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SECOND-ORDER BIAS REDUCTION
FOR NONLINEAR PANEL DATA
MODELS WITH FIXED EFFECTS

BASED ON EXPECTED QUANTITIES

MARTIN SCHUMANN

Maastricht University

In many nonlinear panel data models with fixed effects maximum likelihood estima-
tors suffer from the incidental parameters problem, which often entails that point
estimates are markedly biased. While the recent literature has mostly generated
methods that yield a first-order bias reduction relative to maximum likelihood, we
derive a first- and second-order bias correction of the profile likelihood based on
“expected quantities” which differs from the corresponding correction based on
“sample averages” derived in Dhaene and Sun (2021, Journal of Econometrics
220, 227–252). While consistency and asymptotic normality of our estimator are
derived in a setting where both the number of individuals and the number of time
periods grow to infinity, we illustrate in a simulation study that our second-order
bias reduction indeed yields an estimator with substantially improved small sample
properties relative to its first-order unbiased counterpart, especially when less than
10 time periods are available.

1. INTRODUCTION

Panel data models are popular among economists and other social scientists, since
besides observed characteristics, they allow researchers to account for unobserved
individual-specific attributes that do not vary over time. If the unobserved time-
invariant individual heterogeneity is allowed to be arbitrarily correlated with
observed explanatory variables, it is often referred to as “fixed effects.” Failure
to account for the presence of fixed effects may therefore lead to biased estimates
and incorrect inference in econometric applications.

Many panel datasets for microeconomic analysis are “short,” i.e., the number
of individuals (n) is much larger than the number of time periods (T). Therefore,
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the asymptotic theory has often been derived under the assumption that n → ∞
while T is kept fixed. In this asymptotic framework, it is well known how to
estimate panel data models in which the unobserved heterogeneity enters linearly
and additively, without the need of making distributional assumptions (cf., e.g.,
Chamberlain, 1982, 1984; Arellano, 2003; Wooldridge, 2010). However, stronger
parametric distributional assumptions are typically needed whenever the fixed
effects enter the model nonlinearly. Yet, even then only few nonlinear models
can be satisfactorily handled when the number of time periods is fixed, since the
incidental parameters problem (IPP), first noted by Neyman and Scott (1948), often
renders the maximum likelihood estimator (MLE) inconsistent.

Alternatively, one may focus on estimation approaches in which both n and T
are allowed to grow to infinity. Yet, even in this asymptotic setting, the presence of
fixed effects leads to an incorrectly centered asymptotic distribution of the MLE
if n/T �→ 0. Since Hahn and Kuersteiner (2002), who proposed a bias correction
for linear dynamic models, numerous corrections of the first-order bias (FOB),
i.e., the leading bias term of order O(T−1), have been proposed to mitigate the
IPP (for reviews of the literature, see for instance, Arellano and Hahn, 2007 or
Fernández-Val and Weidner, 2018). Simulation studies suggest that for moderately
large T, FOB corrected estimators perform better in small samples than uncorrected
estimators. Moreover, FOB corrected estimators can sometimes be shown to be
asymptotically correctly centered if n/T3 → 0 (e.g., Hahn and Newey, 2004), so
that n can be thought of as being “large” relative to T. Yet, when T is small (i.e.,
T < 10), even first-order corrected estimators exhibit some non-negligible bias
(see, for instance, Hahn and Newey, 2004 or Section 5). It is therefore desirable
to find methods that besides eliminating the leading FOB term also correct bias
terms of higher order to allow for faster growth rates of n relative to T and to
further improve the small-sample performance of the resulting estimators.

In this paper, we follow Arellano and Hahn (2016), henceforth AH, and focus on
a bias correction of the “profile” or “concentrated” likelihood. Besides the FOB,
our correction also removes the second-order bias (SOB) and thus leads to an
objective function that is “second-order unbiased,” i.e., its expectation coincides
with the “target” likelihood up to an error of order O(T−3). The maximizer of
this objective function is shown to be consistent and asymptotically following
a correctly centered normal distribution if n,T → ∞ such that n/T5 → 0. A
simulation study illustrates that our second-order corrected estimator substantially
improves upon its first-order counterparts in terms of small sample performance
and inference.

We further compare our approach to a closely related profile likelihood correc-
tion outlined in Dhaene and Sun (2021), henceforth DS, that also yields a second-
order unbiased objective function. However, the approach in DS does not make full
use of the known likelihood, since expectations are estimated based on “sample
averages” (SA) rather than by “expected quantities” (EQ). We further illustrate
that each approach relies on mutually exclusive properties: while DS use “score-
factors,” which is not possible with our approach based on EQ, the “centering”
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based approach presented here is not applicable for second-order bias corrections
based on SA. Finally, we also provide some evidence that estimators which make
full use of the likelihood being known may be preferable in small samples as
compared to estimators based on sample averages, albeit at the expense of higher
computational complexity.

The rest of the paper is organized as follows: In Section 2, we introduce some
notation and discuss the IPP before introducing our estimator together with an
illustrative example. Section 3 discusses differences between corrections based on
EQ and SA and highlights the main distinctions between our approach and DS.
Assumptions and theory are provided in Section 4. Simulation results on the small
sample performance of our estimator are presented in Section 5. Finally, Section 6
concludes. Additional tables as well as all proofs are collected in the Appendixes
and the Online Supplementary Material for this paper.

2. SECOND-ORDER BIAS CORRECTION BASED ON EQ

For n,T ≥ 2, let Yit denote an outcome variable and Xit a (column) vector
of explanatory variables for i = 1, . . . ,n and t = 1, . . . ,T . Here, i refers to an
individual whereas t indexes time. While both Yit and Xit are assumed to be
observed, we assume that the fixed effect αi0 is an unobserved random variable with
unknown distribution. Moreover, for individual i, let Yi := (Yi1, . . . ,YiT) denote the
time-series of outcomes, and Xi := (Xi1, . . . ,XiT) the time-series of explanatory
variables. The time-series of outcomes are drawn from the conditional distribution
fYi|Xi,θ0,αi0 , which is known up to the p-dimensional parameter of interest θ0 ∈ �.
Note that this does not impose any restriction on the distribution of (Xi,αi0), hence
we allow for arbitrary dependence between the observed explanatory variables and
the unobserved fixed effect. The average (or scaled) loglikelihood for individual i
depends on (θ,αi) ∈ �×J and is defined as �i(θ,αi) := T−1 log fYi|Xi,θ,αi(Yi). By
“time-independence” specified in Assumption 4.1, we can further write �i(θ,αi) =
T−1 ∑T

t=1 �it(θ,αi), where �it(θ,αi) = log fYit|Xi,θ,αi(Yit) is the likelihood contri-
bution of individual i in time period t. For expansions of the loglikelihood, we
indicate the order of partial derivatives with respect to the vector θ by the first
number in the index of the loglikelihood whereas the order of partial derivatives
with respect to the scalar αi will be registered by the second number in the
index. More precisely, for m ∈ {0,1, . . . ,9}, �i0m(θ,αi) = ∂m

αi
�i(θ,αi) is a scalar,

�i1m(θ,αi) = ∂θ ◦ ∂m
αi

�i(θ,αi) is a column vector and �i2m(θ,αi) = ∂θθ ′ ◦ ∂m
αi

�i(θ,αi)

is a p × p-dimensional matrix. Following usual convention, ∂0 is interpreted as
the identity operator. Since we derive a correction of the profile likelihood bias
conditional on covariates that is valid globally, i.e., for any θ ∈ �, we further
introduce notation for taking expectations conditional on the covariates.1 For the
SOB correction of the profile likelihood of individual i, let τi := (γ ′,φi)

′ ∈ �×J .
We then let the expectation operator Eτi denote integration with respect to fYi|Xi,τi ,

1In the following, “bias” refers to the bias conditional on covariates unless stated otherwise.
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which denotes the conditional density evaluated at τi for individual i. For Section 4,
where we derive the conditional bias of our objective function (which depends
on preliminary estimators and thus on the data of the whole sample), let τ0 :=
(θ ′

0,α10, . . . ,αn0)
′ ∈ � ×J × ·· · ×J and let Eτ0 denote integration with respect

to fY1,...,Yn|X1,...,Xn,τ0 , which denotes the joint density of outcomes, conditional
on all explanatory variables, for the entire sample of individuals. Notice that if
the integrand only depends on outcome data of individual i, Eτ0 reduces to an
expectation with respect to the individual density fYi|Xi,θ0,αi0 so that in this case,
Eτ0 coincides with Eτi with τi = (θ ′

0,αi0)
′.2 The symbol E without subscript is

reserved for unconditional expectations evaluated at the true parameters. Finally,
we introduce a separate notation for centered and scaled likelihood terms, i.e., we
write

likm(θ,αi;τi) := √
T[�ikm(θ,αi)−λikm(θ,αi;τi)] = 1√

T

T∑
t=1

litkm(θ,αi;τi),

where λikm(θ,αi;τi) := Eτi[�ikm(θ,αi)] and litkm(θ,αi;τi) = �itkm(θ,αi) − λitkm

(θ,αi;τi), with λitkm(θ,αi;τi) =Eτi[�itkm(θ,αi)]. By definition, Eτi[likm(θ,αi;τi)] =
0 and, under mild assumptions specified in Section 4.1, Eτi[l

2
ikm(θ,αi;τi)] = Op(1),

implying that likm(θ,αi;τi) = Op(1).3 In the following, we omit the argument τi

when τi = (θ ′
0,αi0)

′.

2.1. Maximum Likelihood Estimation in the Presence of Fixed Effects

Since we assume that the distribution of Yi|Xi,αi is known up to θ0, we can
compute the MLE of θ0 while treating αi as a “nuisance parameter” to be estimated.
Writing α̂i(θ) := argmaxαi∈J �i(θ,αi), and obtaining �i(θ,α̂i(θ)) known as the
“profile likelihood” for individual i, we can compute the MLE of θ0 in the presence
of α1, . . . ,αn as θ̃ := argmaxθ∈� n−1 ∑n

i=1 �i(θ,α̂i(θ)). Unfortunately, the IPP often
renders the MLE inconsistent if T is fixed while n → ∞. As shown in Hahn and
Newey (2004), the MLE suffers from FOB, which leads to an incorrectly centered
asymptotic distribution if n,T → ∞ such that n/T → c, where c is some positive
constant. In order to remedy this problem, one may attempt to correct the profile
likelihood in order to approximate the infeasible “target likelihood” �i(θ,α

∗
i (θ))

(which is score-unbiased) based on the “target value” or “population level MLE”
α∗

i (θ) := argmaxαi∈J Eτ0 [�i(θ,αi)]. As discussed in AH, the profile likelihood
correction can be based on EQ (see AH, p. 259), where the FOB is calculated
explicitly before replacing the unknown true parameters with plug-in-estimates,

2Since Eτi and Eτ0 denote integration with respect to a conditional density which thus results in a random variable,
the same Op(·)-notation as for the likelihood is used, even though the respective probability measures may differ. If
expectations are taken unconditionally, we use standard O(·)-notation.
3When expectations and variances are defined conditional on explanatory variables and individual fixed effects,
equalities and inequalities involving them hold w.p.1. In order to avoid the proliferation of “w.p.1” qualifiers, we do
not state them explicitly for the remainder of the paper.
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and based on SA, where the FOB is estimated by replacing population means with
sample means.4 We now introduce our second-order corrected profile likelihood
based on EQ before discussing the distinction between this correction and the one
of DS, who provide a second-order correction of the profile likelihood based on
SA. Notice that we omit the argument for αi whenever the likelihood is evaluated
at α∗

i (θ) to shorten notation. For example, �ikm(θ) := �ikm(θ,α∗
i (θ)). Moreover, we

frequently omit both arguments when the likelihood is evaluated at (θ0,αi0). For
instance, �ikm := �ikm(θ0,αi0).

2.2. The Estimator

Recall τi := (γ ′,φi)
′ ∈ � ×J . Let βi := (τ ′

i ,αi)
′, βi0 := (τ ′

i0,α
∗
i (θ))′ with τi0 :=

(θ ′
0,αi0)

′ and β̂i := (θ̃ ′,α̂i(θ̃),α̂i(θ))′. By expanding the profile likelihood, we
find the first- and second-order profile likelihood bias terms T−1B(1)

i (θ,βi0) and
T−2B(2)

i (θ,βi0), where

B(1)
i (θ,βi) := −Eτi[l

2
i01(θ,αi;τi)]

2λi02(θ,αi;τi)
(2.1)

and

B(2)
i (θ,βi)

:=
√

TEτi[l
2
i01(θ,αi;τi)li02(θ,αi;τi)]

2λ2
i02(θ,αi;τi)

−
√

TEτi[l
3
i01(θ,αi;τi)]λi03(θ,αi;τi)

6λ3
i02(θ,αi;τi)

− Eτi[l
2
i01(θ,αi;τi)l2i02(θ,αi;τi)]

2λ3
i02(θ,αi;τi)

− Eτi[l
3
i01(θ,αi;τi)li03(θ,αi;τi)]

6λ3
i02(θ,αi;τi)

+ Eτi[l
3
i01(θ,αi;τi)li02(θ,αi;τi)]λi03(θ,αi;τi)

2λ4
i02(θ,αi;τi)

− Eτi[l
4
i01(θ,αi;τi)]λ2

i03(θ,αi;τi)

8λ5
i02(θ,αi;τi)

+ Eτi[l
4
i01(θ,αi;τi)]λi04(θ,αi;τi)

24λ4
i02(θ,αi;τi)

. (2.2)

A naive bias correction might then involve T−1B(1)
i (θ,βi)|βi=β̂i

. However, this

would induce a second-order bias due to the slow convergence of β̂i. Thus, we
use the corrected version T−1B̃(1)

i (θ,βi)|βi=β̂i
, where

B̃(1)
i (θ,βi)

:= B(1)
i (θ,βi)−B(1)

iαi
(θ,βi)A(θ,βi)− 1

2
B(1)

iαiαi
(θ,βi)V(θ,βi)−B(1)

iγ (θ,βi)
′ T̂

4AH refer to SA as the “trace-based approach” since they consider models with a vector of fixed effects. Here, we
assume that αi0 is a scalar.
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−B(1)
iφi

(θ,βi)A(θ,βi)|θ=θ̃ − 1

2
B(1)

iφiφi
(θ,βi)V(θ,βi)|θ=θ̃ −B(1)

iαiφi
(θ,βi)Ṽ(θ,βi).

(2.3)

In this definition, partial derivatives of B(1)
i (θ,βi) with respect to the components

of βi are denoted by the corresponding parameters in the index. In the following,
the βi-argument is further omitted when evaluating at βi0. For instance,

B(1)
iαi

(θ) := ∂αiB
(1)
i (θ,βi)|βi=βi0 = ∂αiB

(1)
i (θ,γ,φi,αi)|γ=θ0,φi=αi0,αi=α∗

i (θ).

The explicit expressions for all derivatives appearing in (2.3) are collected in
Appendix A. Moreover, for the right-hand side of (2.3) we require

A(θ,βi) := −(2Tλ2
i02(θ,αi;τi))

−1

(
Eτi[l

2
i01(θ,αi;τi)]λi03(θ,αi;τi)−2Eτi[li01(θ,αi;τi)li02(θ,αi;τi)]

)
and

V(θ,βi) := Eτi[l
2
i01(θ,αi;τi)]]

Tλ2
i02(θ,αi;τi)

, Ṽ(θ,βi) := Eτi[li01(θ,αi;τi)li01(γ,φi;τi)]

Tλi02(θ,αi;τi)λi02(γ,φi;τi)
.

Finally,

T̂ :=
[

1

n

n∑
i=1

F̂i(θ,βi)|θ=θ̃,βi=β̂i

]−1
1

nT

n∑
i=1

∂θB(1)
i (θ,βi)|θ=θ̃,βi=β̂i

with F̂i(θ,βi) := −λi20(θ,αi;τi)+λ−1
i02(θ,αi;τi)λi11(θ,αi;τi)λ

′
i11(θ,αi;τi). The esti-

mator θ̂ derived here is now obtained as the maximizer of a second-order bias
corrected profile likelihood, i.e.,

θ̂ := argmax
θ∈�

1

n

n∑
i=1

�∗
i (θ,βi)|βi=β̂i

, (2.4)

where

�∗
i (θ,βi) := �i(θ,α̂i(θ))−T−1B̃(1)

i (θ,βi)−T−2B(2)
i (θ,βi) (2.5)

and where T−1B̃(1)
i (θ,βi)|βi=β̂i

and T−2B(2)
i (θ,βi)|βi=β̂i

are second-order unbiased
approximations of the first- and second-order profile likelihood bias terms. The
intuition behind the form of the SOB corrected profile likelihood based on EQ is
provided in Section 4.2.

