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Abstract. Let P be a prime ideal of a ring R, O(P) ={a€ R|{aRs=0, for some
s € R\P} and O(P) = {x € R | x" € O(P), for some positive integer n}. Several authors have
obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a
commutative ring a minimal prime ideal has been characterized as a prime ideal P such that
P =O(P). In this paper we derive various conditions which ensure that a prime ideal
P = O(P). The property that P = O(P) is then used to obtain conditions which determine
when R/O(P) has a unigue minimal prime ideal. Various generalizations of O(P) and O(P)
are considered. Examples are provided to illustrate and delimit our results.

0. Introduction. Throughout this paper R denotes an associative ring not necessarily
with unity, P(R) its prime radical, N(R) its set of all nilpotent elements and N,(R) its nil
radical. R is called a 2-primal ring if P(R) =N(R). We refer to [4], [5], [6], [8], [9], [17], and [19]
for more details on 2-primal rings.

A proper ideal P of R is called completely prime (completely semiprime) if xy € P (x* € P)
implies x € Por y € P (x € P). Andrunakievic and Rjabuhin [1] and , independently, Stewart
[18] have shown that a reduced ring R (i.e., N(R)=0) is a subdirect product of integral
domains. Thus a proper ideal is completely semiprime if and only if it is an intersection of
completely prime ideals.

All prime ideals are taken to be proper ideals. Let X be a nonempty subset of R, then
<X >p, &(X) and r(X) denote the ideal of R generated by X, the left annihilator of X in R,
and the right annihilator of X in R, respectively. Let P be a prime ideal. The following defi-
nitions are fundamental to the remainder of our discussion:

Op=1{ae R|as=0, forsomese R\P} = UJGR\P s),
Op = {x € R| X" € Op, for some positive integer n},
Np={y e R|ys € P(R), for some s € R\ P},

O(P)={a€ R|aRs =0, forsomese R\P} =) .  &Rs),

SER\P
O(P) = {x € R| x" € O(P), for some positive integer n},
and
N(P)={y € R| yRs C P(R), for some s € R\P}.

Observe that O(P) € N(P) C P. Furthermore if P is a completely prime ideal, then
Op C Pand Np C P.

ExampLE 0.1. Let F be a field and
F F F F 0 F
R=<0 F), P]—(O 0), and P2_<O F)
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Then P, and P, are all the prime ideals of R and satisfy the following properties: (i)
Op, = [(5 \Oy) |x,ye F], which is not an ideal of R and Op, = P;; (ii) Op, = P, and
5132 = Py; (111) NPl =P and sz = Py; (lV) O(Pl) =0 and O(Pz) = Py; (V) 5(P|) =
P(R) # P; and O(P;) = P;; and (vi) N(P1) = Py and N(P,) = P,.

Various authors [10], [12], [13], [14], [17] and [20] have obtained sheaf representations of
rings whose stalks are of the form R/O(P). In Lemma 3.1 of [11] Kist characterized a mini-
mal prime ideal of a commutative ring R as a prime ideal P such that P = Op (our termi-
nology). It is clear that for a prime ideal P in a commutative ring, Op = O(P) and
O(P) = Op = N(P) = Np. Also observe that in a reduced ring, O(P) = Op = O(P) = Op =
N(P) = Np. Next Shin in Corollary 1.10 of [17] generalized Kist’s result by proving that in a
2-primal ring a prime ideal P is a minimal prime ideal if and only if P = N(P).

In this paper we provide examples (Examples 2.6 and 2.8) of 2-primal rings and minimal
prime ideals P such that Op # N(P) and O(P) # N(P). Since O(P)/O(P) is the set of all nil-
potent elements in the ring R/O(P), the condition that P = O(P) gives us important infor-
mation about the ring R/O(P). We derive various conditions for noncommutative rings
which allow us to characterize a minimal prime ideal P as one for which P = Op or P = O(P)
(Theorem 2.3). In particular, we show that the ring

Ay A - Ay

0 A4, - Ay
R = . . . .

0 0 - 4,

where each 4; is a ring with unity and A;; is a left A;-right 4;-bimodule for i < j, is a 2-primal
strongly m-regular ring if and only if each 4; is a 2-primal strongly n-regular ring (Theorem
2.9). Therefore we can see immediately that every n x r upper triangular matrix ring over a
2-primal strongly m-regular ring with unity is a 2-primal strongly n-regular ring. As a con-
sequence of this result and Theorem 2.8 of [6], we obtain that P = Op for every prime ideal P
in such rings. As we illustrated in Example 0.1, the conditions P = O(P) and P = Op are
distinct. Thus our results generalize Kist’s characterization and are distinct from Shin’s
results. Moreover we obtain conditions which ensure that P/O(P) is the unique minimal
prime ideal of R/O(P) (Theorem 3.3).

