THE METRIC FUGLEDE PROPERTY AND NORMALITY

R. L. MOORE AND G. WEISS

1. Introduction. In [4], H. Kamowitz considered the condition, to be satisfied by a bounded operator N on a Hilbert space \mathscr{H}, that

$$
\|N X-X N\|=\left\|N^{*} X-X N^{*}\right\|
$$

for all operators X on \mathscr{H}. Kamowitz discovered that such an N must be normal and its spectrum must lie on a line or a circle; that is, N must be of the form $\alpha J+\beta$, where α and β are complex numbers and J is either Hermitian or unitary. G. Weiss [5] showed that the Hilbert-Schmidt norm behaves differently: N need only be normal in order that

$$
\|N X-X N\|_{2}=\left\|N^{*} X-X N^{*}\right\|_{2}
$$

for all finite-rank operators X, and in fact this condition is equivalent to normality. Actually, the result in [5] removes the restriction that X be finite-rank, that is, if N is normal and X is any bounded operator, then

$$
\|N X-N X\|_{2}=\left\|N^{*} X-X N^{*}\right\|_{2}
$$

It is understood here that if one side of the equation is infinite, so is the other; in particular, $N X-X N$ is a Hilbert-Schmidt operator if and only if $N^{*} N-X N^{*}$ is.

A close look at both the Kamowitz and Weiss papers reveals that, for the most part, it is operators X of rank two that carry the proof; other ranks are either unnecessary or can be included easily once the rank-two results are known. One might suspect, therefore, that the facts would be different provided that N is assumed to satisfy the requirement

$$
\|N X-X N\|=\left\|N^{*} X-X N^{*}\right\|
$$

only for rank-one X. We will consider this condition for a large class of norms, the "uniform" norms defined by Gohberg and Krein [2]. The main result is that the condition is equivalent to normality. We will also show

[^0]that the "Hilbert-Schmidt" result of [5] is unique in the following way: Suppose that $1 \leqq p \leqq \infty$ and
$$
\|N X-X N\|_{p}=\left\|N^{*} X-X N^{*}\right\|_{p} \text { for all } X \text { of rank } 1 \text { or } 2 .
$$

If $p \neq 2$, then N must be normal with spectrum on a circle or a line, whereas if $p=2 \quad[\mathbf{1}]$ then N need only be normal. We remark that related results have been obtained by Furuta [1].
2. The metric Fuglede property. Our notation is as follows: \mathscr{H} will denote a complex Hilbert space, $\mathscr{B}(\mathscr{H})$ the algebra of bounded linear operators on \mathscr{H}, and $\mathscr{H}(\mathscr{H})$ the ideal of finite rank operators in $\mathscr{B}(\mathscr{H})$. If f and g are vectors in \mathscr{H}, the symbol $f \otimes g$ denotes the rank-one operator defined by $f \otimes g(x)=(x, f) g$. Recall the following facts:
(a) $(\alpha f) \otimes(\beta g)=\bar{\alpha} \beta(f \otimes g)$;
(b) $(f \otimes g)^{*}=g \otimes f$;
(c) $\|f \otimes g\|=\|f\|\|g\|$;
(d) $(f \otimes g)(x \otimes y)=(y, f)(x \otimes g)$;
(e) for any operator A,

$$
A(f \otimes g)=f \otimes A g \quad \text { and } \quad(f \otimes g) A=\left(A^{*} f \otimes g\right) .
$$

Since we will be dealing with many norms on subsets of $\mathscr{B}(H)$, we will denote an arbitrary norm by $\|\cdot\|_{0}$ and reserve the symbol $\|\cdot\|$ for the usual operator norm. Of the many norms that can be defined on $\mathscr{F}(\mathscr{H})$ (and sets containing it), the interesting ones from a Hilbert space point of view are those that respect either the geometry of \mathscr{H}, or the algebraic structure of $\mathscr{B}(\mathscr{H})$. One useful minimal condition is that a norm $\left\|\|_{0}\right.$ be a cross norm, that is, that

$$
\|f \otimes g\|_{0}=\|f\|\|g\|,
$$

or, equivalently, that $\|\cdot\|$ and $\|\cdot\|_{0}$ agree on rank-one operators. As is indicated by Guichardet [3], the "interesting" cross norms are those that dominate the operator norm: $\|A\|_{0} \geqq\|A\|$ whenever $\|A\|_{0}$ is defined. When we speak of a cross norm we shall assume the latter condition. If a cross-norm is defined on some set \mathscr{J} such that whenever $A \in \mathscr{J}$, then $\left(A^{*} A\right)^{1 / 2} \in \mathscr{J}$ and $U A \in \mathscr{J}$ for all unitary U, and if

$$
\left\|\left(A^{*} A\right)^{1 / 2}\right\|_{0}=\|U A\|_{0}=\|A\|_{0}
$$

then we refer to $\|\cdot\|_{0}$ as a uniform norm [2]. All of the Schatten p-norms are uniform norms.

