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Introduction. In [3] D. B. Fuks defined a duality of functors in the category 
MP of weak homotopy types. In general this duality is more difficult to work with 
than the duality of functors of the category F of pointed Kelley spaces [2]. It 
happens however that all so-called strong functors [2] F of 3~ induce functors 
F of «^, and if we denote the duality operators of 2? and 3" by @ and D respec­
tively, then there are many cases where (DF)=@(F). 

This has lead Fuks to make the following conjecture : a functor F of the category 
ĉ f is reflexive (i.e. F^LQJ^F) if and only if there exists a functor G of ^~ such that 
F=G and @F=DG. 

Not only would this conjecture enable us to compute ^Fin the most interesting 
cases, but it would imply the following strong corollary. 

COROLLARY. Let G± and G2 be reflexive functors of the category 3~, and let 
f: (?! -^G2bea natural transformation such that for any C.W. complex A,fA: GX(A) 
-» G2(A) is a weak homotopy equivalence. Then for any C.W. complex A, 

(Df)A:DG2(A)-^DG1(A) 

is also a weak homotopy equivalence. 

Unfortunately, we will provide a counterexample to this corollary, which will 
prove that Fuks' conjecture is false. 

1. The Counterexample. Consider the functor <2X= space of paths in X which 
start or end at the base point. 

In other words, QX is the pull-back of the diagram 

<J',X) 

I 
I V X-+XxX 

where / ' = disjoint union of the unit interval [0,1] with a point * serving as the 
base point. The horizontal map is the inclusion, and the vertical map is defined as 
A ~ (A(0), A(l)). 

In [4, p. 210] there is defined a natural transformation 

m:SQ->ô 
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with the property that for any 1-connected C.W. complex X, mx: S O Z - > QXis a 
homotopy equivalence. 

This implies in particular that 

( w * 2 2 ) x : S Q 2 2 X ^ ô £ 2 I r 

is a homotopy equivalence for any C.W. complex X. 
Now if we assume that g is a reflexive functor (which will be proved later), 

Fuks' conjecture would imply that 

{{Dm) * 0 2 ) x : DQ o Q2X-> QZ&X 

is a homotopy equivalence for all C.W. complexes X. 
In particular, if we take X=K{Z, 3), we have Q2X~SX = K{Z, 1), so that DQ{S1) 

"Qlt^1). But from the explicit computation of DQ, it will be clear that DQ{SX) 
is a finite complex, while the homology of ^ ( S 1 ) is infinite, by a theorem of Bott 
and Samelson [1]. Hence DQ{SX) and DUOS1) cannot have the same homotopy 
type. 

We will now introduce a new functor which will be proved to be the dual of Q. 

2. The Functor T. QX was defined as the pull-back of the natural transforma­
tions 

I V X->XxX 
and 

{F,X)->XxX. 

Now if we take the dual of this situtation, we get two transformations : 

Xv X->XxX 
and 

I V X->X A V 

where the first map is the same as the first one above, and the second is defined as 

(*, *) - (*, 0) 

(*, x) — {x, 1) 

We define then TX to be the push-out of the diagram 

Xv X-^XxX 

x A r 
Since the duality operator D transforms direct limits into inverse limits, it is 

clear that DT~ Q. Because of this, there is a natural transformation v.T-^ DQ 
corresponding to the canonical transformation T-+ D2T. Explicitly, a is defined 
as follows: 
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From the definition of g as a pull-back, we have two natural transformations 

o>x:QX-+Xv X (œx(X) = (A(0), A(l))) 

and 

TX:QX-+(I',X) (rx(X) =A). 

If we denote the wedge functor by W (i.e. W(X) = I v X), then there is a natural 
equivalence ax: Xx X-> D(W)(X) (see [2]) given by the formula 

<*x(xo, *I)Y(J>, *) = (x0,y)eX A Y 

<xx(xo, * i M * , y ) = (xl9y)eX A Y. 

Thus we have a natural map Xx X-> DQX obtained as the composition 

Xx X - ^ - > D(W)(X) ^ > DQ(X). 

Explicitly, 

[(Dw)x o ax(xQ, *i)]y(A) = ax(x0, Xi)yWy(A) 

= «x(x0, *i)(A(0), A(l)) 

= (JCO,A(0)) ifA(l) = * 

= (X!,A(1)) ifA(0) = *. 

On the other hand, by taking the dual of r, we obtain a map (Dr)x: X A Ï 
-> DQ(X) given by the formula (Dr)x (x9 t)Y(X) = (JC, A(f)) e X A Y, where A e Q Y. 
It is easy to see that the two maps 

X x X-+DQX 

and 

X A I'-*DQX 

agree o n l v JST, so that they combine to give us a map 

ax:TX-+DQX. 

3. The Functor T and the Map rj: DQ->T. Instead of finding directly an 
inverse for o-, we will introduce an auxiliary functor T, define rj: DQ-+Tand show 
first that rj o a is a natural equivalence of functors. 

As usual, /will stand for the unit interval [0, 1] with 0 as the base-point; we will 
let / denote the unit interval [0, 1] with 1 as the base point. 

p:I-> S1 and TT.J-^S1 will denote the usual identification maps. TX is then 
defined as the pull-back of the diagram 

X A I 

^XAP 

7—C.M.B. 
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Define /xx: DQX-* X A / as /*(S) = T/idj), where S: Q - ^ S x is an element of 
DQX, and id, denotes the identity map of/, and 

as 
vx(S) = S7(id,). 

