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A Result in Surgery Theory

Alberto Cavicchioli and Fulvia Spaggiari

Abstract. We study the topological 4-dimensional surgery problem for a closed connected orientable

topological 4-manifold X with vanishing second homotopy and π1(X) ∼= A ∗ F(r), where A has one

end and F(r) is the free group of rank r ≥ 1. Our result is related to a theorem of Krushkal and Lee,

and depends on the validity of the Novikov conjecture for such fundamental groups.

1 Introduction

The 4-dimensional topological surgery conjecture has been established for a large

class of groups which includes the groups of subexponential growth [12, 20]. How-

ever, the general case remains open. The proof of the conjecture for “good” funda-
mental groups is based on the existence of Whitney discs [11], which is not actually

known to hold for arbitrary groups. However, in certain cases it may be shown that

surgery works even when the disc embedding theorem is not available (see [4,13,17]).
Here we state another instance when the topological surgery conjecture holds. The

result will be proved by use of controlled surgery theory.

Theorem 1 Let X4 be a closed connected orientable topological 4-manifold with

π1(X) = A ∗ F(r) and π2(X) = 0, where F(r), r ≥ 1, denotes the free group of rank r,

and A has one-end. Suppose that the assembly map A : H4(A; L) → L4(A) is injective.

Let f : M → X be a degree one normal map, where M is a closed 4-manifold. Then

the vanishing of the Wall obstruction implies that f is normally bordant to a homotopy

equivalence f ′ : M ′ → X. In other words, the surgery sequence

S(X) −→ [X, G/ TOP] −→ L4(π1(X))

is exact.

To explain the assumptions in the theorem, we recall the definition of ends for

finitely generated groups (see [15, p. 9], and [18, p. 16]). Such a group G has 0, 1,
2 or infinitely many ends. It has zero ends if and only if it is finite, in which case

H0(G; Z[G]) ∼= Z and Hq(G; Z[G]) = 0 for q > 0. Otherwise, H0(G; Z[G]) = 0 and

H1(G; Z[G]) is a free abelian group of rank e(G) − 1, where e(G) is the number of

Received by the editors April 26, 2006; revised December 4, 2006.
Work performed under the auspices of the GNSAGA of the CNR (National Research Council) of Italy

and partially supported by the MIUR (Ministero dell’ Istruzione, dell’ Università e della Ricerca) within
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ends of G. The group G has more than one end if and only if it is either a nontrivial
generalized free product with amalgamation G ∼= A ∗C B or an HNN (Higman–

Neumann–Neumann) extension G ∼= A ∗C φ, where C is a finite group. In particular,
it has two ends if and only if it is virtually Z (that is, it has a subgroup of finite

index in Z) if and only if it has a (maximal) finite normal subgroup F such that the

quotient G/F is either Z or Z2 ∗ Z2. Some classes of one-ended groups are described
in [16, pp. 9–11].

Examples of 4-manifolds satisfying the homotopy conditions of the theorem are

given in Section 4 (see also [6] for the topology of 4-manifolds with vanishing sec-
ond homotopy). Examples of groups for which the assembly map is injective (that

is, for which the integral Novikov conjecture holds) can be found in the survey pa-
pers [10, 26] and their references. As a related topic, we refer to [3, 5, 17, 22] for

the classification of the homotopy type and the s-cobordism class of closed topolog-

ical 4-manifolds whose fundamental group is either a nonabelian free group or that
of a closed aspherical surface. Further results on surgery theory for compact four-

manifolds with special fundamental groups are found in [14, 16, 18, 29, 30].