2.3. Example

We now show how the second-order bias correction based on EQ can be
applied in the heterogeneous means model of Neyman and Scott (1948).
In this simple setup, an explicit form of the bias and its correction can be
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derived.5 Let Yit = αi0 + Uit and assume Ui1, . . . ,UiT

∣∣αi0
d= NIID(0,σ 2

0 ), where
θ := σ 2 ∈ (0,∞). Ignoring constants, the loglikelihood can then be written as
�i(θ,αi) = − 1

2 logθ − ∑T
t=1(Yit − αi)

2/(2Tθ). Taking derivatives with respect

to αi yields �i01(θ,αi) = ∑T
t=1(Yit − αi)/(Tθ) and �i02(θ,αi) = −1/θ = λi02(θ),

where the second equality holds because �i02(θ,αi) does not depend on Yit or
αi. Since Eτ0 [Yit] − αi = 0 ⇔ αi = αi0, the target value α∗

i (θ) coincides with
the true value αi0 for any θ . Thus, the expression for the FOB of the profile
likelihood of individual i in the Neyman–Scott model is T−1B(1)

i (θ,βi0) with
B(1)

i (θ,βi) := γ /(2θ). Notice that B(1)
i (θ,βi) depends on βi = (γ ′,φi,αi)

′ only
through γ . The first-order corrected estimator based on expected quantities
θ̌exp can now be computed as θ̌exp = argmaxθ∈(0,∞) n−1 ∑n

i=1[�i(θ,α̂i(θ)) −
T−1B(1)

i (θ,βi)βi=β̂i
], where α̂i(θ) = Ȳi· := T−1 ∑T

t=1 Yit for every θ ∈ (0,∞) and

θ̃ = (nT)−1 ∑n
i=1

∑T
t=1(Yit − Ȳi·)2. Since ∂θ�i(θ,α̂i(θ)) = −(2θ)−1 + ∑T

t=1(Yit −
Ȳi·)2/(2Tθ2) while T−1∂θB(1)

i (θ,βi)|βi=β̂i
= −θ̃/(2Tθ2), the first-order condition

yields θ̌exp = θ̃ (1+T−1). Clearly,Eτ0 [θ̃] = θ0(1−T−1), showing that the bias of the
MLE is exactly of order O(T−1). In comparison, the bias of the estimator derived
from the first-order corrected profile likelihood based on expected quantities is of
order O(T−2), as Eτ0 [θ̌exp] = θ0(1−T−1)(1+T−1) = θ0 −θ0/T2. In order to derive
the second-order corrected profile likelihood based on expected quantities, we first
notice that li0m(θ) = 0 for every m > 1 and λi0q = 0 for every q > 2, which by (2.2)
implies that the SOB of the profile likelihood is zero. Let β̊i := (θ̊ ′,α̂i(θ̊),α̂i(θ))′,
where θ̊ is a consistent preliminary estimator of θ0. Expanding the approximation
of the FOB and taking expectations yields

Eτ0 [B(1)
i (θ,βi)|βi=β̊i

] = B(1)
i (θ,βi0)+ ∂γB(1)

i (θ,βi)|βi=β0Eτ0 [θ̊ − θ0],

where we have used that derivatives of B(1)
i (θ,βi) with respect to φi and αi as well

as derivatives with respect to θ̊ of at least second-order are zero. If the preliminary
estimator is the MLE, i.e., θ̊ = θ̃ , then the expectation of the MLE suggests
estimating Eτ0 [θ̃ − θ0] by −θ̃/T . Further, since T−1∂γB(1)

i (θ,βi)|βi=β̊i
= (2Tθ)−1,

we can estimate the FOB up to a bias of order O(T−3) by T−1B̃(1)
i (θ,βi)|βi=β̂i

=
θ̃ (1 + T−1)/(2Tθ). Thus, letting θ̂ := argmaxθ∈(0,∞) n−1 ∑n

i=1[�i(θ,α̂i(θ) −
T−1B̃(1)

i (θ,θ̃ )], we obtain θ̂ = θ̃ (1 + T−1 + T−2) with Eτ0 [θ̂] = θ0 − θ0/T3.
Therefore, the bias of the maximizer of the second-order corrected profile
likelihood based on expected quantities is indeed of order O(T−3). Notice
that the estimator using θ̃ as the preliminary estimator coincides with the
SOB corrected estimator based on SA derived in Example 2 of DS, denoted
as θ̂ (2). However, if the preliminary estimator of θ0 is chosen to be the
first-order corrected estimator based on expected quantities, i.e., θ̊ = θ̌exp,
the bias of the corrected profile likelihood can be further reduced. Since

5In Appendix L, we further provide a detailed analysis of the static panel logit and probit models.
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Eτ0 [θ̌exp] = θ0(1 − T−2), the bias of θ̌exp can be estimated by −θ̌exp/T2, so that
T−1B̃(1)

i (θ,βi)|βi=β̊
exp
i

= θ̌exp(1 + T−2)/(2Tθ) with β̊
exp
i = (θ̌ ′

exp,α̂i(θ̌exp),α̂i(θ))′.

Letting θ̂∗ := argmaxθ∈(0,∞) n−1 ∑n
i=1[�i(θ,α̂i(θ))−T−1B̃(1)

i (θ,βi)|βi=β̊
exp
i

],we see

that θ̂∗ is unbiased up to order O(T−5), as Eτ0 [θ̂∗] − θ0 = −θ0/T5. Notice that
this iteration step is not possible with the SA-based approach of DS. Further
iterating this procedure infinitely many times finally yields θ̂ (∞) := θ̃

∑∞
k=0 T−k,

with expected value Eτ0 [θ̂ (∞)] = θ0(1−T−1)
∑∞

k=0 T−k = θ0, i.e., the bias has now
been removed completely.6

3. COMPARING BIAS CORRECTIONS BASED ON EQ AND SA

We now discuss differences between profile likelihood bias corrections based on
EQ and SA with particular focus on the implications for differences between
our approach and DS. As can be seen by comparing b1 and b2 in Proposition
1 of DS with B̃(1)

i (θ,βi)|βi=β̂i
and B(2)

i (θ,βi)|βi=β̂i
given in Section 2.2, the bias

correction based on SA of DS is in general different from the bias correction
based on EQ as derived here. This can be attributed to the differences in the
definition of the bias and the sources of randomness, as discussed in Section 3.1.
Potential consequences in terms for the small sample performance are discussed in
Section 3.2.

3.1. Conditional Profile Likelihood Bias

A first crucial distinction between our approach and DS is the benchmark like-
lihood relative to which the profile likelihood bias is defined. Recall that we
are defining the target value as α∗

i (θ) = argmaxαi∈J Eτ0 [�i(θ,αi)], which is used,
for instance, in Pace and Salvan (2006), Severini (2000, Chap. 4.6), Schumann,
Severini, and Tripathi (2021a), or Schumann, Severini, and Tripathi (2021b).
Since the likelihood in many models of interest is obtained by making dis-
tributional assumptions on the model error conditional on observed covariates
and the unobserved fixed effect, the bias of the profile likelihood is defined
as Eτ0 [�i(θ,α̂i(θ)) − �i(θ,α

∗
i (θ))]. Clearly, cancellation of the first- and second-

order conditional profile likelihood bias terms implies that also the corresponding
unconditional bias terms are canceled. This definition of the bias has impor-
tant consequences for the bias correction. For instance, it is not possible to
use “score-factors,” which are fundamental to the bias correction in DS, as
Eτ0 [�it01(θ,α

∗
i (θ))] �= 0 unless θ = θ0. To illustrate this, let Yit = X′

itθ0 +αi0 + Uit

where Ui1, . . . ,UiT |Xi1, . . . ,Xi,αi0
d= NIID(0,1). Then �i01(θ,αi) = T−1 ∑T

t=1(Yit −
X′

itθ − αi) so that α∗
i (θ) = T−1 ∑T

t=1 X′
it(θ0 − θ) + αi0. Since �it01(θ,αi) = Yit −

6Of course, this result may not hold in more complicated models in which the approximation of the FOB depends on
plug-in estimators of α∗

i (θ) and αi0.
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X′
itθ −αi, this implies that Eτ0 [�it01(θ,α

∗
i (θ))] = X′

it(θ0 −θ)−T−1 ∑T
t=1 X′

it(θ0 −θ)

does in general not equal zero unless for instance θ = θ0 or if there is no
time variation in the observed covariates.7 Moreover, the “centering” approach
used here by which the likelihood terms are centered around their expectations
conditional on covariates is not possible with SA, as the centered terms depend
on the unknown true parameters. It is thus not surprising that the bias terms
in (2.1) and (2.2) differ from those presented in Lemma 4 of DS. The choice
between EQ and SA also has consequences for the derivation of a feasible
approximation of the FOB that is unbiased up to an error of order Op(T−3). Initial
approximations of the FOB based on EQ and SA are T−1B(1)

i (θ,βi)|βi=β̂i
and

T−1B̌(1)
i (θ) := −T−1 ∑T

t=1 �2
it01(θ,α̂i(θ))/[2T�i02(θ,α̂i(θ))], respectively. Condi-

tional on covariates, randomness in B̌(1)
i (θ) stems from the outcome data in

the likelihood derivatives and α̂i(θ). In B(1)
i (θ,βi0), all outcome data have been

integrated out, so that randomness stems from replacing βi0 with its plug-in
estimator β̂i. Not surprisingly, our approximation of the FOB differs from the one
of DS. Moreover, as the use of score-factors is not permitted when the profile
likelihood bias is considered conditional on covariates, the derivations of DS
cannot be used for a correction based on EQ. For instance, the terms A2 and B1 in
Lemma 4 of DS have “score-factor” and thus, according to DS, have “a zero-mean
dominant stochastic term, which can be ignored.” However, as Eτ0 [�it01(θ)] �= 0 in
general, the definition of the target value and simple algebra show that for θ �= θ0,
T−1 ∑T

t=1

∑T
s=1,s�=t Eτ0 [�it01(θ)]Eτ0 [�is01(θ)] = −T−1 ∑T

t=1Eτ0 [�it01(θ)]2 < 0 so
that the statement in DS does not hold when expectations are derived conditionally
on covariates. Similarly, if θ �= θ0, Eτ0 [Z] �= 0, where “[Z]” refers to the term of
the same notation that appears for instance in the proof of Lemma 5 in DS.

3.2. Small Sample Performance

While both the estimator of DS and the estimator derived here remove the bias
of the profile likelihood up to an O(T−3) term, the small sample performance
may differ due to the theoretical differences between the two approaches. Hahn,
Kuersteiner, and Newey (2004) use higher-order expansions of the MLE in a
cross-sectional model to show that using sample averages instead of integrals in
first-order bias corrections does not affect the higher-order variance. However,
while their result suggests that also in panel data the limiting distribution (as
n,T → ∞) of FOB and SOB corrections may be equivalent, a theoretical analysis
of potential advantages of SA and EQ in small samples is very challenging. For
instance, comparisons in specific models are either noninformative (e.g., in the
Neyman–Scott model in Section 2.3, the SOB corrections based on SA and EQ
coincide), or very difficult, as closed forms for parameter estimates such as θ̃ are

7While this simple model does not suffer from the IPP, a similar argument provided in Appendix L.1.1 shows that
score-factors also cannot be used in the static logit.

https://doi.org/10.1017/S0266466622000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000160


702 MARTIN SCHUMANN

not available. Nevertheless, we can gain some intuition on possible advantages
of each approach. First of all, as can be seen by comparing B(1)

i (θ,βi)|βi=β̂i
and

B̌(1)
i (θ), the estimated first-order profile likelihood bias for individual i depends

on T observations of individual i only for SA and on data of the whole sample
(through β̂i) for EQ, which may explain why the bias correction based on EQ can
perform better in small samples, particularly when T is small. Moreover, unlike
the estimator based on SA, our estimator can in principle be iterated, which can be
used to remove dependence on initial estimators and starting values for numerical
optimization.8 Further notice that if β̂i = βi0, the EQ FOB approximation coincides
exactly with the FOB, whereas the SA approximation B̌(1)

i (θ) does so only up
to an error of order Op(T−3/2) and with a conditional bias of order Op(T−2). As
the same arguments holds for the SOB corrections based on EQ and SA, one
may expect the EQ based approximations to be closer to the actual bias terms
if the parameter estimates are sufficiently close to the true values. Finally, the
fact that our bias correction corrects the conditional profile likelihood bias for
every θ ∈ � whereas DS in general reduce the conditional bias for θ = θ0 (score-
factors hold at the true parameters only) might also help explaining why the
SOB corrections based on EQ and SA perform similarly well in static logit while
the EQ correction appears to perform better in static probit. As shown in detail
in Appendix L.1, various simplifications arise in the static logit. For instance,
�i02(θ) coincides with λi02(θ), so that “[Z]” in the proof of Lemma 5 in DS,
which stems from expanding �i02(θ) in the denominator around λi02(θ), vanishes.
In contrast, no such simplifications arise in the static probit model, so that our
approach corrects the conditional bias due to “[Z]” for any θ ∈ � whereas the
approach presented in DS does so only for θ = θ0. Unfortunately, the potential
improvement in terms of small sample performance comes at the cost of an increase
in algebraic and computational complexity. A further potential disadvantage of EQ
bias corrections may be that it relies on the correct specification of the likelihood
not only through the likelihood derivatives needed for the bias correction (which
is the case also for SA) but also through the integration step when computing
expected quantities. While we do not find evidence for larger misspecification bias
of EQ estimators relative to SA estimators in a small simulation study (see the
discussion on Table B.3 in Section 5), misspecification bias remains a legitimate
concern.

4. ASSUMPTIONS AND THEORY

We now present the assumptions before discussing the underlying intuition for
the second-order correction presented here. Finally, we provide some asymptotic
results for θ̂ .

8In additional simulation results available upon request we found no clear evidence that iterating improves the small
sample properties of our estimator.
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4.1. Assumptions

We begin the discussion with the fundamental conditions on our model which we
will maintain in the rest of the paper.

Assumption 4.1. (i) The true parameter θ0 lies in the interior of �, which is
a compact and convex subset of R

p. (ii) For every i, αi0 is a random variable
that, with probability one, lies in the interior of J , which is a finite and closed
interval in R. (iii) The random variables (Y1,X1,α10), . . . ,(Yn,Xn,αn0) are i.i.d.
(iv) For each i, conditional on Xi and αi0, the outcomes Yi1, . . . ,YiT are inde-
pendent. (v) For each i, the process (Yit,Xit)t∈N is strictly stationary conditional
on αi0.

Assumptions (i) and (ii) are standard assumptions in maximum likelihood theory
which ensure that the MLEs for θ0 and αi0 are bounded in probability. Moreover,
(iii) is standard in microeconometric applications and is, for instance, used in
Chamberlain (2010), Alvarez and Arellano (2003) or, more recently, Schumann
et al. (2021a) and Schumann et al. (2021b). Notice that it treats the fixed effect as
a random variable that is unobserved (which distinguishes it from the observed
covariates) and that we impose no restrictions on the correlation between Xi

and αi0. While the conditional independence assumption in (iv), subsequently
referred to as “time-independence” or “independence over time,” can in principle
be relaxed, it is used here to make the proofs which require higher-order expansions
more tractable. Finally, (v) rules out time effects and time trends.9 The next
assumption is used to ensure uniqueness of the MLE and the population level MLE
for αi0.

Assumption 4.2. For every i, (i) α̂i(θ) is the unique maximizer of �i(θ,u) in u;
(ii) α∗

i (θ) is the unique maximizer of Eτ0 [�i(θ,u)] in u; and (iii) α̂i(θ) and α∗
i (θ)

lie in the interior of J with probability one.

In the derivation of our estimator, we will frequently use the following assump-
tion:

Assumption 4.3. (i) Let �it(θ,αi) denote the likelihood contribution of individ-
ual i in time period t when evaluated at (θ,αi), ν = (ν1, . . . ,νp) be a vector of
nonnegative integers with |ν| := ∑p

s=1 νs and μ be a nonnegative integer. Define

Dν+μ�it(θ,αi) = ∂ |ν|+μ�it(θ,αi)

∂θ
ν1
1 · · ·∂θ

νp
p ∂α

μ

i

.