1. Preliminaries and basic results. We start with the following result.

ProposITION L.1. Let P be a prime ideal of R.

(1) O(P) = Y ser\p URs) = Sa € R| (aR) & PS.
(ii) N(R) € O(P) and if O(P) or Op is an ideal then it is a completely semiprime ideal.
(iii) If O(P) or Op is an ideal, then every minimal prime ideal belonging to O(P) or Op,
respectively, is completely prime.
(iv) N(R/O(P)) = O(P)/O(P). _
(v) O(P) € Op, (hence O(P) < Op), and N(P) C Np.
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Proof. Parts (ii) and (iv) are immediate consequences of definitions.

(i) Let x,y € O(P). There exist s;,s, € R\P such that xRs; =0 = yRs,. Then there
exists b € R such that s;bs; € R\P. Hence (x — y)R(s1bs2) = 0. So O(P) is an additive sub-
group of R. The remainder of this part of the proof is straightforward.

(i) This part follows from Proposition 1.6 of [4].

(v) Let x € O(P). There exists s € R\ P such that xRs = 0. In this case, there exists b € R
such that bs € R\ P, otherwise Rs € P so R*s C P, hence R C P, a contradiction. Now since
xbs = 0 with bs € R\P, it follows that x € Op. Similarly N(P) C Np.

We use Spec(R) and mSpec(R) to denote the set of prime ideals of R and the set of
minimal prime ideals of R, respectively.

PROPOSITION 1.2. Let R be a 2-primal ring. Then:
() Op S Np S P;
(i) O(P) € M(P) C P; _
(i) nPemSpec(R) o(p) = ﬂPeSpec(R) Op = N(R) = P(R).

Proof. (i) Let a € Op. Then there exists » € R\P and a positive integer n such that
a"b = 0 € N(R). Since N(R) is completely semiprime, ab € N(R). Then a € Np.

Now assume that ¢ € Np. Then there exists d € R\P and a positive integer m such that
(cd)™ = 0. There exists a minimal prime ideal Q of R such that Q € P. By Proposition 1.11 of
[17], Q is completely prime. Hence (cd)” = 0 € Q implies c € Q € P. Thus Np C P.

(ii) Let x € O(P). Then x"Rb = 0 € P(R) for some positive integer n and b € R\P. Since
P(R) is completely semiprime, xRb C P(R). Hence x € N(P). So O(P) € N(P). Clearly,
N(P) C P.

(iii) Using parts (i) and (ii), we have

N(R) < mPemSpeC(R) O(P) S ﬂl’emSpec(R) OP
S mPemSpec(R) P =P(R) = N(R).
Also
N(R) < mPeSpec(R) Or S ﬂPeSpec(R) P =P(R).

The following definitions are critical to our characterizations of minimal prime ideals.

DEFINITION 1.3. Let x, y € R and n a positive integer. We say R satisfies the

(1) (CZ1) condition if whenever (xy)" = 0 then x™y" = 0, for some positive integer m,
(it) (CZ2) condition if whenever (xy)" = 0 then X" Ry™ = 0, for some positive integer m.
Observe that any local ring with nil Jacobson radical satisfies condition (CZ2).

Using the following definitions, Shin [17} was able to generalize various sheaf repre-
sentations of Hofmann [10], Koh [12] and [13], and Lambek [14].

DerFiNiTION 1.4, (i) A ring R is called almost symmetric if it satisfies the following two
conditions:

(S1) r(x) is an ideal for each x € R;

(SI) for any a, b, ¢ € R, if a(bc)" = 0 for a positive integer n, then ab™¢™ = 0 for some
positive integer m.
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(i) A ring R is called pseudo symmetric if it satisfies the following two conditions:

(PSI) R/Iis 2-primal whenever / =0 or I = r(aR) for some a € R;

(PSII) for any a, b, ¢ € R, if aR(bc)" = 0 for a positive integer n, then a(RbR)"¢" = 0 for
some positive integer m.

