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A COUNTEREXAMPLE TO A CONJECTURE OF
D. B. FUKS

BY
LUC DEMERS

Introduction. In [3] D. B. Fuks defined a duality of functors in the category
H of weak homotopy types. In general this duality is more difficult to work with
than the duality of functors of the category J of pointed Kelley spaces [2]. It
happens however that all so-called strong functors [2] F of J induce functors
F of o, and if we denote the duality operators of # and J by 2 and D respec-
tively, then there are many cases where (DF)=2(F).

This has lead Fuks to make the following conjecture: a functor F of the category
S is reflexive (i.e. F~2?F) if and only if there exists a functor G of 7 such that
F=G and 9F=DG.

Not only would this conjecture enable us to compute ZF in the most interesting
cases, but it would imply the following strong corollary.

COROLLARY. Let G, and G, be reflexive functors of the category I, and let
f: Gy — G, be a natural transformation such that for any C.W. complex A, f,: G1(4)
— G5(A) is a weak homotopy equivalence. Then for any C.W. complex A,

(Df)A: DGz(A) - DGI(A)
is also a weak homotopy equivalence.

Unfortunately, we will provide a counterexample to this corollary, which will
prove that Fuks’ conjecture is false.

1. The Counterexample. Consider the functor Q X=space of paths in X which
start or end at the base point.
In other words, QX is the pull-back of the diagram

@, X)

\
XV X—>XxX

where I’= disjoint union of the unit interval [0,1] with a point * serving as the
base point. The horizontal map is the inclusion, and the vertical map is defined as

A~ (X0), A1)

In [4, p. 210] there is defined a natural transformation

m:ZQ— Q
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with the property that for any 1-connected C.W. complex X, mx: ZQX — OXisa
homotopy equivalence.
This implies in particular that

(m* X2 ZQX2X — 022X

is a homotopy equivalence for any C.W. complex X.
Now if we assume that Q is a reflexive functor (which will be proved later),
Fuks’ conjecture would imply that

(Dm) * Q®)x: DQ o Q2X —> QEQ2X

is a homotopy equivalence for all C.W. complexes X.

In particular, if we take X'=K(Z, 3), we have Q*X~ S'=K(Z, 1), so that DQ(S*)
~ Q¥(SY). But from the explicit computation of DQ, it will be clear that DQ(S?)
is a finite complex, while the homology of QX(S?) is infinite, by a theorem of Bott
and Samelson [1]. Hence DQ(S?) and QZ(S?) cannot have the same homotopy
type.

We will now introduce a new functor which will be proved to be the dual of Q.

2. The Functor 7. QX was defined as the pull-back of the natural transforma-
tions

XV X—XxX
and

I, X)— XxX.
Now if we take the dual of this situtation, we get two transformations:

XV X—XxX
and

XVX—>XAT
where the first map is the same as the first one above, and the second is defined as
(x, %) » (x,0)
(x5, %) » (x, 1)
We define then TX to be the push-out of the diagram

XV X—>XxX

\
XATI

Since the duality operator D transforms direct limits into inverse limits, it is
clear that DT~ Q. Because of this, there is a natural transformation o: T— DQ

corresponding to the canonical transformation T — D2T. Explicitly, o is defined
as follows:
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From the definition of Q as a pull-back, we have two natural transformations

wx: QX - XV X (0x(d) = N0), 1))
and

x: QX >, X) () =N,

If we denote the wedge functor by W (i.e. W(X)=X v X), then there is a natural
equivalence ax: X x X — D(W)(X) (see [2]) given by the formula

O‘X(an xl)Y(y9 *) = (xO’ y) € X A Y
ax(Xo, X1)y(*,¥) = (X1, ) € X A Y.

Thus we have a natural map X x X — DQJX obtained as the composition

(Dw)x

XxX =25 D(W)X) == DO(X).
Explicitly,
[(Dw)x © ax(xq, X1)]r(A) = ax(xo, X1)ywy(d)
= ax(xo, X1)(A(0), A(1))
(x0, M0)) if (1) = =
= (x1, A(1)) if A0) = =.
On the other hand, by taking the dual of =, we obtain a map (D7)x: X A I’

— DQ(X) given by the formula (D7)x (x, £)y(A)=(x, (1)) e X A Y, where Ae QY.
It is easy to see that the two maps

X x X—DQX
and
XANI'—-DOX

agree on X v X, so that they combine to give us a map
ox: TX — DQX.

3. The Functor 7 and the Map »: DQ — T. Instead of finding directly an
inverse for o, we will introduce an auxiliary functor T, define »: DQ — T and show
first that 7 o o is a natural equivalence of functors.

As usual, I will stand for the unit interval [0, 1] with O as the base-point; we will
let J denote the unit interval [0, 1] with 1 as the base point.

p: I— S* and =:J— S* will denote the usual identification maps. TX is then
defined as the pull-back of the diagram

XnI

\LXAD

X

XAm

XN —>
7—C.M.B.
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Define py: DQX — X A J as u(S)=T,(id;), where S: Q — X is an element of
DQX, and id, denotes the identity map of J, and
vi: DOX— X AT

as
VX(S) = Sl(idl)-

These maps are continuous, since they are the composition of the following con-
tinuous maps:

(Q Zx) evaluation (QJ X A J) evaluation X AT

and
( Q, ZX) evaluation ( Q I X A I) evaluation X A I.

at idy
Moreover, because of the naturality of S: Q — X, we have
(X A p)ovx(S) = (X A 7)o px(S) = Ssx(p).