2 Proof of Theorem 1

First we briefly recall some standard concepts from controlled surgery theory. Let L

denote the 4-periodic simply connected surgery spectrum (see [24] for a geometric

definition, and [25] for an algebraic definition). For a topological space B we have
the L-homology, denoted by H∗(B; L). There is a well-defined assembly map

A : Hi(B; L)→ Li(π1(B)),

where Li(π1(B)) denotes the i-th Wall group of obstructions to simple homotopy

equivalences [31]. Let p : X → B be a control map, where B is a finite-dimensional
compact metric ANR. Then p is called a UV 1(δ)-map, δ > 0, if every commutative

diagram

K0

α0

//

j

��

X

p

��

K
α

// B

where K is a 2-complex, K0 ⊂ K is a subcomplex and j is the inclusion map, can be

completed by a map ᾱ : K → X such that ᾱ ◦ j = α0 and d(p ◦ ᾱ(x), α(x)) < δ
for every x ∈ K . Here d : B × B → R denotes a metric on B. The map p is called a

UV 1-map if it is a UV 1(δ)-map for every δ > 0. If p : X → B is a sufficiently small

controlled Poincaré complex, then there exists the controlled surgery exact sequence

Sǫ,δ(X) −→ [X, G/ TOP] −→ H4(B; L)

where Sǫ,δ is the controlled structure set (for details see [9, 23]). From the main the-

orem (assuming its hypothesis) of controlled surgery theory (see the quoted papers)
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510 A. Cavicchioli and F. Spaggiari

we have a commutative diagram

Sǫ,δ(X) //

��

[X, G/ TOP] // H4(B; L)

A

��

S(X) // [X, G/ TOP] // L4(π1(B)).

In order to solve the topological 4-dimensional surgery problem for X, one needs

a control map p : X → B such that p is a UV 1-map and the assembly map A is

injective.

Now let X be as in Theorem 1. Let Y be the closed 4-manifold obtained from X by

killing the generators of the free part F(r) of π1(X). Then it was proved in [6] that Y

is aspherical, i.e., Y ≃ K(A, 1), and that X is homotopy equivalent to the connected

sum W of Y with r copies of S1 × S3. An alternative proof of this claim will also be

given in Section 3. A homotopy equivalence from X to W = Y #r(S1 × S3) induces
an isomorphism of the ordinary short exact surgery sequences. So we can transform

a surgery problem for X to a surgery problem for W . We consider the following

composite map p = p2 ◦ p1 : W → B = Y ∨ (∨rS1) where

p1 : W = Y #r(S
1 × S

3)→ Y ∨ (∨rS
1 × S

3)

is the smash map, and p2 : Y ∨ (∨rS1 × S3) → B = Y ∨ (∨rS1) is induced by the
projections S1 × S3 → S1.

By [15, Lemma 3.3] the map p = p2 ◦ p1 is a UV 1-map.

Let us consider the Atiyah–Hirzebruch spectral sequence

E2
rs = Hr(B; πs(L))⇒ Hr+s(B; L),

where π1(B) = A ∗ F(r). Following [2], for any finitely generated group Γ, we write

Ln(Γ) ∼= L̃n(Γ)⊕ Ln(1),

where L̃n denotes the reduced surgery group. In particular, for finitely presented

2-torsion free groups Γi we have L̃4(Γ1∗Γ2) ∼= L̃4(Γ1)⊕ L̃4(Γ2) (see [2, Theorem 5]).

We shall prove in the next section (see Lemma 3) that A is the fundamental group of
a well-specified aspherical closed 4-manifold Y . Then A is a PD4-group (Poincaré

duality group; see [18, p. 20] for the definition). So A has finite cohomological di-
mension and is torsion free. Then, in our case, we obtain

L̃4(A ∗ F(r)) ∼= L̃4(A)⊕ L̃4(F(r)) ∼= L̃4(A),

hence L4(π1(B)) = L4(A ∗ F(r)) ∼= L4(A). In fact, the isomorphisms

Z ∼= L4(F(r)) ∼= L̃4(F(r))⊕ L4(1) ∼= L̃4(F(r))⊕ Z
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imply that L̃4(F(r)) ∼= 0. Recall that

πs(L) ∼=






0 if s is odd,

Z2 if s ≡ 2 (mod 4),

Z if s ≡ 0 (mod 4).

Since E2
r s = Hr(B; πs(L)) ∼= Hr(Y ; πs(L)) ∼= Hr(A; πs(L)) for every r > 1, the spectral

sequence of B collapses to that of A. This gives H4(B; L) ∼= H4(A; L).