There exists a function Mit := M(Yit,Xit) such that sup(θ,αi)∈�×J |Dν+μ�it(θ,αi)| ≤
Mit and E[supτi∈�×J Eτi[M

32
it ]] = O(1) and E[supτi∈�×J Eτi[Mit]]32 = O(1) for

all ν with |ν| ≤ 4 and μ ≤ 9. (ii) Recall βi = (τ ′
i ,αi)

′ ∈ ϒ = �×J ×J and βi0 =

9Similar assumptions are used in the majority of papers on nonlinear panels with fixed effects. A noteworthy exception
is Fernández-Val and Weidner (2016).
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(θ ′
0,αi0,α

∗
i (θ))′. There exists an open ballM⊂ ϒ around βi0 and a constant D1 > 0

such that infi inf(θ,βi)∈�×M |Eτi[�i02(θ,αi)]| > D1 for all T large enough. (iii) There
exists a constant D2 > 0 such that infi inf(θ,αi)∈�×J (−�i02(θ,αi)) > D2 w.p.1.
(iv) For every η > 0, infi[Eτ0 [�i(θ0,αi0)]− supθ∈�:‖θ−θ0‖>ηEτ0 [�i(θ,α

∗
i (θ))]] > 0,

where ‖ · ‖ denotes the euclidean norm. (v) Let Fi := TEτ0 [∂θ�i(θ)

∂θ ′�i(θ)]|θ=θ0 . The partial information F := limn→∞ n−1 ∑n
i=1 Fi exists and is

nonsingular.

Assumption 4.3(i) is used to derive stochastic orders of likelihood terms and
remainder terms in Taylor expansions when computing the profile likelihood bias
of a given individual. Similar assumptions are frequently used in the literature.10

Notice that here E on the outside denotes the unconditional expectation. By the
Markov inequality, (i) also implies that conditional expectations of likelihood
derivatives are bounded in probability, i.e., Eτ0 [sup(θ,αi)∈�×J |Dν+μ�it(θ,αi)|] =
Op(1). Part (ii) is used to control the behavior of individual i’s profile likelihood
bias expression and its feasible approximation by bounding the denominator away
from zero for T large enough. Part (iii) states that the observed information is
uniformly bounded away from zero across the parameters. This holds in all our
examples given the compactness of � and J , which is guaranteed by Assumption
4.1. Assumption (iv) is an identification condition similar to Condition 1 of Hahn
and Kuersteiner (2011). Finally, (v) is required to show asymptotic normality of
our estimator.

Since our feasible approximation of the bias terms requires a preliminary
estimator of θ0 which will typically be the MLE, we make the following
assumption.

Assumption 4.4. As n,T → ∞: (i) θ̃
p→ θ0; (ii) θ̃ − θ0 = Op((nT)−1/2) +

Op(T−1), E[θ̃ ]− θ0 = O(T−1); and (iii) n/T �→ 0.

Unlike the previous conditions, this assumption is maintained mostly for conve-
nience, as (i) and (ii) can be shown under Assumptions 4.1–4.3. Since proofs are
available for instance in Hahn and Newey (2004) they are omitted here. Part (iii)
restricts our analysis to a setup in which the asymptotic distribution of the MLE
is not correctly centered (which makes bias corrections necessary). It is used to
simplify the stochastic order of remainder terms.11

4.2. Derivation of the SOB Correction

We now provide some intuition behind the estimator presented in Section 2.2. First,
we use Assumption 4.3 and follow the approach in Severini (2000, Sect. 5.2) to
derive the bias of the profile likelihood for each θ ∈ �. As shown in Appendix C.1,

10Assumptions similar to (i) and (ii) can be found in Hahn and Kuersteiner (2011) or Hahn and Newey (2004).
11For example, using (iii), we can reduce Op(

1
nT2 )+Op(T−3) to Op(T−3).
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the bias of the profile likelihood can be expressed as

Eτ0 [�i(θ,α̂i(θ))−�i(θ)] = B(1)
i (θ,βi0)

T
+ B(2)

i (θ,βi0)

T2
+Rem(0)(θ), (4.1)

where supθ∈� Rem(0)(θ) = Op(T−3). Note that B(1)
i (θ,βi0) and B(2)

i (θ,βi0) are
of order Op(1). While T−2B(2)

i (θ,βi)|βi=β̂i
is a simple second-order unbiased

approximation of the SOB, as

T−2
Eτ0 [B(2)

i (θ,βi)|βi=β̂i
] = T−2B(2)

i (θ,βi0)+Op(T
−3), (4.2)

using T−1B(1)
i (θ,βi)|βi=β̂i

as an approximation of the FOB will induce a bias of
second order. To refine this approximation, we use a Taylor expansion (adapting
the idea outlined in Ferrari et al., 1996) and take expectations (conditional on
covariates), which yields

B(1)
i (θ,βi0) = Eτ0 [B(1)

i (θ,βi)|βi=β̂i
]−B(1)

iαi
(θ)Eτ0 [α̂i(θ)−α∗

i (θ)]

− 1

2
B(1)

iαiαi
(θ)Eτ0 [(α̂i(θ)−α∗

i (θ))2]

−B(1)
iγ (θ)′Eτ0 [θ̃ − θ0]−B(1)

iφi
(θ)Eτ0 [α̂i(θ̃)−αi0]− 1

2
B(1)

iφiφi
(θ)Eτ0 [(α̂i(θ̃)−αi0)

2]

−B(1)
iαiφi

(θ)Eτ0 [(α̂i(θ)−α∗
i (θ))(α̂i(θ̃)−αi0)]+Eτ0 [Rem(1)(θ)], (4.3)

where Rem(1)(θ) is specified in (C.10).12 Notice that we have used that derivatives
of B(1)

i (θ,βi) do not depend on outcome data if none of the arguments do. As
a consequence, they act as constants with respect to the conditional expectation
operator Eτ0 .13 As shown in Appendix I, T−1

Eτ0 [Rem(1)(θ)] = Op(T−3) so that
the remainder can be ignored. For a feasible approximation, we require approx-
imations for the terms on the right-hand side of (4.3). Derivatives of the FOB
can easily be approximated up to an error of sufficiently low order by replacing
βi0 with β̂i, as Eτ0 [∂βiB

(1)
i (θ,βi)|βi=β̂i

] = ∂βiB
(1)
i (θ,βi)|βi=βi0 + Op(T−1). Next, as

shown explicitly in Appendix C.2, an expansion shows thatEτ0 [T̂ ] =Eτ0 [θ̃ −θ0]+
Op(T−2), i.e., T̂ is a first-order unbiased estimator of Eτ0 [θ̃ − θ0]. Similarly,

Eτ0 [A(θ,βi)|βi=β̂i
] = Eτ0 [α̂i(θ)−α∗

i (θ)]+Op(T
−2) and

Eτ0 [A(θ,βi)|θ=θ̃,βi=β̂i
] = Eτ0 [α̂i(θ̃)−αi0]+Op(T

−2). (4.4)

12Notice that the expectation computes
∫
B(1)

i (θ,βi)|βi=β̂i
fY1,...,Yn |X1,...,Xn,τ0 , where the randomness with respect

to the conditional density is coming from β̂i only.
13If the FOB is approximated based on SA, derivatives of the FOB approximation depend on outcome data even when
evaluated at the true parameters. Thus, they are not constant with respect to Eτ0 . Consequently, this step highlights
one of the main conceptual differences between bias corrections based on EQ and SA.
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Furthermore,

Eτ0 [V(θ,βi)|βi=β̂i
] = Eτ0 [(α̂i(θ)−α∗

i (θ))2]+Op(T
−2),

Eτ0 [V(θ,βi)|θ=θ̃,βi=β̂i
] = Eτ0 [(α̂i(θ̃)−αi0)

2]+Op(T
−2), and

Eτ0 [Ṽ(θ,βi)|βi=β̂i
] = Eτ0 [(α̂i(θ)−α∗

i (θ))(α̂i(θ̃)−αi0)]+Op(T
−2). (4.5)

Consequently, as is shown in Appendix C.2, B̃(1)
i (θ,βi)|βi=β̂i

defined in (2.3)
satisfies

T−1
Eτ0 [B̃(1)

i (θ,βi)|βi=β̂i
] = T−1B(1)

i (θ,βi0)+Op(T
−3). (4.6)

Therefore, T−1B̃(1)
i (θ,βi)|βi=β̂i

constitutes a feasible approximation of the true

FOB T−1B(1)
i (θ,βi0) that is unbiased up to third order. Finally, combining (4.1),

(4.2), and (4.6),

Eτ0 [�∗
i (θ,βi)|βi=β̂i

]

= Eτ0 [�i(θ,α̂i(θ))]−T−1
Eτ0 [B̃(1)

i (θ,βi)|βi=β̂i
]−T−2

Eτ0 [B(2)
i (θ,βi)|βi=β̂i

]

= Eτ0 [�i(θ,α
∗
i (θ))]+Ri(θ), with Ri(θ) = Op(T

−3), (4.7)

so that the difference between the second-order corrected profile likelihood and
the target likelihood exhibits a bias of order Op(T−3).14 Notice that the remainder
term Ri(θ) is a combination of the remainder terms in (4.1), (4.2), and (4.6). Next,
we discuss the asymptotic properties of θ̂ defined in (2.4).

4.3. Asymptotic Theory

We now show asymptotic normality of θ̂ . While we provide some intuition on the
main steps, we defer the detailed proofs to Appendix D. If not stated otherwise,
all limits are taken as n,T → ∞. Consistency for θ̂ can be shown in a similar
way as the consistency of the MLE θ̃ , since the correction term to the profile
likelihood in our bias corrected objective function becomes negligible in the
limit as n,T → ∞.15 While showing consistency does not require us to impose
a rate at which T grows relative to n, we will need rate conditions to show
asymptotic normality of θ̂ . In the first step, we expand the first-order condition

14In principle, the ideas used to derive a SOB corrected profile likelihood can also be used to derive SOB corrected
estimators of average partial effects (APEs), which in practical applications are often the ultimate object of interest.
Since several authors (e.g., Hahn and Newey, 2004; Fernández-Val, 2009) have found a rather small bias of standard
maximum likelihood estimators of APEs in static models which are the focus of this paper, we leave the explicit
derivation of SOB corrections of APEs for future research.
15An explicit proof of the consistency of θ̂ is provided in Appendix K.
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n−1 ∑n
i=1 �∗

i (θ,βi)|θ=θ̄,βi=β̂i
= 0 of θ̂ as

√
nT(θ̂ − θ0) =

[
−1

n

n∑
i=1

∂θθ ′�∗
i (θ,βi)|θ=θ̄,βi=β̂i

]−1 √
T

n

n∑
i=1

∂θ�
∗
i (θ,βi)|θ=θ0,βi=β̂i

,

(4.8)

where θ̄ lies between θ̂ and θ0. Since the target likelihood is a “genuine” likelihood
that satisfies the Bartlett identities and the information equality in particular, the
first term on the right hand side of (4.8) can be shown to converge to F as defined
in Assumption 4.3(v), i.e.,

−1

n

n∑
i=1

∂θθ ′�∗
i (θ,βi)|θ=θ̄,βi=β̂i

p→ F as n,T → ∞. (4.9)

Next, we consider the second term on the right-hand side of (4.8). Recall that
by (4.7), Eτ0 [�∗

i (θ,βi)|βi=β̂i
] = Eτ0 [�i(θ,α

∗
i (θ))]+Ri(θ) with Ri(θ) = Op(T−3). In

order to guarantee that the score with respect to θ of �∗
i (θ,βi)|βi=β̂i

is unbiased up
to an error of order O(T−3), we impose the next “high-level” assumption.

Assumption 4.5. E[∂θRi(θ)|θ=θ0 ] = O(T−3) for every θ ∈ �.

Assumptions of this kind are frequently used in the literature (e.g., in Hahn and
Newey, 2004, and implicitly in Arellano and Bonhomme, 2009). Here, it is used
to avoid the explicit derivation of the derivative of Ri(θ), which is algebraically
tedious without offering further insight. However, careful inspections of the proofs
of Section 4.2 reveals that Ri(θ) is of the form T−3ri(θ), where ri(θ) consist
of a sum of fractions. The numerators of these fractions consist of products of
likelihood derivatives which have bounded unconditional expectation by Lemma
E.1, while the denominators are bounded away from zero by Assumption 4.3.
The same pattern arises when taking the derivative with respect to θ , albeit with
more complicated algebra. Further notice that the argument in ri(θ) is fixed and
thus does not drift with n,T . Further justification for Assumption 4.5 is given in
Appendix D.

Since differentiation and integration is interchangeable by Assumption 4.3(i),
using an expansion of the profile likelihood together with Assumption 4.5 then
implies

Eτ0 [∂θ�
∗
i (θ,βi)|θ=θ0,βi=β̂i

] = Eτ0 [∂θ�i(θ,α
∗
i (θ))|θ=θ0 ]+ ∂θRi(θ)|θ=θ0 = Op(T

−3).

It is then shown in Appendix D that√
T

n

n∑
i=1

∂θ�
∗
i (θ,βi)|θ=θ0,βi=β̂i

=
√

T

n

n∑
i=1

∂θ�i(θ)|θ=θ0 +Op

(√
n

T5

)
+Op

(
1√
T

)
,

(4.10)
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which illustrates that the rate n/T5 → 0 needs to be imposed in order to ensure that
the asymptotic distribution is centered around the true parameter θ0. We further
show in Appendix D that√

T

n

n∑
i=1

∂θ�i(θ)|θ=θ0

d→ N(0,F) as n,T → ∞. (4.11)

Combining these results then leads to the following theorem.

Theorem 4.1. Let Assumptions 4.1–4.5 hold and let n/T5 → 0 as n,T → ∞.
Then,
√

nT(θ̂ − θ0)
p→ N(0,F−1) as n,T → ∞.

5. SIMULATIONS

In order to assess the potential gains of our SOB correction while allowing for
a comparison with the simulation results of DS, we conduct a simulation study
using Design 3 of DS.16 Here, Yit = 1(X′

itθ0 +αi0 + Uit > 0), for i = 1, . . . ,n and
t = 1, . . . ,T with αi0 ∼ N(0,1/16) and Xit ∼ N(αi0,1). Further, we set θ0 = 1.

Finally, independent of (Xi,αi0), we let Ui1, . . . ,UiT
d= LogisticIID in panel logit

and Ui1, . . . ,UiT
d= NIID(0,1) in panel probit. In a first set of simulations, we

choose n = 100 and consider T ∈ {3,4,5,6,10}, since we are particularly interested
in the bias reducing properties when T is small relative to n. We further report
numbers for n = 1,000 in static logit and static probit with T ∈ {5,10,20}. The
code for the experiments is written in R. The results in the first set of simulations
are based on M = 2,000 Monte Carlo iterations whereas, due to an increase in
computational burden, the results in the second set of simulations are based on
250 iterations.17

The estimators considered here include the MLE (θ̃), the first-order corrected
estimators based on sample averages (θ̌avg) and based on expected quantities
(θ̌exp) where, as discussed in Section 3.1, the FOB is estimated using T−1B̌(1)

i (θ)

and T−1B(1)
i (θ,βi)|βi=β̂i

respectively, and the second-order corrected estimator

based on expected quantities (θ̂ ). Moreover, we report results for both the first-
and second-order split-panel jackknife bias corrected estimators of Dhaene and
Jochmans (2015) denoted as θ̂

(FO)
SPJ and θ̂

(SO)
SPJ . For static logit, we also report the

conditional maximum likelihood estimator (θ̃CMLE) as a benchmark.

16In Appendix F, we further provide simulation results based on a data generating process introduced in Arellano
and Bonhomme (2009) and subsequently used in Schumann et al. (2021a). The results are qualitatively similar (see
Table 4).
17The actual number of Monte Carlo iterations may be lower, as iterations where at least one of the estimators cannot
be computed due to the failure of the standard maximization routine optim() are discarded. However, these cases
are very rare when T ≥ 4.

https://doi.org/10.1017/S0266466622000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000160


SECOND-ORDER BIAS REDUCTION FOR NONLINEAR PANEL 709

We further present coverage rates based on the Wald test, i.e., for a given
estimator θ̊ of θ0 we compute Ŵ := nT(θ̊ − θ0)

2/F̂−1(θ̊), where F̂(θ̊) :=
n−1 ∑n

i=1 ∂θθ ′�i(θ,α̂i(θ))|θ=θ̊ is a consistent estimator of F as n,T → ∞.
For a given nominal coverage level c, we then report the coverage rate as
M−1 ∑M

m=11{Ŵm < Qχ2
1 (c)}, where Ŵm denotes the value of the Wald statistic

in Monte Carlo iteration m and Qχ2
1 (c) denotes the c-quantile of the chi-

square distribution with one degree of freedom. In all our simulations, we set
c = 95%.