Suppose that $\|\cdot\|_{0}$ is defined on (at least) $\mathscr{F}(\mathscr{H})$ and let k be an integer. We will say that an operator N has the rank-k metric Fuglede property with respect to $\|\cdot\|_{0}$ if

$$
\|N X-X N\|_{0}=\left\|N^{*} X-X N^{*}\right\|_{0}
$$

for all X of rank less than or equal to k. We denote the class of all such operators N by $\operatorname{MF}\left(k,\|\cdot\|_{0}\right)$, or simply by $M F(k)$ if the norm is fixed by context; note that

$$
M F\left(k,\|\cdot\|_{0}\right) \supseteq M F\left(k+1,\|\cdot\|_{0}\right)
$$

The name "Fuglede" is invoked because of the Fuglede theorem concerning normal operators: if N is normal and $N X=X N$, then $N^{*} X=$ $X N^{*}$. One might say that the oridinary Fuglede property (equivalent to normality) is that $\|N X-X N\|$ and $\left\|N^{*} X-X N^{*}\right\|$ are equal for any X, provided one of them is zero. The metric Fuglede property is in one way stronger ($\|N X-X N\|_{0}$ need not be zero) and in another way weaker (the rank of X is restricted) than the ordinary Fuglede property. The results of [4] and [5] say that $M F\left(k,\|\cdot\|_{2}\right)$ is the set of normal operators, regardless of k; and $M F(2,\|\cdot\|)=\{\alpha J+\beta: \alpha, \beta$ are complex and J is either Hermitian or unitary $\}$. We now proceed to investigate $\operatorname{MF}\left(k,\|\cdot\|_{0}\right)$ more generally. One easy fact is the following:

Proposition 1. Let $\|\cdot\|_{0}$ be a uniform norm. If $N=\alpha J+\beta$ for some Hermitian or unitary J, then

$$
\|N X-X N\|_{0}=\left\|N^{*} X-X N^{*}\right\|_{0}
$$

for any X for which either side of the equality is defined; in particular

$$
N \in M F\left(k,\|\cdot\|_{0}\right) \quad \text { for all } k
$$

Proof. If J is unitary,

$$
\|J X-X J\|_{0}=\left\|J^{*}(J X-X J) J^{*}\right\|_{0}=\left\|X J^{*}-J^{*} X\right\|_{0}
$$

Everything else is obvious.
3. The case $k=1$. In this section we show that when $\|\cdot\|_{0}$ is a uniform norm, $\operatorname{MF}\left(1,\|\cdot\|_{0}\right)$ is precisely the set of normal operators. Actually, the proof that $\operatorname{MF}\left(1,\|\cdot\|_{0}\right)$ is a subset of the normal operators requires only that $\|\cdot\|_{0}$ be a cross norm.

Theorem 2. Let $N \in \operatorname{MF}\left(1,\|\cdot\|_{0}\right)$, with $\|\cdot\|_{0}$ a cross-norm. Then N is normal.

Proof. Choose a sequence of unit vectors $\left\{f_{n}\right\}$ such that $\left\|N f_{n}\right\| \rightarrow 0$. (Here $0 \in \partial \sigma(N)$ is assumed.) For any vector g, we have

$$
\left\|N^{*}\left(f_{n} \otimes g\right)-\left(f_{n} \otimes g\right) N^{*}\right\|_{0}=\left\|f_{n} \otimes N^{*} g-N f_{n} \otimes g\right\|_{0}
$$

which tends to $\left\|N^{*} g\right\|$ as $n \rightarrow \infty$. On the other hand

$$
\begin{aligned}
& \left\|N\left(f_{n} \otimes g\right)-\left(f_{n} \otimes g\right) N\right\|_{0} \\
& \quad \geqq\left\|\left(N\left(f_{n} \otimes g\right)-\left(f_{n} \otimes g\right) N\right) f_{n}\right\|=\left\|N g-\left(f_{n} \otimes g\right) N F_{n}\right\|
\end{aligned}
$$

which tends to $\|N g\|$ as $n \rightarrow \infty$. Hence $\|N g\| \leqq\left\|N^{*} g\right\|$. By reversing the role of N and N^{*}, we obtain $\left\|N^{*} g\right\| \leqq\|N g\|$.