In fact, we have

H4(B; L) ∼= H4(B; π0(L))⊕H3(B; π1(L))⊕H2(B; π2(L))

⊕H1(B; π3(L))⊕H0(B; π4(L))

∼= H4(B; Z)⊕H2(B; Z2)⊕H0(B; Z) ∼= H4(Y ; Z)⊕H2(Y ; Z2)⊕H0(Y ; Z)

∼= H4(A; L).

Since A : H4(A; L) → L4(A) is injective by hypothesis, H4(B; L) ∼= H4(A; L) and

L4(π1(B)) ∼= L4(A), the assembly map A : H4(B; L) → L4(π1(B)) is injective, too.

This proves the theorem.

3 Homotopy Type

Let X denote a closed connected orientable topological 4-manifold such that π =

A ∗ F(r), r ≥ 1, and π2 = 0, where A has one end. Let Y be the closed 4-manifold

obtained from X by killing the generators of the free part F(r) of π. This section is
devoted to study the homotopy type of X. For a general reference on the homotopy

type and obstruction theory see for example [1].

Theorem 2 With the above notation, the manifold X is homotopy equivalent to W =

Y #r(S1 × S3).

Here we shall prove Theorem 2 under the additional algebraic condition that the
second rational homology group of X is not trivial (For the remaining case we refer

to [6]). To construct a homotopy equivalence between X and W = Y #r(S1 × S3) we

shall use [14, Theorem 1.1(2), Lemma 1.3]. First we need some lemmas.

Lemma 3 With the above notation, π2(Y ) ∼= 0. Since π1(Y ) ∼= A has one-end, the

manifold Y is aspherical, that is, Y ≃ K(A, 1).

Proof It suffices to prove the result for r = 1 (one can obtain the general case by

simple iteration). We have to prove by induction that the condition π2 = 0 continues

to hold.

(i) First of all, after the surgery the fundamental group of Y is isomorphic to A.
This follows from the fact that when we do surgery on a loop γ, we kill the normal

closure generated by [γ]. In the present case [γ] is the generator of Z in π = A ∗ Z

and the quotient modulo the normal closure 〈[γ]〉 ∼= 〈Z〉 is A.
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(ii) From (i) π1(Y ) ∼= A and the Hurewicz theorem, the second homotopy group
of Y is the same as the second homology group H2(YA), where YA is the universal

covering space of Y , or in other words the regular A-fold covering. In fact, we have
π2(Y ) ∼= π2(YA) ∼= H2(YA) as YA is simply connected.

(iii) Let XA denote the covering space of X associated to the normal subgroup

〈[γ]〉 ∼= 〈Z〉 in (i). Then XA is a regular covering space of X with A as its covering
transformation group, hence π1(XA) ∼= 〈Z〉. Now YA can be obtained from XA by

doing equivariant surgery on the lifting A·γ of γ in XA. Our problem is to understand

the effect of these surgeries on XA.
(iv) Now we have to do a little group theory. From the covering space theory, we

know that the fundamental group of XA is the normal subgroup 〈[γ]〉 ∼= 〈Z〉. In fact,
we claim that this normal subgroup is the free product Z ∗ (aZa−1) ∗ · · · , where Z is

the subgroup Z in π = A ∗ Z, aZa−1 is the conjugation of Z by a, and a goes through

all the nonzero elements in A. To see this, we can use the model of K(A ∗ Z, 1) given
by the wedge of K(A, 1) and a circle S1. The regular A-fold covering is the wedge of

the contractible space E(A, 1) and a family of circles, one for each element a ∈ A.

From Van Kampen’s theorem, the above assertion is immediate.
(v) From the free product description of π1(XA) ∼= 〈Z〉, it follows that its first

homology group H1(XA) ∼= Z[A] is the free Z[A]-module of rank one. From
surgery theory, the equivariant surgery in (iii) kills this free Z[A]-summand but

leaves H2(XA) unchanged, that is, H2(XA) ∼= H2(YA) ∼= π2(Y ).

(vi) Finally, H2(XA) ∼= 0 because by Hopf ’s theorem there is an exact sequence

π2(XA) −→ H2(XA) −→ H2(π1(XA)) −→ 0.