Thus the maps px and vy induce a unique 7x: DQX — TX.
We will now prove that 7 o ¢ is a natural equivalence.
4. The Natural Equivalence 7 o o: T— 7. From the definition of T as a push-out,

we have that
TX=XATI | XxX.

XvX

Let (x,#) € X A I'. We have
Kx © Gx(x, t) = o'X(xi t)J (ldl) = (xa t) eEXAJ
v o 0x(x, ) = ox(x,;(id) = (x,) e X A L
Hence
nxoox(x, ) = ((x,0),(x, ) EX ANIXX AL
On the other hand,
px © ox(Xo, X1) = 0x(Xo, X1)(idy) = (%0,0) € X A J
vg o ax(Xo, X1) = ox(Xo, X1)(id)) = (x;, )€ X A L
Thus (4 o 6)x: TX — TX is the map defined as
(no)x(x, 1) = ((x, 1), (x, 1)) }
EXANJIJXXAL
("l”)x(xo, xl) = ((xOs 0)3 (xls 1))

It is clear that (no)x is both an injection and a surjection, so that it remains to
show that its inverse is continuous. To that end, we define two subspaces 4 and B
of TX with the properties that

(1) 4 and B are closed in TX
2 TX=AuB
(3) (o)~ is continuous on both 4 and B.
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A={(x,1),xt)eXAIxXAD
B = {((%0,0), (x1, 1)) EX AJXx X A I}
Note first that under the homeomorphism
XANIXXAT—>XANIXXAI
sending ((x, 1), (», 8)) to ((x, 1 1), (», 5)), 4 and B are mapped respectively onto
A ={(x1-0),0))eEXAIXX AT}
and
B ={(x,)x(x;, )eX A IXxX A I}
Let g: XxI— X A I be the indentification map, and consider
gxq: (XxD)x(XxI)—> (X A D)x(X A I).
The inverse image of A! under g x ¢ is the union of the four subspaces
(G, 1=0),(x, ) e(XxDx(Xx D)}
{((, 0, (y, D)) e (XxT)x(XxI)}
{x, D, (»,0) e (XxD)x(XxD)}
(gxq)7'(»)
These are all closed subsets of (X' xI)x (X xI). If we can show that g xq is an
identification map, then we will have proved that 4* is closed.
But in the category of nonpointed Kelley spaces, the product with a fixed space

is left adjoint to a hom functor and hence commutes with direct limits. Thus we
have two push-out diagrams:

X x{0)x(XxI) — (XxI)x(XxI)

l I

*#X(XxI) ——> (X ADx(XxI)
and
X ADx(Xx{0}) —> (X A Dx(XxI)

l I

XADxx ——> (XADXx(XAID

Since ¢’ and ¢” are both identification maps, so is their composition ¢” o ¢’ =¢q X q.
Thus A’ is closed. As for B', it is the product of two closed subsets of X A L.
It remains only to show that (y o 0) ™! is continuous on both 4 and B.

For A, we have the following commutative diagram

(no)

XA — (X ADX(XAD

XxI —— (XxI)x(XxI)
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where p, g, and r are identification maps and V is the map
V(x9 t) = ((x’ l—t)> (x9 t))'

Since V is a homeomorphism into, (rxg) o V is an identification map onto its
image, which is 4. Hence 5o is a homeomorphism of X A I’ onto 4, because p
is also an identification map.

As for B, it is clear that no: X x X — B is a homeomorphism, because B has the
topology of a product.

This insures the continuity of (30)~! over the whole of TX.

5. o And 7 are Natural Equivalence. We have just shown that % o o is an isomor-
phism of functors. But % is a monomorphism. Indeed, let R, S: Q —Zx be two
elements of DQX. We have

7x(R) = (Rl(idl), Ry(id)))
"IX(S) = (Sf(idj)a Sl(idl))~

Suppose that 5x(R)=nx(S), and let Y be any space, and Ae QY.
If Ais a map I — Y, then the naturality of R implies that the following diagram
is commutative:

o) s X AT

Q(l)l lXAA

oY) s XA Y
ie. X A MR(id))=Ry(N).

If x(S)=1x(R), we have R,(id,)=S,(id;), so that Ry(1)=Sy(A). A similar thing
happens if A is a map J — Y, so that in all cases, Ry(X)=Sy(}), i.e. R=S.

Thus 75 is @ monomorphism. This and the fact that yxo is 2 homeomorphism
imply that both 5y and oy are homeomorphisms, i.e. ¢ and 7 are natural equiva-
lences.

Hence T~ DQ, which proves that T, (and hence Q) is reflexion. It is clear that
if X is a finite C.W. complex, TX is also a finite C.W. complex (cf. §1).

REFERENCES

1. R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math.
Helv. 27 (1953), 320-337.

2. D. B. Fuks, Eckmann-Hilton duality and the theory of functors in the category of topological
spaces, Russian Math. Surveys (2) 21 (1966), 1-33.

3. , Duality of functors in the category of homotopy types, Soviet Math. Dokl. 8 (1967),
1007-1010.

4. P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.

UNIVERSITY OF OTTAWA,
OTTAWA, ONTARIO

https://doi.org/10.4153/CMB-1970-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1970-053-5