$$
\left\|f_{n} \otimes N g-N^{*} f_{n} \otimes g\right\|_{0}=\left\|f_{n} \otimes N^{*} g-N f_{n} \otimes g\right\|_{0}
$$

Let ϵ be a positive number and choose n so that $\left\|N f_{n}\right\|$ and $\left\|N^{*} f_{n}\right\|$ are both less than ϵ. Several applications of the triangle inequality show that

$$
\left|\left\|f_{n} \otimes N g\right\|_{0}-\left\|f_{n} \otimes N^{*} g\right\|_{0}\right|<2 \epsilon\|g\|
$$

which is the same as

$$
\left|\|N g\|-\left\|N^{*} g\right\|\right|<2 \epsilon\|g\|
$$

The number ϵ can be as small as desired, and we are done.
To prove the converse of Theorem 3 we introduce the further restriction that $\|\cdot\|_{0}$ be a uniform norm. We require a technical lemma.

Lemma 3. Let f, e, h be three non-zero vectors such that neither enor h is a scalar multiple of f. The following are equivalent:
(a) There exists a unitary operator U such that $U f=f$ and $U e=h$;
(b) $\|e\|=\|h\|$ and $(e, f)=(h, f)$.

Proof. To see that (a) implies (b), observe that $U^{*} h=e$ and thus

$$
(f, e)=\left(f, U^{*} h\right)=(U f, h)=(f, h)
$$

The other implication is only a trifle harder. On the orthogonal complement of $\{f, e, h\}$ we let U be the identity. By the Gram-Schmidt process we obtain an orthonormal set $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& f=\alpha e_{1} \\
& e=\beta e_{1}+\gamma e_{2} \\
& h=\beta e_{1}+\delta e_{2}+\epsilon e_{3} .
\end{aligned}
$$

Because $(e, f)=(h, f)$, the " e_{1} " components of e and h are the same, and because $\|e\|=\|h\|$ we know that $|\gamma|^{2}=|\delta|^{2}+|\epsilon|^{2}$. It is easy to check that the operator

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \delta / \gamma & -\bar{\epsilon} / \bar{\gamma} \\
0 & \epsilon / \gamma & \bar{\delta} / \bar{\gamma}
\end{array}\right) \oplus I
$$

satisfies all the requirements.
Theorem 4. Let $\|\cdot\|_{0}$ be a uniform norm and suppose that N is normal. Then $\|N X-X N\|_{0}=\left\|N^{*} X-X N^{*}\right\|_{0}$ for all rank-one X. Consequently, $M F\left(1,\|\cdot\|_{0}\right)$ is the set of normal operators.

Proof. Choose appropriate scalars α, β such that, if we put $M=\alpha N+$ β, then $(M f, f)=0$ and $(M g, g)$ is real. By Lemma 3, there exist unitary operators W and V such that $W f=f, W M f=M^{*} f, V g=g, V M^{*} g=M g$. Thus

$$
\begin{aligned}
V\left(M^{*}(f \otimes g)\right. & \left.-(f \otimes g) M^{*}\right) W^{*}=W f \otimes V M^{*} g-W M f \otimes V g \\
& =f \otimes M g-M^{*} f \otimes g=M(f \otimes g)-(f \otimes g) M
\end{aligned}
$$

Question. Is Theorem 4 true if the words "uniform norm" are replaced by "cross norm"?
4. The case $k=2$. In this section we restrict attention to Schatten p-norms and X of rank two. Recall that if K is any compact operator, the eigenvalues of $\left(K^{*} K\right)^{1 / 2}$ are called the s-numbers of K. Index the s-numbers to form a decreasing sequence: $s_{1}(K) \geqq s_{2}(K) \geqq \ldots$ The subset \mathscr{C}_{p} consists of all those compact operators whose s-number sequence lies in the sequence space $l^{p}, 1 \leqq p<\infty$. The sets \mathscr{C}_{p} are ideals of operators, and a uniform norm $\|\cdot\|_{p}$ is defined on each \mathscr{C}_{p} class:

$$
\|K\|_{p}=\left(\sum_{j=1}^{\infty} s_{j}^{p}(K)\right)^{1 / p}
$$

It is sometimes illuminating to think of the set of all compact operators as \mathscr{C}_{∞} (with s-numbers tending to 0) with operator norm playing the part of $\|\cdot\|_{\infty}$.