These maps are continuous, since they are the composition of the following con­
tinuous maps: 

and 

• ^ ^i x evaluation , ^ T ^ _ TX evaluation 

, _ _. N evaluation , _ T _ _ TX evaluation 

(Ô,sx) - ^ - H . (0/, JTA /) ^ - > I A / . 

Moreover, because of the naturality of S: Q->ZX, we have 

(X A P) o vx(S) = ( l A , ) o /xx(5) = SSI(P). 

Thus the maps ftx and vx induce a unique rjx: DQX-^ TX. 
We will now prove that -q o a is a natural equivalence. 

4. The Natural Equivalence *? o a: T-> T. From the definition of J as a push-out, 
we have that 

TX= x A r u ^xx. 
XwX 

Let (*, 0 e X A / ' . We have 
Px ° <7x(*, 0 = °x(x, i)j (id,) = (x, 0 e Z A J 

vx ° **(*, 0 = <*x(x9 0/ (id7) = (x, t) e X A /. 
Hence 

Vx ° °x(x, 0 = ((*> 0» (*> t))eX A JxX A I. 

On the other hand, 

Hx ° x̂Cxo, *i) = °x(xo, xi)(idj) = (*0, 0 ) G I A ; 

"x ° ox(*o, *i) = °x(xo, *i)j(id,) = (xl5 l j e l A /. 

Thus (rj o a)x: TX-> TX is the map defined as 

( i # 5 o = ((*,o,(x,o) i l A / x l A / 
0?*M*o, *i) = ((*o, 0), (xl9 1))/ 

It is clear that (̂ o-)x is both an injection and a surjection, so that it remains to 
show that its inverse is continuous. To that end, we define two subspaces A and B 
of TX with the properties that 

(1) A and B are closed in TX 
(2) TX=AuB 
(3) O70)-1 is continuous on both A and J5. 
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A = {((*, 0, (X, t))eX A JxX A 1} 

B = {((x0,0),(x1? l ) ) e l A / x l A /} 

Note first that under the homeomorphism 

l A / x l A I->X A IxX A I 

sending ((*, 0, (y, $)) to ((x, 1 -1)9 (y, s))9 A and B are mapped respectively onto 

A1 = {((x,l-t),(x,t))eX A IxX A 1} 
and 

B1 = { f e l ) x ( j c l 5 l ) e Z A IxX A 1} 

Let q: Xx / - > X A I be the indentification map, and consider 

qxq:(XxI)x(XxI)-*(X A I)x(X A /). 

The inverse image of A1 under q xq is the union of the four subspaces 

{((x,l-t)9(x,t))e(XxI)x(XxI)} 

{((x90),(y,l))e(XxI)x(XxI)} 

{(x9l),(y,0)e(XxI)x(XxI)} 

(qxq)-1^) 

These are all closed subsets of ( J x / ) x ( I x / ) . If we can show that q x q is an 
identification map, then we will have proved that A1 is closed. 

But in the category of nonpointed Kelley spaces, the product with a fixed space 
is left adjoint to a horn functor and hence commutes with direct limits. Thus we 
have two push-out diagrams: 

( I x { 0 } ) x ( I x / ) > (XxI)x(XxI) 

and 
*x(Xx/) > (XAl)x(XxI) 

(X A I)x(Xx{0}) > (XA I)X(XXI) 

q" 

Y 

- ^ (X A I)x(X A I) (X A 7 )x* 

Since q' and q" are both identification maps, so is their composition q" oq'=qx q. 
Thus A1 is closed. As for B\ it is the product of two closed subsets of X A L 
It remains only to show that (77 o a)-1 is continuous on both A and B. 
For A, we have the following commutative diagram 

X A V - ^ U ( l A J ) x ( l A /) 

Xxl > (XxI)x(XxI) 
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where p, q, and r are identification maps and V is the map 

V(x,0 = ((*,!-0, (*,'))• 

Since V is a homeomorphism into, (rxg)oV is an identification map onto its 
image, which is A, Hence rja is a homeomorphism of X A / ' onto A, because p 
is also an identification map. 

As for B, it is clear that rjo: I x X-> B is a homeomorphism, because B has the 
topology of a product. 

This insures the continuity of (^G)-1 over the whole of TX. 
5. cr And rj are Natural Equivalence. We have just shown that rj o a is an isomor­

phism of functors. But rj is a monomorphism. Indeed, let R, S: g - > 2 x be two 
elements of DQX. We have 

Vx(R) = (HXidA i^id,)) 
Vx(S) = (Sjiidj), S7(id7)). 

Suppose that rjx(R)=r)x(S)> and let F be any space, and Xe QY. 
If A is a map / -> 7, then the naturality of R implies that the following diagram 

is commutative: 

Q(I) - ^ - > X M 

Y 

0 ( 7 ) - ^ XA Y 
i.e. X A X(RI(idI)) = RY(X). 

lîr}x(S)=r]x(R)9 we have JR îdj) = S^idj), so that RY(X) = SY(X). A similar thing 
happens if À is a map J-> F, so that in all cases, RY(X) = SY(X), i.e. R = S. 

Thus ?7X is a monomorphism. This and the fact that rjXax is a homeomorphism 
imply that both -qx and crx are homeomorphisms, i.e. a and 77 are natural equiva­
lences. 

Hence T~DQ, which proves that T, (and hence Q) is reflexion. It is clear that 
if X is a finite C.W. complex, TXis also a finite C.W. complex (cf. §1). 
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