5.1. Results

The results in both models shown in Tables B.1 and B.2 are qualitatively similar.
First, they confirm the well-known fact that the MLE exhibits a large bias,
especially when T is small. In comparison, the FOB corrected estimators perform
much better, in particular when T is moderately large (i.e., T ≥ 5), both in terms
of bias and variance.18 Moreover, our results suggest that the EQ FOB correction
of the profile likelihood works better in small samples than its SA counterpart,
since θ̌exp greatly outperforms θ̌avg in terms of bias, standard deviation and MSE
for any value of T. The difference in performance is particularly striking in static
probit, where the MSE of θ̌avg is more than three times larger than the MSE of θ̌exp

for T ≤ 5. The SOB corrected estimator θ̂ works well, also when measured by the
performance of its first-order counterpart θ̌exp. In both models, the bias, standard
deviation and MSE of θ̂ are substantially lower than the respective numbers for
θ̌exp. The first- and second-order corrected estimators based on EQ also appear
to outperform their split-panel jackknife counterparts introduced in Dhaene and
Jochmans (2015). While particularly θ̂SO

SPJ does well in reducing the bias when
n = 1,000 and T ≥ 10, it does not exist in short panels (T ≤ 5) and generally suffers
from a comparatively high variance potentially due to the panel splitting.19 Specific
to static logit, θ̂ is only beaten (narrowly for T ≥ 5) by the fixed-T consistent
benchmark θ̂CMLE. Further comparing our logit results with the numbers reported
for Design 3 in DS shows that second-order corrections based on EQ and SA
perform similarly well for T ∈ {5,10,20}. This may be explained by the fact that
in the static logit example simplifications arise that reduce differences between
both bias correction methods (see Section 3.2). In contrast, θ̂ greatly outperforms
all competing estimators for any value of T in the static probit design. Moreover,
comparing our results in Table B.2 with Design 3 in Table 2 of DS suggests that
the EQ SOB correction performs considerably better than the SA second-order
correction. While θ̂ has an absolute bias of (less than) 1% for T ∈ {5,10,20}, the
estimator of DS still exhibits a substantially larger bias of 14.2% when T = 5. In
their Table 4, DS further report biases of 32%, 14.4%, and 7.8% for T ∈ {3,4,5}

18The phenomenon that in small samples bias reduction can lead to a reduction in variance is well-documented in
the literature (e.g., Hahn and Newey, 2004 or Schumann et al., 2021b).
19Nevertheless, it may still be a computationally attractive alternative when the panel is sufficiently long.
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for their second-order corrected estimator, which is again considerably larger than
the biases reported in Table B.1 for the second-order corrected estimator based
on EQ.

A similar ranking also arises for the empirical coverage rates based on the Wald
statistic: while the MLE is unreliable even for large values of T, the coverage rates
of FOB corrected estimators are much closer to the nominal coverage level, in
particular when the bias correction is based on EQ. The Wald confidence intervals
based on the SOB corrected estimator θ̂ appears to be much more reliable as
compared to the first-order corrected estimators. Especially in static probit where
the CMLE does not exist, the Wald confidence interval based on the SOB corrected
estimator θ̂ clearly outperforms all other estimators considered here. Notice that
for n = 100 and T = 5, the empirical coverage rate of the Wald statistic based on
θ̂ practically coincides with the nominal coverage level in both logit and probit. In
comparison, DS still report an over-rejection of 13% of the LR test based their SA
second-order corrected likelihood in the static probit model. As in DS, we observe
a worsening of the empirical coverage rates when n gets larger.20 However, while
their rejection rate increases rather steeply to 45% for T = 4, the empirical coverage
rate of the Wald test based on θ̂ remains close to 95%.

Finally, Table B.3, which shows the simulated means of the estimators consid-
ered here under misspecification (i.e., the data are generated following a probit
model and estimated based on the logit likelihood), illustrates that EQ estimators
do not necessarily suffer from a larger misspecification bias than SA estimators.
Both the SA and EQ estimates appear to be upward biased but approach the CMLE
as T increases, which itself is close to the usual “rule of thumb” value of 1.6 (see
Wooldridge, 2015, Chap. 17).

6. CONCLUSION

We have constructed a second-order bias corrected objective function for esti-
mation and inference in nonlinear panel data models with fixed effects based on
expected quantities. To do so, we have derived an explicit form of the second-order
profile likelihood bias and demonstrated how to construct feasible approximations
that make full use of the known likelihood. The maximizer of our adjusted
profile likelihood is shown to be asymptotically normal and correctly centered
if n,T → ∞ such that n/T5 → 0. A simulation study suggests excellent small
sample properties, in particular in very short panels in which first-order corrected
estimators still exhibit a substantial bias. We have further pointed out some fun-
damental differences between bias corrections based on EQ and SA and provided
some intuition that helps explaining why EQ estimators appear to outperform SA
estimators.

20This is in line with Lemma 6.1 in Schumann et al. (2021b).
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Appendix A. Derivatives of the First-Order Bias Used to Construct (2.3)

In this section, we display the explicit derivatives of the FOB used in the expansion leading

to the refined approximation of the FOB B̃(1)
i (θ,βi)|βi=β̂i

. The detailed derivations are
provided in Appendix C.2 of the Online Supplementary Material.

B(1)
iαi

(θ,βi0) = −Eτ0 [li01(θ)li02(θ)]

Tλi02(θ)
+ Eτ0 [l2i01(θ)]λi03(θ)

2Tλ2
i02(θ)

,

B(1)
iγ (θ,βi0) = −

√
TEτ0 [l2i01(θ)l10]

2Tλi02(θ)
+ Eτ0 [l2i01(θ)]Eτ0 [li02(θ)l10]

2Tλ2
i02(θ)

,

B(1)
iφi

(θ,βi0) = −
√

TEτ0 [l2i01(θ)li01]

2Tλi02(θ)
+ Eτ0 [l2i01(θ)]Eτ0 [li02(θ)li01]

2Tλ2
i02(θ)

,

B(1)
iαiαi

(θ,βi0) = 2λi03(θ)Eτ0 [li01(θ)li02(θ)]

Tλ2
i02(θ)

− Eτ0 [l2i02(θ)]

Tλi02(θ)
− Eτ0 [li01(θ)li03(θ)]

Tλi02(θ)

− Eτ0 [l2i01(θ)]λ2
i03(θ)

Tλ3
i02(θ)

+ Eτ0 [l2i01(θ)]λi04(θ)

2Tλ2
i02(θ)

,

B(1)
iφiφi

(θ,βi0) = Eτ0 [l2i01(θ)]Eτ0 [li02(θ)li01]2

Tλ3
i02(θ)

+
√

TEτ0 [l2i01(θ)li01]Eτ0 [li02(θ)li01]

Tλ2
i02(θ)

+ Eτ0 [l2i01(θ)](Eτ0 [li02(θ)li02]+√
TEτ0 [li02(θ)l2i01])

2Tλ2
i02(θ)

−
√

TEτ0 [l2i01(θ)li02]+TEτ0 [l2i01(θ)]λi02 +TEτ0 [l2i01(θ)l2i01]−2TEτ0 [li01(θ)li01]2

2Tλi02(θ)
,

B(1)
iαiφi

(θ,βi0) = λi03(θ)
√

TEτ0 [l2i01(θ)li01]

2Tλ2
i02(θ)

−
√

TEτ0 [li02(θ)li01(θ)li01]

Tλi02(θ)

+ Eτ0 [li01(θ)li02(θ)]Eτ0 [li02(θ)li01]

Tλ2
i02(θ)

− Eτ0 [l2i01(θ)]λi03(θ)Eτ0 [li02(θ)li01]

Tλ3
i02(θ)

+ Eτ0 [l2i01(θ)]Eτ0 [li03(θ)li01]

2Tλ2
i02(θ)

.
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Appendix B. Simulation tables

Table B.1. Simulation Results for Static Logit (Columns 3–6) and Static Probit
(Columns 7–10) with n = 100.

T Estimator Bias STD MSE Coverage Bias STD MSE Coverage

3 θ̃ 0.6346 0.3164 0.5028 0.2526 0.7057 0.2772 0.5749 0.0423

θ̌avg 0.2791 0.2441 0.1375 0.7346 0.5945 0.2712 0.4270 0.1106

θ̌exp 0.1780 0.2152 0.0780 0.8653 0.2224 0.1871 0.0844 0.6922

θ̂ 0.1130 0.2271 0.0643 0.8888 0.0320 0.1429 0.0214 0.9434

θ̃CMLE 0.0189 0.1804 0.0329 0.9585 – – – –

4 θ̃ 0.4213 0.2302 0.2305 0.3975 0.4979 0.2136 0.2935 0.1161

θ̌avg 0.1612 0.1857 0.0605 0.8376 0.3552 0.2009 0.1665 0.3397

θ̌exp 0.0995 0.1688 0.0384 0.9213 0.1344 0.1470 0.0397 0.7961

θ̂ 0.0419 0.1631 0.0284 0.9474 0.0133 0.1233 0.0154 0.9374

θ̂FO
SPJ −0.2736 0.3520 0.1987 0.4852 −0.2330 0.2659 0.1249 0.3918

θ̃CMLE 0.0112 0.1514 0.0230 0.9635 – – – –

5 θ̃ 0.3028 0.1863 0.1264 0.5348 0.3662 0.1649 0.1613 0.1942

θ̌avg 0.0951 0.1528 0.0324 0.9045 0.2210 0.1491 0.0711 0.5330

θ̌exp 0.0577 0.1444 0.0242 0.9305 0.0864 0.1190 0.0216 0.8694

θ̂ 0.0166 0.1383 0.0194 0.9525 0.0034 0.1038 0.0108 0.9415

θ̂FO
SPJ −0.2274 0.2180 0.0992 0.5333 −0.2330 0.2659 0.1249 0.3918

θ̃CMLE 0.0037 0.1345 0.0181 0.9575 – – – –

6 θ̃ 0.2432 0.1479 0.0810 0.5840 0.2836 0.1300 0.0973 0.2694

θ̌avg 0.0698 0.1243 0.0203 0.9320 0.1475 0.1153 0.0351 0.6904

θ̌exp 0.0436 0.1195 0.0162 0.9460 0.0589 0.0985 0.0132 0.9132

θ̂ 0.0139 0.1154 0.0135 0.9625 0.0005 0.0885 0.0078 0.9513

θ̂FO
SPJ −0.1590 0.1702 0.0542 0.6400 −0.2229 0.2236 0.0996 0.3823

θ̂SO
SPJ −0.0694 0.4693 0.2250 0.4110 −0.2953 0.6994 0.5761 0.2203

θ̃CMLE 0.0073 0.1141 0.0131 0.9655 – – – –

10 θ̃ 0.1280 0.1048 0.0274 0.7360 0.1415 0.0818 0.0267 0.5315

θ̌avg 0.0237 0.0938 0.0093 0.9535 0.0462 0.0730 0.0075 0.9065

θ̌exp 0.0145 0.0925 0.0088 0.9580 0.0182 0.0692 0.0051 0.9485

θ̂ 0.0039 0.0912 0.0083 0.9560 0.0001 0.0667 0.0045 0.9495

θ̂FO
SPJ −0.0524 0.0967 0.0121 0.8810 −0.0803 0.0801 0.0129 0.6900

θ̂SO
SPJ 0.0201 0.1713 0.0297 0.7205 0.0208 0.1928 0.0376 0.5365

θ̃CMLE 0.0028 0.0910 0.0083 0.9560 – – – –
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Table B.2. Simulation Results for Static Logit (Columns 3–6) and Static Probit
(Columns 7–10) with n = 1,000.

T Estimator Bias STD MSE Coverage Bias STD MSE Coverage

5 θ̃ 0.2924 0.0622 0.0893 0.0000 0.3436 0.0489 0.1204 0.0000

θ̌avg 0.0882 0.0513 0.0104 0.4920 0.2002 0.0440 0.0420 0.0000

θ̌exp 0.0513 0.0484 0.0050 0.7720 0.0715 0.0357 0.0064 0.4426

θ̂ 0.0103 0.0462 0.0022 0.9280 −0.0091 0.0312 0.0011 0.9277

θ̂FO
SPJ −0.1733 0.0638 0.0341 0.0880 −0.0937 0.0616 0.0125 0.2240

θ̃CMLE 0.0011 0.0432 0.0019 0.9480 – – – –

10 θ̃ 0.1238 0.0343 0.0165 0.0240 0.1358 0.0259 0.0191 0.0000

θ̌avg 0.0202 0.0305 0.0013 0.8840 0.2002 0.0440 0.0420 0.0000

θ̌exp 0.0111 0.0303 0.0010 0.9320 0.0138 0.0219 0.0007 0.9160

θ̂ 0.0005 0.0298 0.0009 0.9480 −0.0041 0.0211 0.0005 0.9320

θ̂FO
SPJ −0.0480 0.0315 0.0033 0.5600 −0.0719 0.0258 0.0058 0.1200

θ̂SO
SPJ 0.0093 0.0533 0.0029 0.6840 −0.0353 0.0498 0.0037 0.4720

θ̃CMLE 0.0010 0.0295 0.0009 0.9480 – – – –

20 θ̃ 0.0579 0.0202 0.0038 0.1880 0.0607 0.0164 0.0039 0.0120

θ̌avg 0.0053 0.0190 0.0004 0.9560 0.0093 0.0153 0.0003 0.8880

θ̌exp 0.0031 0.0190 0.0004 0.9640 0.0030 0.0151 0.0002 0.9320

θ̂ 0.0006 0.0189 0.0004 0.9640 −0.0005 0.0150 0.0002 0.9520

θ̂FO
SPJ −0.0097 0.0198 0.0005 0.9080 −0.0164 0.0159 0.0005 0.7680

θ̂SO
SPJ 0.0028 0.0251 0.0006 0.8840 0.0023 0.0213 0.0005 0.8080

θ̃CMLE 0.0009 0.0194 0.0004 0.9620 – – – –

Table B.3. Means Under Misspecification (n = 100).

T θ̃ θ̌avg θ̌exp θ̂ θ̃CMLE θ̂FO
SPJ θ̂SO

SPJ

3 3.0052 2.3117 2.0734 2.0712 1.7612 – –

4 2.6403 2.1176 1.9472 1.9331 1.7511 – –

5 2.4015 1.9817 1.8695 1.8387 1.7431 1.3593 –

6 2.2455 1.8935 1.8204 1.7842 1.7346 1.4622 1.6122

10 1.9790 1.7663 1.7466 1.7267 1.7190 1.5625 1.6418

Notes:All estimators are based on the static logit model while the data are generated using the static
probit model.

Appendix C. Details and Proofs for Section 4

C.1. The Profile Likelihood Bias Terms

We now derive the first- and second-order profile likelihood bias. Notice that for
(θ,αi) ∈ � × J , k ∈ {0,1,2,3,4} and m ∈ {1, . . . ,9}, Assumption 4.3(i) implies that
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(component-wise) λikm(θ,αi) = Op(1). Moreover, again for each component, it follows
from Assumption 4.3(i) and time-independence that likm(θ) is of order Op(1), as

Eτ0 [l2ikm(θ)] = T−1 ∑T
t=1Eτ0 [litkm(θ)] = Op(1) while Eτ0 [likm(θ)] = 0 by definition.

Proof of (4.1). Let δi(θ) = α̂i(θ)−α∗
i (θ). Expanding �i01(θ,α̂i(θ)) around α∗

i (θ) yields

0 = �i01(θ,α̂i(θ)) = �i01(θ)+�i02(θ,ᾱ(θ))δi(θ) ⇔ δi(θ) = �i01(θ)

−√
T�i02(θ,ᾱ(θ))

,

where ᾱ(θ) lies between α̂i(θ) and α∗
i (θ). Let d ∈ {1, . . . ,6}. By Assumption 4.3(iii),

sup
θ∈�

|δd
i (θ)| = sup

θ∈�

∣∣∣∣∣ �d
i01(θ)

−Td/2�d
i02(θ,ᾱ(θ))

∣∣∣∣∣ ≤ (sup(θ,αi)∈�×J |�i01(θ,αi)|)d

Td/2 Dd
2

= Op(T−d/2).