Here π2(XA) ∼= π2(X) ∼= 0 by assumption. Since π1(XA) is free, it follows that
H2(π1(XA)) ∼= 0. Thus we have H2(XA) ∼= π2(Y ) ∼= 0. Since A has one end, it

follows that π3(Ỹ ) ∼= 0, where Ỹ is the universal cover of Y . In fact, we have the

isomorphisms

π3(Ỹ ) ∼= H3(Ỹ ) ∼= H3(Y ; Z[A]) ∼= H
1
(Y ; Z[A]) ∼= H

1
(A; Z[A]) ∼= 0.

Furthermore, H4(Ỹ ) ∼= 0 because A is infinite. Thus Ỹ is contractible, and we get

Y ≃ K(A, 1).

Lemma 4 The classifying map cX : X → B = Y ∨ (∨rS1) induces an isomorphism

H4(X)→ H4(B) ∼= H4(Y ) ∼= H4(A). In particular, we have (cX)∗[X] = [Y ].

Proof First we examine the case r = 1. For a group G, let us define E(G) =

H
1
(G; Z[G]), so E(π) = H

1
(π; Λ) ∼= H3(X̃), where Λ = Z[π] as usual. We prove that

the classifying map cX : X → K(π, 1) = K(A, 1) ∨ S1 ≃ Y ∨ S1 induces an isomor-

phism H4(X)→ H4(Y ). Of course, cX is 3-connected. Then it induces isomorphisms
on Hi and Hi for i ≤ 2, a monomorphism on H3, and an epimorphism on H3. Fur-

ther, the Betti numbers satisfy relations β3(X) = β1(X) = β1(Y ) + 1 = β3(Y ) + 1.
The spectral sequence Hp(π; Hq(X̃))⇒ Hp+q(X) gives

0 −→ H5(π) −→ H1(π; E(π)) −→ H4(X) −→ H4(π)

−→ H0(π; E(π)) −→ H3(X) −→ H3(π) −→ 0.
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Since K(A, 1) ≃ Y , we have H5(π) ∼= 0, H4(π) ∼= Z and H3(π) ∼= H1(Y ) ∼= H1(A).
Further, the epimorphism H3(X)→ H3(π) ∼= H1(A) has kernel Z because

H3(X) ∼= H1(X) ∼= H1(Y ∨ S
1) ∼= H1(A)⊕ Z.

So the above sequence becomes

(3.1) 0 −→ H1(π; E(π)) −→ Z
deg(cX)
−−−−→ Z −→ H0(π; E(π)) −→ Z −→ 0.

For π = A ∗ Z the Chiswell MV sequence (see [7, Theorem 2, p. 70]) gives

0 −→ Λ −→ E(π) −→ H1(A; Λ)⊕H1(Z; Λ) −→ 0

or, equivalently,

0 −→ Λ −→ E(π) −→ (E(A)⊗Z Z[A\π])⊕ (E(Z)⊗Z Z[Z\π]) −→ 0,

hence

(3.2) 0 −→ Λ −→ E(π) −→ Z[Z\π] ∼= H1(Z; Λ) −→ 0

as E(A) ∼= 0 (recall that A has one end) and E(Z) ∼= Z.

Applying the functor H∗(π; − ) to sequence (3.2) yields

H1(π; Λ) −→ H1(π; E(π)) −→ H1(π; Z[Z\π]) −→ H0(π; Λ)

−→ H0(π; E(π)) −→ H0(π; Z[Z\π]) −→ 0.

Since we have H1(π; Λ) ∼= H1(X; Λ) ∼= H1(X̃) ∼= 0, H0(π; Λ) ∼= H0(X̃) ∼= Z and
Hi(π; Z[Z\π]) ∼= Z for i = 0, 1, the last exact sequence becomes

(3.3) 0 −→ H1(π; E(π)) −→ Z
δ
−→ Z −→ H0(π; E(π)) −→ Z −→ 0.

One can see that (3.1) and (3.3) are isomorphic. Thus deg(cX) = ±1 if and only if δ
is an isomorphism.

For the connected sum W = Y #(S1 × S3), the spectral sequence

Hp(π; Hq(W̃ ))⇒ Hp+q(W )

gives

0 −→ H1(π; E(π)) −→ H4(W ) −→ H4(π) −→ H0(π; E(π))

−→ H3(W ) −→ H3(π) −→ 0.