In the case of rank-two X, the results quoted in Section 1 are that $M F$ $\left(2,\|\cdot\|_{2}\right)$ is the set of all normal operators [5], while $M F(2,\|\cdot\|)$ is the set of normal operators with spectrum contained in a line or a circle [4]. In many respects, $\|\cdot\|_{2}$ behaves differently from other p-norms, and that is the
situation here. Indeed, when $p \neq 2, M F\left(2,\|\cdot\|_{p}\right)$ is the subset of normal operators with spectrum on a line or circle. The easiest way to prove this result is to consider first the situation on a Hilbert space of low dimension. If the dimension is three or less, it is obvious that every normal operator has specrum on a line or circle, so only the case $\operatorname{dim} \mathscr{H} \geqq 4$ is relevant.

Lemma 5. Let \mathscr{H} be a four-dimensional Hilbert space.
(a) MF $\left(2,\|\cdot\|_{2}\right)$ is the set of normal operators.
(b) If $1 \leqq p<\infty, p \neq 2$, then $M F\left(2,\|\cdot\|_{p}\right)$ is the set of normal operators whose spectrum lies on a line or a circle.

The proof of Lemma 5 makes use of the next fact, which is surprising only in that the case $p=2$ is an exception. The proof shows "why" the exception occurs.

Lemma 6. Let a and c be non-negative real numbers and let b be complex, with ac $-|b|^{2}>0$. Suppose that $1 \leqq p<\infty, p \neq 2$, and that

$$
\left\|\left(\begin{array}{ll}
a & b \\
b & \mathrm{c}
\end{array}\right)^{1 / 2}\right\|_{p}=\left\|\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)^{1 / 2}\right\|_{p}
$$

Then $b=0$.
Proof. The p-norm of a 2×2 positive matrix with eigenvalues d_{1}, d_{2} is $\left(d_{1}^{p}+d_{2}^{p}\right)^{1 / p}$. Consequently the equality of the norms of the square roots of the matrices above yields the equation

$$
\begin{aligned}
(1 / 2(a & \left.+c+\sqrt{\left.(a-c)^{2}+4|b|^{2}\right)}\right)^{p / 2} \\
& +\left(1 / 2\left(a+c-\sqrt{\left.(a-c)^{2}+4|b|^{2}\right)}\right)^{p / 2}=a^{p / 2}+c^{p / 2}\right.
\end{aligned}
$$

It does no harm to assume that $a \geqq c$, and we can then define a positive number ϵ so that

$$
\sqrt{(a-c)^{2}+4|b|^{2}}=(a-c)+2 \epsilon
$$

Since

$$
(a-c)^{2}+4|b|^{2}=(a+c)^{2}-4\left(a c-|b|^{2}\right)
$$

we know that $(a-c)+2 \epsilon \leqq a+c$ and thus $\epsilon \leqq c$. The equation above becomes

$$
(a+\epsilon)^{p / 2}+(c-\epsilon)^{p / 2}=a^{p / 2}+c^{p / 2}
$$

Consider the function

$$
f(x)=(a+x)^{p / 2}+(c-x)^{p / 2}-a^{p / 2}-c^{p / 2}, \quad 0 \leqq x \leqq c .
$$

We have $f(0)=0$ and

$$
f^{\prime}(x)=(p / 2)\left[(a+x)^{(p / 2)-1}-(c-x)^{(p / 2)-1}\right] .
$$

If $p>2$ then f is strictly increasing (recall that $a \geqq c$); if $p<2, f$ is strictly decreasing. In either case, $f(x)=0$ has only one solution, namely $x=0$, which means that $\epsilon=0$.

It is surprising to note that not only does the proof fail when $p=2$, but every positive matrix provides a counterexample (look at the first equation in the proof).