Thus, by the Markov inequality and Assumption 4.3(i),

sup
θ∈�

|δd
i (θ)| = Op(T−d/2). (C.1)

Again expanding �i01(θ,α̂i(θ)) around α∗
i (θ) and centering terms (i.e., writing �i0k(θ) =

li0k(θ)/
√

T +λi0k(θ)) yields

0 = �i01(θ,α̂i(θ)) = li01(θ)+
5∑

k=1

1

k!

li0k+1(θ)√
T

δk
i (θ)

+
5∑

k=1

1

k!
λi0k+1(θ)δk

i (θ)+�i07(θ,ᾱ(θ))δ6
i (θ). (C.2)

Here, we have further used that λi01(θ) = 0 by the first-order condition of the target value
α∗

i (θ). Writing δ̃(θ) := √
Tδi(θ), which is of order Op(1) by (C.1), and rearranging this

equation,

δi(θ) = −λ−1
i02(θ)

( 5∑
k=0

1

k!

li0k+1(θ)

T(k+1)/2
δ̃k(θ)+

5∑
k=1

1

k!

λi0k+1(θ)

Tk/2
δ̃k(θ)

)

−λ−1
i02(θ)�i07(θ,ᾱ(θ))δ6

i (θ). (C.3)

By Assumption 4.3(i) and the Markov inequality, supθ∈� |�i07(θ,ᾱ(θ))| = Op(1).
Moreover, Assumption 4.3(ii) implies that there exists some constant D1 > 0 such that
infθ∈� |λ−1

i02(θ)| > D1 for T large enough. Together with (C.1), this shows that the

supremum (over �) of the remainder term λ−1
i02(θ)�i07(θ,ᾱ(θ))δ6

i (θ) in (C.3) is of order

Op(T−3). As in Rilstone, Srivastava, and Ullah (1996), we notice that (C.3) is of the form

δi(θ) = a−1/2 +a−1 +a−3/2 +a−2 +a−5/2 +Op(T−3),

where a−d/2 collects all terms of order Op(T−d/2), d = 1, . . . ,5. Next, we plug this
expression for δi(θ) into (C.2) and collect terms of the same order. Since the left-hand side
of (C.2) is zero, we can then iteratively solve for a−d/2. For instance, T−1/2(li01(θ) +
a−1/2λi02(θ)) = 0 yields

a−1/2 = ai(θ,βi0) := − li01(θ)

λi02(θ)
. (C.4)
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Using this expression, we can then obtain

a−1 = −λ−1
i02(θ)li02(θ)a−1/2 − 1

2
λ−1

i02λi03 a2−1/2,

which implies that

a−1 = − l2i01(θ)λi03(θ)

2λ3
i02(θ)

+ li01(θ)li02(θ)

λ2
i02(θ)

. (C.5)

Similarly,

a−3/2 = −λ−1
i02(θ)li02(θ)a−1 − 1

2
λ−1

i02(θ)λi03(θ)(a2−1/2 +a−1/2a−1)

− 1

2
λ−1

i02(θ)li03(θ)a2−1/2 − 1

6
λ−1

i02(θ)λi04(θ)a3−1/2,

whereas

a−2 = −λ−1
i02(θ)li02(θ)a−3/2 − 1

2
λ−1

i02(θ)λi03(θ)a2−1 − 1

2
λ−1

i02(θ)li03(θ)a−1/2a−1

− 1

6
λ−1

i02(θ)λi04(θ)a2−1/2a−1 − 1

6
λ−1

i02(θ)li04(θ)a3−1/2

and

a−5/2 = −λ−1
i02(θ)li02(θ)a−2 − 1

2
λ−1

i02(θ)λi03(θ)a−1/2a−2

− 1

2
λ−1

i02(θ)li03(θ)(a2−1 +a−1/2a−3/2)

− 1

6
λ−1

i02(θ)λi04(θ)a−1/2a2−1 − 1

6
λ−1

i02(θ)li04(θ)a2−1/2a−1

− 1

24
λ−1

i02(θ)λi05(θ)a3−1/2a−1 − 1

24
λ−1

i02(θ)li04(θ)a4−1/2.

Explicit expressions for a−3/2, . . . ,a−5/2 are provided in Appendix H. Note that a−2 and
a−5/2 are not provided in Rilstone et al. (1996), so that we have extended their result for the
maximum likelihood case. Moreover, these terms differ from those in Ferrari et al. (1996)
or Shenton and Bowman (1977) because we cannot use Bartlett-identities (in αi) to simplify
moments of li01(θ). For example, in general Eτ0 [l2i01(θ)] �= −λi02(θ). Next, expanding the
profile likelihood,

�i(θ,α̂i(θ))−�i(θ,α
∗
i (θ)) =

4∑
k=1

1

k!

li0k(θ)√
T

δk
i (θ)+

5∑
m=2

1

m!
λi0m(θ)δm

i (θ)+Op(T−3).

(C.6)

Since now explicit expressions for (powers of) δi(θ) are available, we get an expansion of
the profile likelihood around the target likelihood up to the desired order as

�i(θ,α̂i(θ))−�i(θ,α
∗
i (θ)) = B(1)

i (θ)

T
+ B(2,1)

i (θ)

T3/2
+ B(2,2)

i (θ)

T2
+ B(3)

i (θ)

T5/2
+Op(T−3),

(C.7)
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where the explicit terms for B(1)
i (θ), . . . B(3)

i (θ) can be derived as follows:

(1)

B(1)
i (θ) := − l2i01(θ)

2λi02(θ)
,

(2)

B(2,1)
i (θ) := l2i01(θ)li02(θ)

2λ2
i02(θ)

− l3i01(θ)λi03(θ)

6λ3
i02(θ)

,

(3)

B(2,2)
i (θ) := − l2i01(θ)l2i02(θ)

2λ3
i02(θ)

− l3i01(θ)li03(θ)

6λ3
i02(θ)

+ l3i01(θ)li02(θ)λi03(θ)

2λ4
i02(θ)

− l4i01(θ)λ2
i03(θ)

8λ5
i02(θ)

+ l4i01(θ)λi04(θ)

24λ4
i02(θ)

,

(4) and

B(3)
i (θ) := l2i01(θ)l3i02(θ)

2λ4
i02(θ)

+ l3i01(θ)li02(θ)li03(θ)

2λ4
i02(θ)

+ l4i01(θ)li04(θ)

24λ4
i02(θ)

− l3i01(θ)l2i02(θ)λi03(θ)

λ5
i02(θ)

− l4i01(θ)li03(θ)λi03(θ)

4λ5
i02(θ)

+ 5l4i01(θ)li02(θ)λ2
i03(θ)

8λ6
i02(θ)

− l5i01(θ)λ3
i03(θ)

8λ7
i02(θ)

− l4i01(θ)li02(θ)λi04(θ)

6λ5
i02(θ)

+ l5i01(θ)λi03(θ)λi04(θ)

12λ6
i02(θ)

− l5i01(θ)λi05(θ)

120λ5
i02(θ)

.

By (E.3) we have supθ∈�Eτ0 [B(3)
i (θ)] = T−1/2Op(1). Thus, by taking expectations

conditional on covariates Eτ0 , we arrive at (4.1). Finally, Rem(0)(θ) is a combination

of T−3
√

TB(3)
i (θ) with Eτ0 [

√
TB(3)

i (θ)] = Op(1) by Lemma E.1, products of likelihood
derivatives with a−1/2, . . . ,a−5/2 and

1

5!

li0k(θ,ᾱ(θ))√
T

δ5
i (θ)+ 1

6!
λi06(θ)δ6

i (θ),

which is the remainder in (C.6). Thus, supθ∈� Rem(0)(θ) = Op(T−3) follows from
Assumption 4.3 and Lemma E.1. �

Remark C.1. Taking the first and second derivatives with respect to θ of the remainder
term Rem(0)(θ) does not affect its stochastic order. Given the form of the remainder term
specified in the proof of (4.1), the first and second derivatives of

√
TEτ0 [B(3)

i (θ)] with
respect to θ consist of products of 8 and 9 likelihood derivatives with bounded expectation
by Lemma E.1. Moreover, the first and second derivatives with respect to θ of δi(θ)

can be shown to be of order Op(T−1/2) by following the argument leading to (C.1), as
all derivatives of centered likelihood derivatives covered by Assumption 4.3 are of order
Op(T−1/2).
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Remark C.2. While the stochastic order of δi(θ) is given by (C.1), expectations
of odd powers of δi(θ) converge at a faster rate. To see this, we again use δi(θ) =
�i01(θ)/(−√

T�i02(θ,ᾱ(θ))), where the denominator is bounded away from zero by
Assumption 4.3(iii). Thus,

Eτ0 [ sup
θ∈�

δd
i (θ)] ≤ cT−d/2

Eτ0 [ sup
θ∈�

ldi01(θ)] =
{

Op(T−d/2), d even,

Op(T−(d+1)/2), d odd.
(C.8)

Here, c denotes a constant and the last equation follows from Lemma E.1.

C.2. Feasible Bias Estimation

In an initial step, we show that

T−1
Eτ0 [Rem(1)(θ)] = Op(T−3), (C.9)

where Rem(1)(θ) is the remainder term in (4.3). For the proof, we introduce some notation

for partial derivatives. For k,k1, . . . ,k4 ∈ {1, . . . ,p + 2}, let derivatives of B(1)
i (θ,βi) with

respect to components of βi be denoted by corresponding indices, i.e., B(1)
i;k (θ,βi) :=

∂βikB
(1)
i (θ,βi), B(1)

i;k1,k2
(θ,βi) := ∂2

βik1βik2
B(1)

i (θ,βi) and so on. Further, we let (β̂i −βi0)k,

k ∈ {1, . . . ,p+2} denote the kth components of (β̂i −βi0).

Proof of (C.9). We can, ignoring constants, write the remainder term as

Rem(1)(θ) = Rem(1,a)(θ)+Rem(1,b)(θ), (C.10)

where

Rem(1,a)(θ) :=
p+2∑
k1=1

p+2∑
k2=1

p+2∑
k3=1

B(1)
i;k1,k2,k3

(θ,βi)|βi=βi0(β̂i −βi0)k1(β̂i −βi0)k2(β̂i −βi0)k3

and

Rem(1,b)(θ) :=
p+2∑
k1=1

p+2∑
k2=1

p+2∑
k3=1

p+2∑
k4=1

B(1)
i;k1,k2,k3,k4

(θ,βi)|βi=β̄i
(β̂i −βi0)k1(β̂i −βi0)k2(β̂i −βi0)k3(β̂i −βi0)k4

+
p∑

k1=1

p∑
k2=1

B(1)
i;k1,k2

(θ,βi)|βi=β̄i
(β̂i −βi0)k1(β̂i −βi0)k2,

and β̄i lies between β̂i and βi0. By (C.1), (I.4), and Assumption 4.4(ii) and (iii),

(β̂i −βi0)k =
{

Op(T−1/2), k ∈ {1,p+2},
Op(T−1), k ∈ {2, . . . ,p+1}. (C.11)

Moreover, as β̂i
p→ βi0 as T → ∞, the second- and fourth-order derivatives ofB(1)

i (θ,βi) are

of order Op(1) when evaluated at βi = β̄i by Lemma E.2. Thus, Rem(1,b)(θ) = Op(T−2) by
Lemma E.1. Consequently, T−1

Eτ0 [Rem(1,b)(θ)] = Op(T−3). Further notice that the same
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argument also holds for derivatives of Rem(1,b)(θ) with respect to θ , so that the stochastic

order is not affected by taking derivatives. Next, we notice that the derivatives ofB(1)
i (θ,βi0)

do not depend on outcome data, so that

Eτ0 [B(1)
i;k1,k2,k3

(θ,βi)|βi=βi0(β̂i −βi0)k1(β̂i −βi0)k2(β̂i −βi0)k3 ]

= B(1)
i;k1,k2,k3

(θ,βi)|βi=βi0Eτ0 [(β̂i −βi0)k1(β̂i −βi0)k2(β̂i −βi0)k3 ].

Moreover, (C.11) shows that (β̂i − βi0)k1(β̂i − βi0)k2(β̂i − βi0)k3 is of order Op(T−2) or
lower if at least one index in {k1,k2,k3} is an element of {1, . . . ,p}. In this case, Lemma E.1
implies that the expectation of (β̂i − βi0)k1(β̂i − βi0)k2(β̂i − βi0)k3 is of sufficiently low
order. We thus need to consider

Eτ0 [(β̂i −βi0)k1(β̂i −βi0)k2(β̂i −βi0)k3 ] for k1,k2,k3 ∈ {p+1,p+2}.
We first observe that Eτ0 [δ3

i (θ)] = Op(T−2) by (C.8). Moreover, α̂i(θ̃) − αi0 = δi(θ̃) +
Op(T−1) by (I.4). Thus,

Eτ0 [δ2
i (θ)(α̂i(θ̃)−αi0)] = Eτ0 [δ2

i (θ)δi(θ̃)]+Op(T−2) = Op(T−2),

where we have again used (C.8). Using similar arguments, Eτ0 [δi(θ)(α̂i(θ̃) − αi0)2] =
Op(T−2) and Eτ0 [(α̂i(θ̃) − αi0)3] = Op(T−2), as α̂i(θ̃) − αi0 can be approximated
with δi(θ0) up to a bias of sufficiently low order (see the proof of (4.4)). In total,
T−1Rem(1,a)(θ) = Op(T−3). �

Remark C.3. In the same way, one can show that derivatives of B(1)
i (θ,βi) with

respect to βi can be approximated by replacing βi0 with βi0, i.e., ∂βiB
(1)
i (θ,βi)|βi=β̂i

=
∂βiB

(1)
i (θ,βi)|βi=βi0 +Rem(2)(θ) with

Rem(2)(θ) = Op(T−1/2) and Eτ0 [Rem(2)(θ)] = Op(T−1). (C.12)

Moreover, also the proof of (4.2) can be carried out with analogous arguments. The full
proofs are given in Appendix I.

In the proofs of (4.4) and (4.5), we again denote partial derivatives by parameters in the
index and use a plug-in notation so that for instance Aαi(θ0,βi0) := ∂αi A(θ,βi)|θ=θ0,βi=βi0 .

Proof of (4.4). In an initial step, the full proof of (4.4) requires us to show the first
equation in

Eτ0 [α̂i(θ̃)−αi0] = Eτ0 [δ(θ0)]+Op(T−2),

Eτ0 [δiT (θ)(α̂i(θ̃)−αi0)] = Eτ0 [δiT (θ)δiT (θ0)]+Op(T−2), and

Eτ0 [(α̂i(θ̃)−αi0)2] = Eτ0 [δ2
iT (θ0)]+Op(T−2), (C.13)

which is shown in Appendix I. Note first that by (C.5) and Lemma E.1,

Eτ0 [δi(θ)] = −Eτ0 [l2i01(θ)]λi03(θ)

2Tλ3
i02(θ)

+ Eτ0 [li01(θ)li02(θ)]

Tλ2
i02(θ)

+Op(T−2) = Op(T−1).

(C.14)
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Therefore, A(θ,βi0) = Eτ0 [α̂i(θ)−α∗
i (θ)]+Op(T−2). We first use an expansion (ignoring

constants) to see

A(θ,βi)|βi=β̂i
=A(θ,βi0)+Aαi(θ,βi0)δi(θ)+Aγ (θ,βi0)′(θ̃ − θ0)+Aφi(θ,βi0)(α̂i(θ̃)−αi0)

+Aαiαi(θ,βi)|βi=β̄i
δ2

i (θ)+Aφiφi(θ,βi)|βi=β̄i
(α̂i(θ̃)−αi0)2

+Aαiγ (θ,βi)|′βi=β̄i
(θ̃ − θ0)δi(θ)+Aφiγ (θ,βi)|′βi=β̄i

(θ̃ − θ0)(α̂i(θ̃)−αi0),

(C.15)

where β̄i again lies between β̂i and βi0. In order to show (4.4), we need to demonstrate
that derivatives of A(θ,βi) are of order Op(T−1). To do so, one can follow the steps in the
proof of Lemma E.2. First, notice that for each of the derivatives the denominator consists of
(powers of) E[�i02(θ,αi)], with βi = (τ ′

i ,αi)
′ = βi0 or βi = β̄i, where β̄i lies between β̂i and

βi0 so that β̄i lies in M specified in Assumption 4.3(ii) with probability approaching one.
Therefore, for T large enough, the denominator of each of the derivatives is bounded away
from zero. Moreover, the numerator consists of derivatives of E[l2i01(θ,αi)], Eτ0 [�i03(θ,αi)]
and Eτ0 [�i02(θ,αi)], which can be shown to be bounded under Assumption 4.3(i) using the
Cauchy–Schwarz inequality and the Jensen inequality, as in the proof of Lemma E.2. Due
to the prefactor T−1, the derivatives of A(θ,βi) when evaluates at βi = βi0 or βi = β̄i are
of order Op(T−1). Combining this with (C.1), (I.4), and Assumption 4.4, we see that the
right hand side of (C.15) is of order Op(T−3/2). Moreover, the derivatives of A(θ,βi) do
not depend on outcome data when evaluated at βi0. This implies for example that

Eτ0 [Aαi(θ,βi0)δi(θ)] = Aαi(θ,βi0)Eτ0 [δi(θ)],

which is of order Op(T−2) by (C.14). Similarly, Aγ (θ,βi0)′Eτ0 [(θ̃ − θ0)] = Op(T−2) by
Assumption 4.4. Further, Aφi(θ,βi0)Eτ0 [α̂i(θ̃) − αi0] = Op(T−2) by (C.13) and (C.8).