Since the collapsing map from W on Y is of degree one, it induces an isomorphism

H4(W )→ H4(Y ) ∼= H4(π). This implies that

H1(π; E(π)) ∼= 0 and H0(π; E(π)) ∼= Ker(H3(W )→ H3(π)) ∼= Z.
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Thus δ is an isomorphism in (3.3), and so deg(cX) = ±1. Then the classifying map
cX : X → Y ∨ S1 is of degree one. This proves the statement for r = 1.

Let now consider W = Y #r(S1 × S3) for r > 1, and the spectral exact sequence

0→ H1(π; E(π))→ H4(W )→ H4(π) ∼= H4(Y )→ H0(π; E(π))→ H3(W )

∼= H3(Y )⊕ Z
r → H3(π) ∼= H3(Y )→ 0.

Of course, the collapsing map W → Y is of degree one, hence

H4(W ) ∼= H4(π) ∼= H4(Y ).

So we get H1(π; E(π)) ∼= 0 and H0(π; E(π)) ∼= Ker(H3(W )→ H3(π)) ∼= Zr.
For a closed 4-manifold X such that π = π1(X) = A ∗ F(r), π2(X) = 0, and

E(π) = H
1
(π; Λ) ∼= H3(W̃ ) ∼= H3(X̃), there is a similar exact sequence

0 −→ H1(π; E(π)) −→ H4(X) ∼= Z
deg(cX)
−−−−→ H4(π)

∼= Z −→ H0(π; E(π)) −→ Z
r −→ 0.

By the above, this sequence becomes

0 −→ H4(X) ∼= Z
deg(cX )
−−−−→ H4(π) ∼= Z −→ Z

r →
∼=

Z
r −→ 0,

so we obtain again deg(cX) = ±1. Thus the classifying map

cX : X → K(π, 1) ≃ Y ∨ (∨rS
1)

has degree one, as claimed.

Remark. There is an isomorphism TorΛ

1 (Λ/(z − 1)Λ, Z)→ Z, where Λ = Z[π] and

z is a generator of the free factor of π. Applying the functor ⊗ΛZ to sequence (3.2)

yields

0 −→ TorΛ

1 (E(π), Z) −→ TorΛ

1 (H1(Z; Λ), Z) −→ TorΛ

1 (Λ, Z)

∼= Z −→ E(π)⊗Λ Z −→ H1(Z; Λ)⊗Λ Z −→ Λ⊗Λ Z ∼= 0.

The module H1(Z; Λ) has the presentation

0 −→ Λ
(z−1)×
−−−−→ Λ −→ Λ/(z− 1)Λ ∼= H1(Z; Λ) −→ 0,

where Z = 〈z〉. Recalling that E(π) ∼= H3(X̃), the above sequence is isomorphic to
sequence (3.1) (and also (3.3)). In particular, deg(cX) = ±1 if and only if the map

TorΛ

1 (H1(Z; Λ), Z) ∼= TorΛ

1 (Λ/(z− 1)Λ, Z)→ Z

is an isomorphism. This shows that the Chiswell MV sequence in (3.2) cannot split

in general. Otherwise, the last map would be trivial. But, if β2(A) = β2(Y ) > 0, then

deg(cX) = ±1, so that map is an isomorphism.
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To construct a homotopy equivalence between X and W = Y #r(S1 × S3), we
now use [14, Theorem 1.1(2), Lemma 1.3] for π infinite and nonzero rational second

homology, i.e., H2(X; Q) 6= 0. The classifying maps

X
cX−→ B = Y ∨ (∨rS

1)
cW←−W

are 3-equivalences, since we have isomorphisms π1(X) ∼= π1(B) ∼= π1(W ) ∼= A∗F(r)

and π2(X) ∼= π2(B) ∼= π2(W ) ∼= 0. Furthermore, we have (see Lemma 4)

(cX)∗[X] = (cW )∗[W ].

Since π is infinite (and torsion free) and H2(X; Q) 6= 0, we can apply the following

lemma proved in [14] to obtain a degree one map h from X to W = Y #r(S1 × S3).
Then Theorem 2 follows from the Whitehead theorem.

