXl.
Similarly we obtain
ID*X — XD*||, — [[DX — XDI|, = 4e [|X]],
and thus
DX — XD, — |ID*X — XD*[|, | = 4e ||X]|.

Let T and T be the 4 X 4 matrices in the proof of Lemma 7, written in
some fixed basis {e], e, e3, e4}. Observe that as € varies, the vectors f}, f5,
/3. fa, must vary, and hence so do X and D. However, regardless of the
choice of € we always have that DX — XD is unitarily equivalent to T @ 0,
and D*X — XD* is equivalent to T @ 0, where the “0” acts on the space
{e1, ey, €3, e4,} . Thus, for all positive ¢ we have

LIl — NITH, | = 4e X

and since || X|| does not depend on ¢, ||T1[, = HTHP‘ Lemma 5 now shows
that the complex numbers Ay, Ay, A3, A4 lie on a line or a circle. The proof is
complete.

We close with a question. If N is normal, and X is compact, it is known
that || XN — XNI||; need not be the same as |[N*X — XN*||;. Is it possible
for one norm to be finite while the other is infinite? To be precise, we ask
the following:

Question. Does there exist a normal operator N and a compact operator
X such that NX — XN is trace class but N*X — XN* is not?
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