Finally, we note that all terms involving second derivatives of A(θ,βi) are of order Op(T−2)

by (C.1), (I.4), and Assumption 4.4. �

An explicit expression for the FOB of θ̃ . Notice that θ and γ are the same for each

individual i in the definition of F̂i(θ,βi) and ∂θB(1)
i (θ,βi). Furthermore, there is not need

for a notation that differentiates between αi and φi here. Thus, let ζ := (θ ′,α1, . . . ,αn)′ ∈
�×J ×·· ·×J , and further write ζ0 := (θ ′

0,αi0, . . . ,αn0)′ and ζ̂ := (θ̃ ′,α̂1(θ̃), . . . ,α̂n(θ̃))′.
Finally, define

T (ζ ) :=
⎡
⎣−1

n

n∑
i=1

F̂i(θ,βi)|βi=(θ ′,αi,αi)
′

⎤
⎦

−1

1

nT

n∑
i=1

∂θB(1)
i (θ,βi)|βi=(θ ′,αi,αi)

′ = Op(T−1). (C.16)

Then T̂ = T (ζ̂ ) and the FOB of θ̃ can be expressed as T (ζ )|ζ=ζ0 . The latter can be
seen by first considering equation (F.1) together with the remarks in the proof of (6.7) in
Schumann et al. (2021b) and taking conditional expectations Eτ0 on both sides (notice that
the conditional expectation operator Eτ0 corresponds to their E0). Since, in their notation,
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lṪk(θ0) = Op( 1√
nT

) while E0[lṪk(θ0)] = 0 and θ̃ − θ0 = Op( 1√
nT

)+Op(T−1),

Eτ0 [θ̃ ]− θ0 =
⎛
⎝n−1

n∑
i=1

Eτ0 [∂2
θθ ′�i(θ,α̂i(θ))|θ=θ0 ]

⎞
⎠

−1

∂θB(1)
i (θ,βi)|θ=θ0,βi=βi0 +Op(T−2).

Since the profile likelihood is “first-order Hessian biased,”

Eτ0 [∂2
θθ ′�i(θ,α̂i(θ))|θ=θ0 ] = Eτ0 [∂2

θθ ′�i(θ,α
∗
i (θ))|θ=θ0 ]+Op(T−1).

Using an expansion and the fact that ∂θB(1)
i (θ,βi)|θ=θ0,βi=βi0 = Op(T−1) together with

n/T �→ 0 then yields (C.16).21 �

In the next step, we show that our estimator for Eτ0 [θ̃ ]− θ0 is first-order unbiased, i.e.,

Eτ0 [T̂ ] = Eτ0 [T (ζ̂ )] = Eτ0 [θ̃]− θ0 +Op(T−2). (C.17)

Proof of (C.17). Recall ζ = (θ ′,α1, . . . ,αn)′ ∈ �×J ×·· ·×J so that dim(ζ ) = p+n.
Let k1,k2 ∈ {1, . . . ,p+n}. As in the proof of (C.9) we denote partial derivatives with respect
to components of ζ in the index, i.e.,

Tk(ζ ) := ∂T (ζ )

∂ζk
and Tk1,k2(ζ ) := ∂2T (ζ )

∂ζk1∂ζk2

.

Further recall ζ̂ = (θ̃ ′,α̂1(θ̃), . . . ,α̂n(θ̃))′ and ζ0 = (θ ′
0,αi0, . . . ,αn0)′, and let (ζ̂ − ζ0)k

denote the kth component of (ζ̂ − ζ0). Using an expansion (ignoring constants),

T (ζ )|
ζ=ζ̂

= T (ζ0)+
p+n∑
k=1

Tk(ζ )|ζ=ζ0(ζ̂ − ζ0)k

+
p+n∑
k1=1

p+n∑
k2=1

Tk1,k2(ζ )|ζ=ζ̄ (ζ̂ − ζ0)k1(ζ̂ − ζ0)k2,

where ζ̄ lies between ζ̂ and ζ0. Taking expectations yields

Eτ0 [T (ζ )|
ζ=ζ̂

]−T (ζ0) =
p+n∑
k=1

Tk(ζ )|ζ=ζ0Eτ0 [(ζ̂ − ζ0)k]

+
p+n∑
k1=1

p+n∑
k2=1

Eτ0 [Tk1,k2(ζ )|ζ=ζ̄ (ζ̂ − ζ0)k1(ζ̂ − ζ0)k2 ],

where we have used that Tk(ζ )|ζ=ζ0 does not depend on outcome data. Clearly, Eτ0 [(ζ̂ −
ζ0)k] = Op(T−1) for every k ∈ {1, . . . ,p+n} by (C.1), (I.4), and Assumption 4.4(ii) and (iii).
Moreover, (ζ̂ − ζ0)k is of order Op(T−1/2) or lower and (ζ̂ − ζ0)k1(ζ̂ − ζ0)k2 is of order
Op(T−1) or lower again by (C.1), (I.4), and Assumption 4.4(ii) and (iii). It thus remains to

21A more detailed argument is provided in Appendix I.

https://doi.org/10.1017/S0266466622000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000160


SECOND-ORDER BIAS REDUCTION FOR NONLINEAR PANEL 721

justify that derivatives of T (ζ ) of first and second orders are of order Op(T−1). To see this,
notice that the derivatives of T (ζ ) evaluated at ζ0 or ζ̄ consist of fractions with (powers of)

−n−1 ∑n
i=1 F̂i(θ,βi) evaluated at (θ0,βi0) or (θ̄,β̄i) in the denominator. Since θ̄

p→ θ0 and

β̄i
p→ βi0, Assumption 4.3(v) implies that the denominators are bounded away from zero.

The numerators contain first- and second-order derivatives of F̂i(θ,βi), which can be shown
to be bounded in a neighborhood of the true values θ0 and βi0 by Assumption 4.3(i) and
(ii) as in the proof of Lemma E.2. Moreover, the numerator contains derivatives up to third

order of B(1)
i (θ,βi), which are bounded in a neighborhood of the true values by Lemma

E.2. Thus, since stochastic orders are not altered by taking averages across individuals by
Assumption 4.1(iii), the first and second derivatives of T (ζ ) are of order Op(T−1) in a
neighborhood of the true values due to the factor T−1 in the definition of T (ζ ). �

Proof of (4.6). Recall that by (2.3),

B̃(1)
i (θ,βi) := B(1)

i (θ,βi)−B(1)
iαi

(θ,βi)A(θ,βi)− 1

2
B(1)

iαiαi
(θ,βi)V(θ,βi)−B(1)

iγ (θ,βi)
′ T̂

−B(1)
iφi

(θ,βi)A(θ,βi)|θ=θ̃
− 1

2
B(1)

iφiφi
(θ,βi)V(θ,βi)|θ=θ̃

−B(1)
iαiφi

(θ,βi)Ṽ(θ,βi).

Using (C.13), we therefore need to show

Eτ0 [B(1)
iαi

(θ,βi)|βi=β̂i
A(θ,βi)|βi=β̂i

] = B(1)
iαi

(θ,βi0)Eτ0 [δi(θ)]+Op(T−2), (1)

Eτ0 [B(1)
iαiαi

(θ,βi)|βi=β̂i
V(θ,βi)|βi=β̂i

] = B(1)
iαiαi

(θ,βi0)Eτ0 [δ2
i (θ)]+Op(T−2), (2)

Eτ0 [B(1)
iγ (θ,βi)|′βi=β̂i

T̂ ] = B(1)
iγ (θ,βi0)′Eτ0 [θ̃]− θ0 +Op(T−2), (3)

Eτ0 [B(1)
iφi

(θ,βi)|βi=β̂i
A(θ,βi)|θ=θ̃,βi=β̂i

] = B(1)
iφi

(θ,βi0)Eτ0 [δi(θ0)]+Op(T−2), (4)

Eτ0 [B(1)
iφiφi

(θ,βi)|βi=β̂i
V(θ,βi)|θ=θ̃,βi=β̂i

] = B(1)
iφiφi

(θ,βi0)Eτ0 [δ2
i (θ0)]+Op(T−2), and

(5)

Eτ0 [B(1)
iαiφi

(θ,βi0)Ṽ(θ,βi)|βi=β̂i
] = B(1)

iαiφi
(θ,βi0)Eτ0 [δi(θ)δi(θ0)]+Op(T−2).

(6)

We first analyze (1) using g(θ,βi)|βi=β̂i
, where

g(θ,βi) := B(1)
iαi

(θ,βi)A(θ,βi).

Expanding g(θ,βi)|βi=β̂i
around βi0 now yields

g(θ,βi)|βi=β̂i
= g(θ,βi0)+ ∂β ′

i
g(θ,βi)|βi=βi0(β̂i −βi0)

+ 1

2
(β̂i −βi0)′∂βiβ

′
i
g(θ,βi)|βi=β̄i1

(β̂i −βi0),

where β̄i1 lies between β̂i and βi0. Next, we notice that the first and second derivatives of

g(θ,βi) consist of first and second derivatives of B(1)
iαi

(θ,βi) and A(θ,βi). Since β̄i lies in
any neighborhood of βi0 with probability approaching one as T → ∞, Lemma E.2 implies

that derivatives of B(1)
iαi

(θ,βi) are Op(1) uniformly across βi in the neighborhood specified
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in Lemma E.2. Further, as shown in the proof of (4.4), the first and second derivative of

A(θ,βi) are of order Op(T−1), again since β̄i
p→ βi0. Thus, the first and second derivative

of g(θ,βi) are of order Op(T−1). Moreover, ∂βi g(θ,βi)|βi=βi0 does not depend on outcome
data, so that

Eτ0 [∂β ′
i
g(θ,βi)|βi=βi0(β̂i −βi0)] = ∂β ′

i
g(θ,βi)|βi=βi0Eτ0 [(β̂i −βi0)] = Op(T−2),

where we have used (C.14), (C.8), and (C.16). Since Eτ0 [(β̂i −βi0)′(β̂i −βi0)] = Op(T−2),

Eτ0 [(β̂i −βi0)′∂βiβ
′
i
g(θ,βi)|βi=β̄i1

(β̂i −βi0)] = Op(T−3).

In total, we have therefore shown that

T−1
Eτ0 [B(1)

iαi
(θ,βi)|βi=β̂i

A(θ,βi)|βi=β̂i
] = T−1B(1)

iαi
(θ,βi0)A(θ,βi0)+Op(T−3).

Similarly, again using Lemma E.2 and the arguments outlined in the proof of (4.5) showing
that the first and second derivatives of V(θ,βi) with respect to the components of βi are of
order Op(T−1), we obtain (2). To show (3) we assume that dim(θ) = 1 in order to avoid
tensor notation. Since we need to show (3) for each component, the same argument can be
carried out component-wise when dim(θ) > 1. Recall that T̂ = T (ζ )|

ζ=ζ̂
. We then note

that

B(1)
iγ (θ,βi)|βi=β̂i

T (ζ )|
ζ=ζ̂

| = [B(1)
iγ (θ,βi0)+ ∂β ′

i
B(1)

iγ (θ,βi)|βi=βi0 (β̂i −βi0)

+ 1

2
(β̂i −βi0)′∂βiβ

′
i
B(1)

i (θ,βi)|βi=β̄i2
(β̂i −βi0)][T (ζ0)+Rem],

where β̄i2 lies again between β̂i and βi0 and Rem = Op(T−3/2) and Eτ0 [Rem] = Op(T−2)

by the proof of (C.17). Now, ∂βiB
(1)
iγ (θ,βi)|βi=βi0 and T (ζ0) do not depend on outcome

data. Therefore,

Eτ0 [∂β ′
i
B(1)

iγ (θ,βi)|βi=βi0(β̂i −βi0)T (ζ0)] = ∂β ′
i
B(1)

iγ (θ,βi)|βi=βi0Eτ0 [β̂i −βi0]T (ζ0)

= Op(T−2),

since Eτ0 [β̂i] −βi0 = Op(T−1) component-wise by (C.14), (C.8), and Assumption 4.4(ii)
and (iii) and since T (ζ0) = Op(T−1). Moreover,

Eτ0 [B(1)
iγ (θ,βi0)Rem] = B(1)

iγ (θ,βi0)Eτ0 [Rem] = Op(T−2)

by (C.16) as T (ζ0) = Op(T−1). Furthermore,

Eτ0 [(β̂i −βi0)′∂βiβ
′
i
B(1)

i (θ,βi)|βi=β̄i2
(β̂i −βi0)T (ζ0)] = Op(T−2)

by (C.8), (C.16) and Assumption 4.4(ii) and (iii). The expectation of the remaining terms
can similarly be shown to be of sufficiently low order by combining (C.1), (I.4), (C.16), and
Assumption 4.4(ii) and (iii).
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To show (4), we again use an expansion (ignoring constants) to obtain

B(1)
iφi

(θ,βi)|βi=β̂i
= B(1)

iφi
(θ,βi0)+ ∂β ′

i
B(1)

iφi
(θ,βi)|βi=βi0(β̂i −βi0)

+ (β̂i −βi0)′∂βiβ
′
i
B(1)

iφi
(θ,βi)|βi=β̄i3

(β̂i −βi0), (C.18)

where again β̄i3 is some value between β̂i and βi0, and

A(θ,βi)|θ=θ̃,βi=β̂i

= A(θ0,βi0)+ ∂θ ′A(θ,βi)|θ=θ0,βi=βi0(θ̃ − θ0)+ (θ̃ − θ0)′∂θθ ′A(θ,βi)|θ=θ̄,βi=βi0
(θ̃ − θ0)

+ ∂β ′
i
A(θ,βi)|θ=θ0,βi=βi0(β̂i −βi0)+ (β̂i −βi0)′∂βiβ

′
i
A(θ,βi)|θ=θ0,βi=β̄i4

(β̂i −βi0)

+ (θ̃ − θ0)′∂βiθ
′A(θ,βi)|θ=θ̄,βi=β̄i4

(β̂i −βi0), (C.19)

where θ̄ lies between θ̂ and θ0 and β̄i4 lies between β̂i and βi0. Recall that A(θ0,βi0) =
Eτ0 [δi(θ)] by (4.4). As argued in the proof of (4.4), the first and second derivatives of
A(θ,βi) are of order Op(T−1) uniformly over θ and over βi in a neighborhood of βi0. Hence,
by Assumption 4.4(ii) and (iii), (C.14), and (C.8),

Eτ0 [(θ̃ − θ0)′∂βiθ
′A(θ,βi)|θ=θ̄,βi=β̄i4

(β̂i −βi0)] = Op(T−5/2).

Similarly, using that ∂βiβ
′
i
B(1)

iφi
(θ,βi)|βi=β̄i3

= Op(1) by Lemma E.2,

Eτ0 [(β̂i −βi0)′∂βiβ
′
i
B(1)

iφi
(θ,βi)|βi=β̄i3

(β̂i −βi0)] = Op(T−2)

and

Eτ0 [(θ̃ − θ0)′∂θθ ′A(θ,βi)|θ=θ̄,βi=βi0
(θ̃ − θ0)] = Op(T−3).

Next, we notice that the first derivatives in (C.18) and (C.19) do not depend on outcome data.
Since in addition Eτ0 [β̂i] −βi0 = Op(T−1) and Eτ0 [θ̃ ] − θ0 = Op(T−1) component-wise,
multiplying (C.18) and (C.19) yields (4). Parts (5) and (6) can be shown using analogous
arguments. �

Appendix D. Proofs for Section 4.3

This section contains the proof for asymptotic normality of θ̂ .

Proof of (4.9). Let B denote an open ball centered at θ0 and let B denote its closure.