Lemma 5 Let X1 and X2 be connected oriented 4-dimensional Poincaré spaces with

the same 2-stage Postnikov system B and with 3-equivalences fi : Xi → B, for i = 1, 2.

Let us assume that H2(Xi ; Q) 6= 0 for i = 1, 2, and that π ∼= π1(Xi) is infinite. Then

there exists an orientation preserving homotopy equivalence h : X1 → X2 such that the

diagram

X1

h
//

f1

��

X2

f2

��

B B

commutes, up to homotopy, if and only if f1∗[X1] = f2∗[X2]. Here [Xi] ∈ H4(Xi ; Z)
denotes the fundamental class of Xi , as usual.

4 Examples

In this section we give examples of closed orientable 4-manifolds X which satisfy

the homotopy conditions of our theorem. First, note that connected sums of closed
4-manifolds with π2 = 0 again have π2 = 0. So it suffices to consider closed

orientable 4-manifolds M with π = π1(M) one-ended and π2(M) = 0. Since
π3(M) ∼= H1(π; Z[π]) ∼= 0 and π is infinite, such manifolds are aspherical. Then π is

a PD4-group and so it is torsion free. Now taking connected sums of these aspherical

4-manifolds with copies of S1×S3 gives examples of manifolds X as requested above.

Knot manifolds A 2-knot is a locally flat embedding K : S2 → S4. Let M(K) de-

note the closed 4-manifold obtained from S4 by surgery on K . Then M(K) is ori-
entable, has Euler characteristic zero, and πK = π1(M(K)) has weight 1 (i.e., it is the

normal closure of a single element) and infinite cyclic abelianization. Suppose that
πK is an elementary amenable group, that is, a group which belongs to the class of

groups generated from the class of finite groups and Z by the operations of extension

and increasing union. Then M(K) is aspherical if and only if πK has one end and
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H2(πK ; Z[πK]) = 0 (see [16, p. 142]). If M(K) admits a geometry, then it fibres over
S1 (see [18, p. 334]).

Bundles S1-bundles over closed aspherical 3-manifolds and surface-bundles over

aspherical surfaces with aspherical fibers are examples of closed aspherical 4-mani-
folds. A lot of information about such manifolds can be found in [18, Ch. 4–5].

Further examples are given by 4-manifolds which are finitely covered by a manifold

simple homotopy equivalent to a surface-bundle over the torus (see [18, p. 95].

Mapping tori Let M be a closed orientable 4-manifold whose fundamental group
π = π1(M) is an extension of Z by a finitely generated normal subgroup ν. By

[18, Theorem 4.1, p. 70], if χ(M) = 0, then M is aspherical if and only if ν is infinite

and H2(π; Z[π]) = 0. In particular, π is one-ended and torsion free. As an example,
let M be the product of an aspherical orientable closed 3-manifold N with S1. Then

π = ν × Z, where ν = π1(N) is one-ended and torsion free. It is known that the

Whitehead group of ν vanishes. By [2, Corollary 15], (see also [31, p. 60] we have
isomorphisms L4(π) = L4(ν × Z) ∼= L4(ν) ⊕ L3(ν). Furthermore, H4(π; L) =

H4(N × S1; L) ∼= H4(N; L) ⊕ H3(N; L) = H4(ν; L) ⊕ H3(ν; L). It was proved in
[21, Theorem 2, Corollary 3] (see also [28, Corollary 1.3, p. 110]) that the integral

Novikov conjecture is true for aspherical 3-manifolds. Thus the assembly map from

Hn(ν; L) to Ln(ν) is a monomorphism, and A : H4(π; L) → L4(π) is injective, too.
Then the manifolds X = M#r(S1 × S3) satisfy all the conditions of our theorem and

are not covered by previously surgery results.

Fibred manifolds A closed connected 4-manifold is Seifert fibred if it is the total

space of an orbifold-bundle with general fibre a torus or Klein bottle over a 2-orbi-
fold. If the base orbifold is hyperbolic, then such 4-manifolds are aspherical (see

[18, Theorem 9.2, Corollary 9.2.1, pp. 181–182]). Many classes of aspherical Seifert

fibred 4-manifolds are described in [18, Ch. 9]. See also [18, §13.4, pp. 257–260] for
several classes of complex surfaces (i.e., compact connected nonsingular complex an-

alytic manifolds of complex dimension 2) which are aspherical Seifert fibred 4-mani-
folds.