Proof of Lemma 5. Part (a) is the result in [5], so suppose that $p \neq 2$. In view of Proposition 1 we need only prove that if $N \in M F\left(2,\|\cdot\|_{p}\right)$, then $\sigma(N)$ lies on a line or a circle. N is normal by Theorem 2 , and we can choose a basis in which N is diagonal, with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}. Any three points lie on a line or circle, so we assume that the four eigenvalues are distinct. Let

$$
X=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where r will be chosen later. As before, let $T=N X-X N$ and $\bar{T}=N^{*} X$ $-X N^{*}$. Then

$$
T=\left(\begin{array}{cccc}
0 & 0 & \lambda_{1}-\lambda_{3} & \lambda_{1}-\lambda_{4} \\
0 & 0 & \lambda_{2}-\lambda_{3} & r\left(\lambda_{2}-\lambda_{4}\right) \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
T^{*} T=\left(\begin{array}{ccc}
\left|\lambda_{1}-\lambda_{3}\right|^{2} & + & \left|\lambda_{2}-\lambda_{3}\right|^{2} \\
\left(\bar{\lambda}_{1}-\bar{\lambda}_{4}\right)\left(\lambda_{1}-\lambda_{3}\right) & + & \bar{r}\left(\bar{\lambda}_{2}-\bar{\lambda}_{4}\right)\left(\lambda_{2}-\lambda_{3}\right) \\
& 0 & \\
& 0 & \\
& \\
\left(\bar{\lambda}_{1}-\bar{\lambda}_{3}\right)\left(\lambda_{1}-\lambda_{4}\right) & + & r\left(\bar{\lambda}_{2}-\bar{\lambda}_{3}\right)\left(\lambda_{2}-\lambda_{4}\right) \\
\left|\lambda_{1}-\lambda_{4}\right|^{2} & + & |r|^{2}\left|\lambda_{2}-\lambda_{4}\right|^{2} \\
& 0 & 0 \\
0 & 0 & 0 \\
& 0 & 0
\end{array}\right) .
\end{aligned}
$$

For any \mathscr{C}_{p} norm, the norm of $\left(T^{*} T\right)^{1 / 2}$ is the same as the norm of the square root of the 2×2 upper left corner. Now choose r so that the off-diagonal entries are 0 , that is,

$$
r=-\frac{\left(\bar{\lambda}_{1}-\bar{\lambda}_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}{\left(\bar{\lambda}_{2}-\bar{\lambda}_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}
$$

With this choice,

$$
\begin{aligned}
\|T\|_{p}^{p}=\left(\left|\lambda_{1}-\lambda_{3}\right|^{2}+\left|\lambda_{2}-\lambda_{3}\right|^{2}\right)^{p / 2} & \\
& +\left(\left|\lambda_{1}-\lambda_{4}\right|^{2}+|r|^{2}\left|\lambda_{2}-\lambda_{4}\right|^{2}\right)^{p / 2}
\end{aligned}
$$

Observe that $\bar{T}^{*} \bar{T}$ has the same form as $T^{*} T$, with λ_{j} and $\bar{\lambda}_{j}$ interchanged; thus the diagonal entries of $\bar{T}{ }^{*} \bar{T}$ and $T^{*} T$ are the same. An application of Lemma 6 shows that the off-diagonal terms of $\bar{T} * \bar{T}$ must also be zero, that is,

$$
r=-\frac{\left(\lambda_{1}-\lambda_{3}\right)\left(\bar{\lambda}_{1}-\bar{\lambda}_{4}\right)}{\left(\lambda_{2}-\lambda_{3}\right)\left(\bar{\lambda}_{2}-\bar{\lambda}_{4}\right)}
$$

Thus the expression $\left(\lambda_{1}-\lambda_{3}\right)\left(\bar{\lambda}_{1}-\bar{\lambda}_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\bar{\lambda}_{2}-\bar{\lambda}_{4}\right)$ must be real. But this quantity is a real multiple of the cross-ratio $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ and it follows that the four numbers $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ lie either on a line or a circle.

Theorem 7. Let \mathscr{H} be an infinite-dimensional Hilbert space. If $1 \leqq p<$ $\infty, p \neq 2$, then $M F\left(2,\|\cdot\|_{p}\right)$ is the set of normal operators whose spectrum lies on a line or a circle, whereas $M F\left(2,\|\cdot\|_{2}\right)$ is the set of all normal operators.