Now, the first and second derivative of B(1)
i (θ,βi)|βi=β̂i

and B(2)
i (θ,βi)|βi=β̂i

are bounded

in probability uniformly in θ on B by Lemma E.1 in conjunction with Assumption 4.3(ii).
Moreover, by (C.7) we can expand the profile likelihood around the target likelihood up to
an error term that is op(1) uniformly on �. Since the same arguments hold for the first and
second derivatives with respect to θ , we can write

∂θθ ′�∗
i (θ,βi)|βi=β̂i

= ∂θθ ′�i(θ)+R∗
i (θ) (D.1)

with supθ∈B |s′R∗
i (θ)s| = op(1). Thus, n−1 ∑n

i=1 supθ∈B |s′R∗
i (θ)s| = op(1) by Assump-

tion 4.1(iii). It is further shown subsequently that the target likelihood satisfies the second
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Bartlett identity, i.e.,

Eτ0 [∂θ �i(θ)∂θ ′�i(θ)]|θ=θ0 = −Eτ0 [∂θθ ′�i(θ)]|θ=θ0 . (D.2)

Thus, by (D.1), (D.2), and the definition of Fi,

1

n

n∑
i=1

−∂θθ ′�∗
i (θ,βi)|θ=θ̄,βi=β̂i

− 1

n

n∑
i=1

E[Fi]

= 1

n

n∑
i=1

−∂θθ ′�i(θ)|θ=θ̄ − 1

n

n∑
i=1

−E[∂θθ ′�i(θ)|θ=θ̄ ]

+ 1

n

n∑
i=1

−E[∂θθ ′�i(θ)|θ=θ̄ ]− 1

n

n∑
i=1

−E[∂θθ ′�i(θ)|θ=θ0 ]− 1

n

n∑
i=1

R∗
i (θ)|θ=θ̄ . (D.3)

Notice that for s ∈ S := {s ∈ R
p : ‖s‖ = 1}, we have

|1

n

n∑
i=1

s′R∗
i (θ)|θ=θ̄ s| ≤ 1

n

n∑
i=1

sup
θ∈B

|s′R∗
i (θ)s| = op(1). (D.4)

Next, from (D.10), (I3), and Assumption 4.3(i) and (ii), the Cauchy–Schwarz inequality
and

∂θα∗
i (θ) = −λi11(θ)/λi02(θ), (D.5)

it follows that s′ var[∂θθ ′�i(θ)] ≤ E[(∂θθ ′�i(θ))2]s = O(1). Moreover, with the same
arguments it can be shown that the expectation of the third derivative with respect to θ

of �i(θ) is bounded. By Corollary 2.2 in Newey (1991) and the discussion following it (p.
1163), we thus have that n−1 ∑n

i=1E[∂θθ ′�i(θ)] is equicontinuous on B and

sup
θ∈B

|1

n

n∑
i=1

s′[∂θθ ′�i(θ)−E[∂θθ ′�i(θ)]]s| = op(1), as n → ∞.

Consequently, since θ̄ ∈ B w.p.a.1,

∣∣∣1

n

n∑
i=1

−s′∂θθ ′�i(θ)θ=θ̄ s− 1

n

n∑
i=1

−E[s′∂θθ ′�i(θ)θ=θ̄ s]
∣∣∣

≤ sup
θ∈B

∣∣∣1

n

n∑
i=1

−s′∂θθ ′�i(θ)s− 1

n

n∑
i=1

−E[s′∂θθ ′�i(θ)]s
∣∣∣ = op(1).

(D.6)

Moreover, since the sequence (Q̄n) is equicontinuous on B, for each ε > 0 there exist η > 0
and n0 ∈N such that n > n0 �⇒ sup{θ1∈B:‖θ1−θ0‖<η} |Q̄n(θ1)−Q̄n(θ0)| < ε. Hence, since

θ̄ ∈ B(θ0,δ ∧η) w.p.a.1, where δ is the radius of B,

1

n

n∑
i=1

−s′E[∂θθ ′�i(θ)|θ=θ̄ ]s− 1

n

n∑
i=1

−s′E[∂θθ ′�i(θ)|θ=θ0 ]s = o(1). (D.7)
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By (D.3), (D.4), (D.6), and (D.7),

1

n

n∑
i=1

−∂θθ ′�∗
i (θ,βi)|θ=θ̄,βi=β̂i

− 1

n

n∑
i=1

E[Fi] = op(1).

Hence, (4.9) follows from Assumption 4.3(v). �

Proof of (D.2). First, notice that

∂θ �i(θ,α
∗
i (θ)) = �i10(θ)+�i01(θ)∂θα∗

i (θ) = �i10(θ)−�i01(θ)λ−1
i02(θ)λi11(θ), (D.8)

where we have used ∂θα∗
i (θ) = λ−1

i02(θ)λi11(θ) in the last equation. Therefore,

[∂θ �i(θ)∂θ ′�i(θ)]θ=θ0 = �i10�′
i10−�i10�i01λ−1

i02λi11−�i01λ−1
i02λi11�′

i10+�2
i01λ−1

i02λi11λ′
i11.

Therefore, using the Bartlett identities TEτ0 [�i10�′
i10] = −λi20, TEτ0 [�2

i01(θ,αi)] =
−Eτ0 [�i02(θ,αi)] and TEτ0 [�i01�i10] = −λi11, we get

TEτ0 [∂θ �i(θ)∂θ ′�i(θ)]θ=θ0 = −λi20 +λ−1
i02λi11λ′

i11. (D.9)

Next, differentiating (D.8) with respect to θ ,

∂θθ ′�i(θ) = �i20(θ)+�i11(θ)∂θ ′α∗
i (θ)+ ∂θα∗

i (θ)[�′
i11(θ)+�i02(θ)∂θα∗

i (θ)]

+�iα(θ)∂θθ ′α∗
i (θ).

Hence,

Eτ0 [∂θθ ′�i(θ)] = λi20(θ)+λi11(θ)∂θα∗
i (θ)+ ∂θα∗

i (θ)[λ′
i11(θ)+λi02(θ)∂θ ′α∗

i (θ)],
(D.10)

where we have used that by definition of the target value λi01(θ) = 0. Again using (D.5)
now yields

Eτ0 [∂θθ ′�i(θ)]|θ=θ0 = λi20 −λ−1
i02λi11λ′

i11. (D.11)

Comparing (D.9) and (D.11), the desired result follows. �

Justification for Assumption 4.5. We need to justify that each component of ∂θ Ri(θ)

is of order Op(T−3) when evaluated at θ = θ0. In order to keep the notation simple, we
assume here that dim(θ) = 1 and write ri(θ) := T3Ri(θ) and r′i(θ0) := ∂θ ri(θ)|θ=θ0 . By
(4.7), ri(θ) = Op(1). Hence, since the derivative of ri(θ) exists at θ = θ0 by Assumption
4.3(i), we need to show that for each δ > 0 there exists some constant M < ∞ and T0 ∈ N

such that T ≥ T0 implies

P(|r′i(θ)|θ=θ0 | > M) < δ.

Notice that the argument in ri and r′i does not drift with n or T (i.e., θ is not allowed to
involve a multiplicative factor of n or T) as this violates the compactness assumption in
Assumption 4.1. Since the derivative exists and θ0 lies in the interior of �, there is some
τ > 0 such that 0 < h < τ implies θ0 +h ∈ � and∣∣∣∣ ri(θ0 +h)

h
− ri(θ0)

h
− r′i(θ0)

∣∣∣∣ < 1,
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which implies that

|r′i(θ0)| < 1+|ri(θ0 +h)/h|+ |ri(θ0)/h|.
Fix h with 0 < h < τ . Since for each θ ∈ � we have shown that ri(θ) = Op(1), there exists
some constants M1 such that

P(|ri(θ0 +h)| > M1) < δ/2

and

P(|ri(θ0)| > M1) < δ/2.

Therefore,

P(|r′i(θ0)| > M) ≤ P(1+|ri(θ0 +h)|/h+|ri(θ0)|/h > M)

≤ P(|ri(θ0 +h)| > h(M −1)/2)+P(|ri(θ0)| > h(M −1)/2) < δ,

if M is chosen such that M1 < h(M −1)/2. �

Proof of (4.10). Recall that by (2.5) and (C.7)

�∗
i (θ,βi)|βi=β̂i

= �i(θ)+B∗
i (θ,βi)|βi=β̂i

+Rem(0)(θ),

where

B∗
i (θ,βi) := B(1)

i (θ)

T
+ B(2,1)

i (θ)

T3/2
+ B(2,2)

i (θ)

T2
− B̃(1)

i (θ,βi)

T
− B̃(2)

i (θ,βi)

T2
,

and Eτ0 [Rem(0)(θ)] = Op(T−3). As in the proof of (4.2) and (4.6), we can use a
second-order expansion around βi0 to show that B∗

i (θ,βi)|βi=β̂i
= B∗

i (θ,βi0)+R∗
i (θ) with

Eτ0 [B∗
i (θ,βi0)] = 0 for every θ ∈ � and where R∗

i (θ) consists of the remainder terms in

(4.2) and (4.6) and thus Eτ0 [R∗
i (θ)] = Op(T−3). Moreover, Rem(0)(θ) + R∗

i (θ) = Ri(θ),
where Ri(θ) is the remainder term in (4.7) and Assumption 4.5. Since differentiation and
integration is interchangeable, this in particular implies that

Eτ0 [∂θB∗
i (θ,βi0)]|θ=θ0 = ∂θEτ0 [B∗

i (θ,βi0)]|θ=θ0 = 0. (D.12)

Now,√
T

n

n∑
i=1

∂θ �∗
i (θ,βi)|θ=θ0,βi=β̂i

=
√

T

n

n∑
i=1

∂θ �i(θ)|θ=θ0

+
√

T

n

n∑
i=1

∂θB∗
i (θ,βi0)|θ=θ0 +

√
T

n

n∑
i=1

∂θ Ri(θ)|θ=θ0 .

(D.13)

First, we consider the stochastic properties of the last term on the right-hand side of (D.13).
By Assumption 4.5, we immediately have√

T

n

n∑
i=1

∂θ Ri(θ)|θ=θ0 = √
nTOp(T−3) = Op

(√
n

T5

)
.
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Since (D.12) together with iterated expectations implies E[∂θB∗
i (θ,βi)]|θ=θ0,βi=β̂i

= 0
for every i, we only need to consider the variance of the second term on the right-
hand side of (D.13) in order to determine its stochastic properties. Notice that the
leading term in ∂θB∗

i (θ,βi0) is of the form T−1f (θ), where E[(f (θ0))2] = O(1).

Thus, var[∂θB∗
i (θ,βi0)|θ=θ0 ] ≤ E[(∂θB∗

i (θ,βi0)|θ=θ0)
2] = O(T−2). Therefore, 4.1(iii)

implies

var[

√
T

n

n∑
i=1

∂θBi(θ,βi0)|θ=θ0 ] = T var[∂θBi(θ,βi0)|θ=θ0 ] = O(T−1),

and hence,

√
T

n

n∑
i=1

∂θB∗
i (θ,βi0)|θ=θ0 = Op(T−1/2).

In total,

√
T

n

n∑
i=1

∂θB∗
i (θ,βi0)|θ=θ0 +

√
T

n

n∑
i=1

∂θ Ri(θ)|θ=θ0 = Op

(
1√
T

)
+Op

(√
n

T5

)
,

which in combination with (D.13) shows the desired result. �

Proof of (4.11). Let s ∈ S := {s ∈ R
p : ‖s‖ = 1}. We begin by showing that

1

n

n∑
i=1

E[(s′∂θ �i(θ)|θ=θ0)
4] = O(T−2) (D.14)

for any s∈ S. Notice that ∂θ �i(θ)|θ=θ0 = �i10 −�i01λ−1
i02λi11 by (D.8), which after centering

yields

∂θ �i(θ)|θ=θ0 = T−1/2li10 −T−1/2li01λ−1
i02λi11,

where we have used that Eτ0 [�i10] = Eτ0 [�i01] = 0 by score unbiasedness of the likelihood
at the true values. Using Assumptions 4.3(i) together with the Jensen inequality and the
Cauchy–Schwarz inequality implies that E[(s′∂θ �i(θ)|θ=θ0)

4] = O(T−2) as T → ∞. Thus,
(D.14) follows. Now, let s ∈ S, and observe that we can write

√
T/n

∑n
i=1 s

′∂θ �i(θ)|θ=θ0 =∑n
i=1 Wni, where Wki := √

Tk/ns′∂θ �ik (θ)|θ=θ0 is a triangular array of random variables
for 1 ≤ i ≤ n and 1 ≤ k ≤ i. Let ε > 0. Then,

n∑
i=1

E[W2
ni1(|Wni| > ε)] ≤ 1

ε2

n∑
i=1

E[W4
ni] = 1

ε2

T2

n2

n∑
i=1

E[(s′∂θ �i(θ)θ=θ0)
4].

By (D.14),
∑n

i=1E[W2
ni1(|Wni| > ε)] = O(n−1) as n → ∞, i.e., the Lindeberg condition is

satisfied. Moreover, since Eτ0 [∂θ �i(θ)|θ=θ0 ] = Eτ0 [�i10]−λ−1
i02λ11Eτ0 [�i01] = 0 by score
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unbiasedness, E[∂θ �i(θ)|θ=θ0 ] = 0 by iterated expectations. Thus,

n∑
i=1

var[Wni] = T

n

n∑
i=1

E[s′[∂θ �i(θ)∂θ ′�i(θ)]|θ=θ0s]

= T

n

n∑
i=1

s′E[Eτ0 [∂θ �i(θ)∂θ ′�i(θ)]|θ=θ0s]

= 1

n

n∑
i=1

s′E[Fi]s,

where by definition Fi = Eτ0 [∂θ �i(θ)∂θ ′�i(θ)]|θ=θ0 . Hence, by the Lindeberg–Feller CLT

for triangular arrays (Durrett, 1991, p. 98) and Assumption4.3(v),
∑n

i=1 Wni
d−→N (0,s′Fs)

as n → ∞. Consequently, by the Crámer–Wold device,

√
T

n

n∑
i=1

∂θ �i(θ0)
d−→ N (0,F) as n → ∞.

�

Appendix E. Auxiliary Results

In this section, we derive the stochastic orders of products of likelihood derivatives.

Moreover, we show that derivatives of B(1)
i (θ,βi) with respect to βi are bounded in

probability.

LEMMA E.1. Let h ∈ {1, . . . ,18}, ν := (ν1, . . . ,νp) be a vector of nonnegative integers,
|ν| = ∑p

s=1 νs with |ν| ≤ 4 and let 0 ≤ μ ≤ 9. Under Assumption 4.3(i),

E[ sup
τi∈�×J

Eτi [ sup
(θ,αi)∈�×J

h∏
j=1

Dνj+μj li(θ,αi;τi)]] =
{

O(1), h even,

O(T−1/2), h odd,

where

Dν+μli(θ,αi;τi) = ∂ |ν|+μli(θ,αi;τi)

∂θ
ν1
1 · · ·∂θ

νp
p ∂α

μ
i

.

Proof of Lemma E.1. First notice that by compactness of the parameter spaces and the
continuity of Eτi [D

ν+μli(θ,αi)] in τi, θ and αi, for each panel length T there exist some
τ̃i ∈ �×J , θ̃ ∈ � and α̃i ∈ J such that

sup
τi∈�×J

Eτi [ sup
(θ,αi)∈�×J

Dν+μli(θ,αi;τi)] = Eτ̃i
[Dν+μli(θ̃,α̃i;τ̃i)] = 0.
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Thus, the mean-zero property of centralized likelihood derivatives is not affected by taking
the supremum in each parameter. Next,

E[ sup
τi∈�×J

Eτi [ sup
(θ,αi)∈�×J

h∏
j=1

Dνj+μj li(θ,αi;τi)]]

= T−h/2
T∑

k1=1

· · ·
T∑

kh=1

E[ sup
τi∈�×J

Eτi [ sup
(θ,αi)∈�×J

h∏
j=1

Dνj+μj likj(θ,αi;τi)]].