Geometric manifolds The Davis hyperbolic manifold [8,27] is the simplest and most

well-known example of a closed connected orientable hyperbolic 4-manifold. It is

the orbit space of the unique torsion free normal subgroup of index 14400 of the
(5, 3, 3, 5) Coxeter simplex reflection group acting on the hyperbolic 4-space H4. By

[10, 26], fundamental groups of closed hyperbolic orientable manifolds satisfy the

integral Novikov conjecture. So taking the connected sums of such manifolds with
copies of S1 × S3 gives examples of X satisfying the conditions of our theorem and

which are not covered by previously known surgery results. Several results on as-
pherical geometric 4-manifolds can be found in [18, Part II]. In particular, a closed

4-manifold which admits a finite decomposition into geometric pieces is (essentially)

either geometric or aspherical (see [18, Theorem 7.1, p. 138]).
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[15] F. Hegenbarth and D. Repovš, Solving four-dimensional surgery problems using controlled surgery
theory.(Russian) Fundam. Prikl. Mat. 11(2005), no. 4, 221–236; translation in J. Math. Sci. (N. Y.)
144(2007), no. 5, 4516–4526.

[16] J. A. Hillman, The Algebraic Characterization of Geometric 4-Manifolds. London Math. Soc.
Lecture Note Series 198, Cambridge University Press, Cambridge, 1994.

[17] , Free products and 4-dimensional connected sums. Bull. London Math. Soc. 27(1995), no. 4,
387–391.

[18] J. A. Hillman, Four-manifolds, Geometries and Knots. Geometry and Topology Monographs 5,
Geometry & Topology Publications, Coventry, (2002),

[19] V. S. Krushkal and R. Lee, Surgery on closed 4-manifolds with free fundamental group. Math. Proc.
Cambridge Philos. Soc. 133(2002), no. 2, 305–310.

[20] V. S. Krushkal and F. Quinn, Subexponential groups in 4-manifold topology. Geom. Topol. 4(2000),
407–430.

[21] B. Jahren and S. Kwasik, Three-dimensional surgery theory, UNil-groups and the Borel conjecture.
Topology 42(2003), no. 6, 1353–1369.

[22] T. Matumoto and A. Katanaga, On 4-dimensional closed manifolds with free fundamental groups.
Hiroshima Math. J. 25(1995), no. 2, 367-370.

[23] E. K. Pedersen, F. Quinn, and A. Ranicki, Controlled surgery with trivial local fundamental groups.
In: High-dimensional Manifold Topology, World Science Press, River Edge, NJ, 2003, pp. 421–426.

[24] F. Quinn, A geometric formulation of surgery. In: Topology of Manifolds. Markham, Chicago, 1970,
pp. 500–511.

[25] A. Ranicki, Algebraic L-Theory and Topological Manifolds. Cambridge Tracts in Mathematics 102,
Cambridge University Press, Cambridge, 1992.

[26] , On the Novikov conjecture. In: Novikov Conjectures, Index Theorems and Rigidity.
London Math. Soc. Lecture Note Series 226, Cambridge University Press, Cambridge, 1995,
pp. 272–337

[27] J. G. Ratcliffe and S. T. Tschantz, On the Davis hyperbolic 4-manifold. Topology Appl. 111(2001),
no. 3, 327–342.

[28] S. K. Roushon, L-theory of 3-manifolds with nonvanishing first Betti number. Internat. Math. Res.
Notices 2000, no. 3, 107–113.

https://doi.org/10.4153/CMB-2008-051-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-051-x


518 A. Cavicchioli and F. Spaggiari

[29] F. Spaggiari, Four-manifolds with π1-free second homotopy. Manuscripta Math. 111(2003), no. 3,
303–320.

[30] F. Spaggiari, On the stable classification of Spin four-manifolds. Osaka J. Math. 40(2003), no. 4,
835–843.

[31] C. T. C. Wall, Surgery on Compact Manifolds. London Mathematical Society Monographs 1,
Academic Press, London, 1970.
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