Proof. The second statement is the result of [5]. Let $N \in M F\left(2,\|\cdot\|_{p}\right)$ for $p \neq 2$. By Theorem $2 N$ is normal, and by the spectral theorem N can be approximated in operator norm by diagonal operators. (Use the version that pictures N as a multiplication operator.) Let ϵ be a positive number and suppose that $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ lie in the spectrum of N. By a judicious choice of the diagonal operator D we can ensure both that $\lambda_{j} \in \sigma(D)$ for $j=1,2,3,4$ and that $\|N-D\|<\epsilon$. Let $f_{1}, f_{2}, f_{3}, f_{4}$ be orthonormal vectors such that $D f_{j}=\lambda_{j} f_{j}$ for $j=1,2,3,4$. Let r be defined as in Lemma 7 and let X be the rank-two operator defined by the equations

$$
X f_{3}=f_{1}+f_{2}, \quad X f_{4}=f_{1}+r f_{2}, \quad \text { and } \quad X f=0 \text { if } f \perp\left\{f_{3}, f_{4}\right\}
$$

This X is unitarily equivalent to the direct sum of the matrix X of Lemma 5 with the zero operator. We have

$$
\begin{aligned}
& \|D X-X D\|_{p}-\left\|D^{*} X-X D^{*}\right\|_{p} \\
& \leqq\|N X-X N\|_{p}+\|(N-D) X-X(N-D)\|_{p} \\
& -\left(\left\|N^{*} X-X N^{*}\right\|_{p}-\left\|\left(N^{*}-D^{*}\right) X-X\left(N^{*}-D^{*}\right)\right\|_{p}\right) \\
& =\|(N-D) X-X(N-D)\|_{p} \\
& +\left\|\left(N^{*}-D^{*}\right) X-X\left(N^{*}-D^{*}\right)\right\|_{p} \\
& \leqq 4 \epsilon\|X\| .
\end{aligned}
$$

Similarly we obtain

$$
\left\|D^{*} X-X D^{*}\right\|_{p}-\|D X-X D\|_{p} \leqq 4 \epsilon\|X\|
$$

and thus

$$
\left|\|D X-X D\|_{p}-\left\|D^{*} X-X D^{*}\right\|_{p}\right| \leqq 4 \epsilon\|X\| .
$$

Let T and \bar{T} be the 4×4 matrices in the proof of Lemma 7 , written in some fixed basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Observe that as ϵ varies, the vectors f_{1}, f_{2}, f_{3}, f_{4}, must vary, and hence so do X and D. However, regardless of the choice of ϵ we always have that $D X-X D$ is unitarily equivalent to $T \oplus 0$, and $D^{*} X-X D^{*}$ is equivalent to $\bar{T} \oplus 0$, where the " 0 " acts on the space $\left\{e_{1}, e_{2}, e_{3}, e_{4},\right\}^{\perp}$. Thus, for all positive ϵ we have

$$
\left|\|T\|_{p}-\|\bar{T}\|_{p}\right| \leqq 4 \epsilon\|X\|
$$

and since $\|X\|$ does not depend on $\epsilon,\|T\|_{p}=\|\bar{T}\|_{p}$. Lemma 5 now shows that the complex numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ lie on a line or a circle. The proof is complete.

We close with a question. If N is normal, and X is compact, it is known that $\|X N-X N\|_{1}$ need not be the same as $\left\|N^{*} X-X N^{*}\right\|_{1}$. Is it possible for one norm to be finite while the other is infinite? To be precise, we ask the following:

Question. Does there exist a normal operator N and a compact operator X such that $N X-X N$ is trace class but $N^{*} X-X N^{*}$ is not?

References

1. T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. A.M.S. 81 (1981), 240-242.
2. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-self-adjoint operators in Hilbert space, Transl. Math. Monographs 18 (Amer. Math. Soc., Providence, R. I., 1970).
3. A. Guichardet, Tensor products of C^{*}-algebras, Matematisk Institut Lecture note series, Aarhus Universitet (1969).
4. H. Kamowitz, On operators whose spectrum lies on a circle or a line, Pac. J. Math. 20 (1967), 65-68.
5. G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators II, Journal of Operator Theory 5 (1981), 3-16.

University of Alabama,
University, Alabama;
University of Michigan, Ann Arbor, Michigan

[^0]: Received January 4, 1982 and in revised form September 22, 1982.