(E.1)

Now, to bound the summands,

|E[ sup
τi∈�×J

Eτi [ sup
(θ,αi)∈�×J

h∏
j=1

Dνj+μj likj(θ,αi;τi)]]|

≤ E[ sup
τi∈�×J

Eτi [
h∏

j=1

sup
(θ,αi)∈�×J

|Dνj+μj likj(θ,αi;τi)|]]. (E.2)

Repeated use of the Cauchy–Schwarz inequality and the Jensen inequality together with
Assumption 4.3(i) now shows that the right-hand side of (E.2), and thus every summand
on the right hand side of (E.1), is bounded. For instance, for h = 2, applying the Cauchy–
Schwarz inequality on the right-hand side of (E.2) yields the upper bound

⎛
⎝Ẽ

⎡
⎣(

sup
(θ,αi)∈�×J

|Dν1+μ1 lik1(θ,αi;τi)|
)2

⎤
⎦

⎞
⎠

1/2

⎛
⎝Ẽ

⎡
⎣(

sup
(θ,αi)∈�×J

|Dν2+μ2 lik2(θ,αi;τi)|
)2

⎤
⎦

⎞
⎠,

where Ẽ denotes integration with respect to the unconditional density evaluated at τ̃i
corresponding to E[supτi∈�×J Eτi [·]]. By the Jensen inequality and Assumption 4.3(i),

Ẽ

⎡
⎣(

sup
(θ,αi)∈�×J

|Dν1+μ1 lik1(θ,αi;τi)|
)2

⎤
⎦

≤ c

⎛
⎝Ẽ[M2

ik1
]+E

⎡
⎣

(
sup

τi∈�×J
Eτi [Mik1 ]

)2
⎤
⎦

⎞
⎠ = O(1),

where c denotes a constant. Next, we note that by time-independence and because
Eτi [lit(θ,αi;τi)] = 0 by definition, Eτ̃i

[
∏h

j=1 Dνj+μj likj(θ̃,α̃i;τ̃i)] = 0 if there exists some
j∗ ∈ {1, . . . ,h} such that time period kj∗ differs from kj for all j �= j∗, since this implies
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that

Eτ̃i

⎡
⎣ h∏

j=1

Dνj+μj likj(θ̃,α̃i;τ̃i)

⎤
⎦ = Eτ̃i

⎡
⎣ h∏

j=1,j �=j∗
Dνj+μj likj(θ̃,α̃i;τ̃i)

⎤
⎦

Eτ̃i

[
Dνj∗+μj∗ likj∗ (θ̃,α̃i;τ̃i)

]
= 0.

Consequently, any summation over an index that is not paired with others drops out.
Therefore, if h is even, there are at most h/2 pairs of indices and thus at most h/2 sums over
absolutely bounded summands scaled by a factor T−h/2 on the right-hand side of (C.8).
The total expression is thus of order O(1). If h is odd, the maximum number of summations
is reached with (h−3)/2 pairs of indices and a single triplet of indices. Therefore, we have
(h−3)/2+1 = (h−1)/2 summations over bounded summands, scaled by the factor T−h/2.
Consequently, the total expression is of order O(T−1/2). �

As the variance is bounded by the second moment, Lemma E.1 in particular implies

sup
τi∈�×J

Eτi

⎡
⎣ sup

(θ,αi)∈�×J

h∏
j=1

Dνj+μj li(θ,αi;τi)

⎤
⎦ =

{
Op(1), h even,

Op(T−1/2), h odd,
(E.3)

for h = 1, . . . ,9. The next Lemma shows that sufficient derivatives of B(1)
i (θ,βi) are

bounded. The proof proceeds by taking derivatives explicitly before showing boundedness
using Assumption 4.3 together with repeated applications of the Cauchy–Schwarz inequal-
ity and the Jensen inequality.

LEMMA E.2. Let βi = (θ ′,φi,αi)
′ ∈ ϒ with dim(βi) = p + 2. Further, let ν :=

(ν1, . . . ,νp+2) be a vector of nonnegative integers νs with |ν| := ∑p+2
s=1 νs and

Dν
βi
B(1)

i (θ,βi) = ∂ |ν|B(1)
i (θ,βi)

∂β
ν1
i1 · · ·∂βνp+2

ip+2

.

Then, there exists an open ball B centered at βi0 = (θ ′
0,αi0,α

∗
i (θ))′ such that for T large

enough

sup
βi∈B

sup
θ∈�

|Dν
βi
B(1)

i (θ,βi)| = Op(1)

for all ν with |ν| ≤ 4.

Proof of Lemma E.2. Recall from (2.1)

B(1)
i (θ,βi) = −Eτi [l

2
i01(θ,αi;τi)]

2λi02(θ,αi;τi)
= −

1
T

∑T
t=1Eτi [l

2
it01(θ,αi;τi)]

2
T

∑T
t=1Eτi [�it02(θ,αi)]

,

where we used time-independence and Eτi [lit01(θ,αi;τi)] = 0 in the second equation. Thus,

derivatives of B(1)
i (θ,βi) consist of terms with derivatives of T−1 ∑T

t=1Eτi [l
2
it01(θ,αi;τi)]

and T−1 ∑T
t=1Eτi [�it02(θ,αi)] in the numerator and Eτi [�i02(θ,αi)] in the denominator.

First, we will consider the latter term in the denominator. By Assumption 4.3(ii), there
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exists an open ball M centered at βi0 and a constant D > 0 such that for all T large enough

inf
βi∈M

inf
θ∈�

|Eτi [�i02(θ,αi)]| > D.

Let from now on B be an open ball centered at βi0 such that B ⊂ M. The denominator is
then uniformly bounded away from zero over � and B. Next, we consider the terms in the
numerator. Here, it follows from Assumption 4.3(i) that the derivatives with respect to α are
bounded. For example,

1

T

T∑
t=1

|∂4
αi
Eτi [�it02(θ,αi)]| = 1

T

T∑
t=1

|Eτi [�it06(θ,αi)]| ≤ 1

T

T∑
t=1

Mit = Op(1).

Moreover,

(1)

∂αiEτi [l
2
i01(θ,αi;τi)] = 2Eτi [li01(θ,αi;τi)li02(θ,αi;τi)],

(2)

∂2
αi
Eτi [l

2
i01(θ,αi;τi)] = 2Eτi [li01(θ,αi;τi)li03(θ,αi;τi)]+2Eτi [l

2
i02(θ,αi;τi)],

(3)

∂3
αi
Eτi [l

2
i01(θ,αi;τi)] = 6Eτi [li02(θ,αi;τi)li03(θ,αi;τi)]+2Eτi [li01(θ,αi;τi)li04(θ,αi;τi)],

(4) and

∂4
αi
Eτi [l

2
i01(θ,αi;τi)] = 8Eτi [li02(θ,αi;τi)li04(θ,αi;τi)]+6Eτi [l

2
i03(θ,αi;τi)]

+2Eτi [li02(θ,αi;τi)li04(θ,αi;τi)]+2Eτi [li01(θ,αi;τi)li05(θ,αi;τi)],

so that each of the terms in (1)–(4) consists of the expectation of a product of two centered
likelihood terms, where the expectation is taken with respect to the parameters γ and φi. As
in the proof of (E.3), we can use the Cauchy–Schwarz inequality and the Jensen inequality
to show that all terms on the right hand side are bounded uniformly over the parameter
space and across T. To illustrate this, notice that since Eτi [lit0m(θ,αi)] = 0 by definition,
independence over time implies

sup
βi∈B

sup
θ∈�

|Eτi [li0m1(θ,αi;τi)li0m2(θ,αi;τi)]|

≤ 1

T

T∑
t=1

sup
βi∈B

sup
θ∈�

|Eτi [lit0m1(θ,αi;τi)lit0m2(θ,αi;τi)]|.

Applying the Cauchy–Schwarz inequality,

sup
βi∈B

sup
θ∈�

|Eτi [lit0m1(θ,αi;τi)lit0m2(θ,αi;τi)]|

≤
√

sup
βi∈B

sup
θ∈�

Eτi [l
2
it0m1

(θ,αi;τi)]
√

sup
βi∈B

sup
θ∈�

Eτi [l
2
it0m2

(θ,αi;τi)].
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Now, by the Jensen inequality,

Eτi [l
2
it0m1

(θ,αi;τi)] ≤ 2(Eτi [�
2
it0m1

(θ,αi)]+Eτi [�it0m1(θ,αi)]
2)

≤ 2(sup
τi

Eτi [Mit]+ (sup
τi

Eτi [Mit])
2)

so that, by Assumption 4.3 and the Jensen inequality,

E[
√

sup
τi

sup
θ,α

Eτi [l
2
it0m1

(θ,αi)]] ≤
√

2(E[sup
τi

Eτi [Mit]]+E[(sup
τi

Eτi [Mit])2)] = Op(1).

Hence,

1

T

T∑
t=1

sup
βi∈B

sup
θ∈�

|Eτi [lit0m1(θ,αi;τi)lit0m2(θ,αi;τi)]| = Op(1),

which shows that

sup
θ∈�

sup
βi∈B

|∂4
αi
Eτi [l

2
i01(θ,αi;τi)]| = Op(1).

The remaining derivatives with respect to αi can be handled in a similar way. Next, we
consider derivatives with respect to φi. Using that

∂φi fYit|Xi,γ ,φi
= �it01(γ,φi)fYit|Xi,γ ,φi

,

we get

(1)

∂φiEτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�it01(γ,φi)],

(2)

∂2
φi
Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�it02(γ,φi)]+Eτi [�it02(θ,αi)�

2
it01(γ,φi)],

(3)

∂3
φi
Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�it03(γ,φi)]

+3Eτi [�it02(θ,αi)�it012(γ,φi)�it01(γ,φi)]+Eτi [�it02(θ,αi)�
3
it01(γ,φi)],

(4) and

∂4
φi
Eτi [�it02(θ,αi)] = 4Eτi [�it02(θ,αi)�it03(γ,φi)�it01(γ,φi)]

+3Eτi [�it02(θ,αi)�
2
it02(γ,φi)]

+6Eτi [�it02(θ,αi)�it02(γ,φi)�
2
it01(γ,φi)]+Eτi [�it02(θ,αi)�it04(γ,φi)]

+Eτi [�it02(θ,αi)�
4
it01(γ,φi)].

Again, using the Cauchy–Schwarz inequality repeatedly, we can bound the supremum of
each summand. For example,

|Eτi [�it02(θ,αi)�
4
it01(γ,φi)]| ≤

√
Eτi [�

2
it02(θ,αi)]

√
Eτ0 [�8

it01(γ,φi)].

https://doi.org/10.1017/S0266466622000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000160


SECOND-ORDER BIAS REDUCTION FOR NONLINEAR PANEL 733

But,

|�2
it02(θ,αi)| ≤ sup

(θ,αi)∈�×J
|�it02(θ,αi)|2 ≤ M2

it

and

|�8
it01(θ,αi)| ≤ sup

(θ,αi)∈�×J
|�it01(θ,αi)|8 ≤ M8

it.

By Assumption 4.3(i) we therefore have

1

T

T∑
t=1

sup
βi∈B

sup
θ∈�

|Eτi [�i02(θ,αi)�
4
i01(γ,φi)]|

≤ 1

T

T∑
t=1

√
sup

(γ,φi)∈�×J
Eτi [M

2
it]

√
sup

(γ,φi)∈�×J
Eτi [M

8
it] = Op(1).

Therefore, in total

∂4
φi
Eτi [�i02(θ,αi)] = Op(1).

A similar argument can be used to show that all fourth-order derivatives of Eτi [�i02(θ,αi)]
are bounded. As an example for derivatives with respect to components of γ , let

ψ1, . . . ,ψ4 ∈ {1, . . . ,p} so that γψ denotes the ψ th component of γ . Further, let �
ψ1
it1m(θ,αi)

denote the ψ th component of the vector �it1m(θ,αi), �
ψ1ψ2
it2m (θ,αi) denote the (ψ1,ψ2)th

element of the matrix �it2m(θ,αi), �
ψ1ψ2ψ3
it2m (θ,αi) denote the (ψ1,ψ2,ψ3)th element of the

three-dimensional array �it3m(θ,αi) and so on, and consider

(1)

∂γψ1
Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�

ψ1
it10(γ,φi)],

(2)

∂2
γ ψ1 γ ψ2

Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�
ψ1ψ2
it20 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1
it10(γ,φi)�

ψ2
it10(γ,φi)],

(3)

∂3
γ ψ1 γ ψ2 γ ψ3

Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�
ψ1ψ2ψ3
it30 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ2
it20 (γ,φi)�

ψ3
it10(γ,φi)]+Eτi [�it02(θ,αi)�

ψ1ψ3
it20 (γ,φi)�

ψ2
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1
it10(γ,φi)�

ψ2ψ3
it10 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1
it01(γ,φi)�

ψ2
it01(γ,φi)�

ψ3
it01(γ,φi)],

(4) and

∂4
γ ψ1 γ ψ2 γ ψ3 γψ4

Eτi [�it02(θ,αi)] = Eτi [�it02(θ,αi)�
ψ1ψ2ψ3ψ4
it40 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ2ψ3
it30 (γ,φi)�

ψ4
it10(γ,φi)]
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+Eτi [�it02(θ,αi)�
ψ1ψ2ψ4
it30 (γ,φi)�

ψ3
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ3ψ4
it30 (γ,φi)�

ψ2
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ2ψ3ψ4
it30 (γ,φi)�

ψ1
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ2
it20 (γ,φi)�

ψ3ψ4
it20 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ3
it20 (γ,φi)�

ψ2ψ4
it20 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ4
it20 (γ,φi)�

ψ2ψ3
it20 (γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ2
it20 (γ,φi)�

ψ3
it10(γ,φi)�

ψ4
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ3
it20 (γ,φi)�

ψ2
it10(γ,φi)�

ψ4
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1ψ4
it20 (γ,φi)�

ψ2
it10(γ,φi)�

ψ3
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ2ψ3
it20 (γ,φi)�

ψ1
it10(γ,φi)�

ψ4
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ2ψ4
it20 (γ,φi)�

ψ1
it10(γ,φi)�

ψ3
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ3ψ4
it20 (γ,φi)�

ψ1
it10(γ,φi)�

ψ2
it10(γ,φi)]

+Eτi [�it02(θ,αi)�
ψ1
it01(γ,φi)�

ψ2
it01(γ,φi)�

ψ3
it01(γ,φi)�

ψ4
it01(γ,φi)].

Since by Assumption 4.3 each individual likelihood contribution in time period t is
uniformly bounded across the parameters (θ,αi) ∈ � ×J and since the expectations are
uniformly bounded across (γ,φi) ∈ �×J and across time, the supremum over θ ∈ � and
βi ∈ B of each of the terms in (1)–(4) can again be shown to be bounded by repeated use of
the Cauchy–Schwarz inequality. Analogous arguments can be used for mixed derivatives.

Next, we consider derivatives of T−1 ∑T
t=1Eτi [l

2
it01(θ,αi;τi)]. By definition

Eτi [lit01(θ,αi;τi)] = Eτi [�it01(θ,αi)−Eτi [�it01(θ,αi)]] = 0,

which implies

Eτi [l
2
i01(θ,αi;τi)] = 1

T

T∑
t=1

Eτi [l
2
it01(θ,αi;τi)]

= 1

T

T∑
t=1

(Eτi [�
2
it01(θ,αi)]−Eτi [�it01(θ,αi)]

2).

To show, for example, that supβi∈B supθ∈� ∂4
φi
Eτi [l

2
i01(θ,αi;τi)] = Op(1), we need to

compute

∂4
φi
Eτi [�

2
it01(θ,αi)]=Eτi [�

2
it01(θ,αi)�it04(γ,φi)]+4Eτi [�

2
it01(θ,αi)�it03(γ,φi)�it01(γ,φi)]

+6Eτi [�
2
it01(θ,αi)�it02(γ,φi)�

2
it01(γ,φi)]+Eτi [�

2
it01(θ,αi)�

4
it01(γ,φi)]
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and

∂4
φi
Eτi [�it01(θ,αi)]

2

=6Eτi [�it01(θ,αi)�it01(γ,φi)]
(
Eτi [�it01(θ,αi)�it02(γ,φi)]+Eτi [�it01(θ,αi)�

2
it01(γ,φi)]

)
+2Eτi [�it01(θ,αi)](Eτi [�it01(θ,αi)�it03(γ,φi)]+3Eτi [�it01(θ,αi)�it02(γ,φi)�it01(γ,φi)]

+Eτi [�it01(θ,αi)�
3
it01(γ,φi)]).

Analogous to previous arguments, using the Cauchy–Schwarz inequality and Assumption
4.3(i), we can show that

1

T

T∑
t=1

|∂4
φi
Eτi [�

2
it01(θ,αi)]| = Op(1)

and

1

T

T∑
t=1

|∂4
φi
Eτi [�it01(θ,αi)]

2| = Op(1).

This implies

1

T

T∑
t=1

sup
βi∈ϒ

sup
θ∈�

|∂4
φi
Eτi [l

2
it01(θ,αi)]| = Op(1),

which shows that

sup
βi∈ϒ

sup
θ∈�

|∂4
φi
Eτi [l

2
i01(θ,αi;τi)]| = Op(1).

The proof for derivatives with respect to components of γ and for the remaining mixed
derivatives can be carried out analogously. �

SUPPLEMENTARY MATERIAL
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