Lambek [14] calls a ring R with unity symmetric provided abc = 0 implies acb = 0 for
any a,b,c € R. Note that commutative rings and reduced rings are symmetric. Let
S=Z+ Zi+ Zj+ Zk be the ring of integer quaternions and Z4 the ring of integers modulo
4. Then the ring S & Z4 is symmetric, but it is neither commutative nor reduced. Symmetric
rings are almost symmetric, but there is an example of an almost symmetric ring which is not
symmetric in Example 5.1(a) of [17]. By Proposition 1.6 of [17] almost symmetric rings are
pseudo symmetric. But there is a pseudo symmetric ring in Example 5.1(c) of [17] which is
not almost symmetric. Shin [17, pp. 44-45] observed that rings with the (SI) condition are 2-
primal and Op = O(P). In particular, almost symmetric rings are 2-primal and satisfy
Op = O(P).

LEMMA 1.5. (i) If R satisfies condition (PSI1), then R satisfies condition (CZ2).

(i) If R satisfies either condition (SI) or condition (CZ2), then R satisfies condition
(CZ1).

(i) If R has a unity and satisfies condition (CZ1), then every idempotent is central.

(iv) If R satisfies condition (S1), then conditions (CZ1) and (CZ2) are equivalent.

(v) If R satisfies condition (PSI1) and has a right unity, then R is a 2-primal ring.

Proof. Assume x, y € R such that (xy)" = 0.

(i) Then xR(xy)" = 0. Hence x(RxR)*y* = 0. So x™Ry™ = 0 for some m.

(ii) If R satisfies condition (SII), then x(xy)" =0 implies x"*'y" = 0. Therefore it
follows that x™*+!y"+! = 0. If R satisfies (CZ2), then ¥ Ry™ = 0. So x"*'y"+! = x(xy)y™
=0.

(iii) This part is a direct consequence of Lemma 2.3 in [6].

(iv) This part is straightforward.

(v) Let x € R with x" = 0. Then xR(xc)" = 0, where c is a right unity for R. Hence there
is an m such that x(RxR)" = 0. So x € P(R). Therefore R is a 2-primal ring.

DEFINITION 1.6. A ring R is called a permutation identity ring if for some n > 2, there
exists a permutation o # 1, on » symbols, such that x xy: X, = Xg1X,2* - Xan, for each
X1, X2,...,%X; € R.

Observe that commutative rings satisfy the permutation identity given by o = (12) (for
n =2). The permutation identity rings given by the permutation o = (23) (for n = 3), in
general, do not have unity but satisfy Lambek’s condition in {14] (ebc = 0 implies acbh = 0).
So these rings are almost symmetric. The ring of 4 x 4 strictly upper triangular matrices over
a ring with unity and not of characteristic two is a permutation identity ring (take o = (23)
for n = 4) but it does not satisfy condition (SI). Thus it is nor almost symmetric. However
our next result shows that every permutation identity ring is pseudo symmetric. Thus the
class of permutation identity rings provides a large class (see [3], [15], and [16] for numerous
examples and constructions) of pseudo symmetric rings.
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PROPOSITION 1.7. If R is a permutation identity ring, then R is pseudo symmetric.

Proof. The class of permutation identity rings is closed under homomorphic images, and
it is contained in the class of 2-primal rings by Corollary 2.10 of [3]. Hence a permutation
identity ring satisfies condition (PSI). Now let «, b, c € R such that aR(bc)" = 0 for some
positive integer n. From [3, p. 127] or [15], there exists a positive integer k£ such that uxyv =
uyxv for u,v e R* and x,y € R. Then for x;, ;€ R with i=1,...,k+n, it follows that
a([Ti xibyde™* = a([Te, xiby) ([T, xibyde'ck = a([Te, xiby) (T2 xivi) (be)'eF = 0.
Therefore a(RbR)"™ ¢+ =0, so R satisfies condition (PSII). Consequently, R is pseudo
symmetric.

In the following example, essentially Example 5.4(d) of [17], we form the Dorroh exten-
sion of a permutation identity ring to exhibit a 2-primal ring which does nor satisfy condition
(CZ1). By Lemma 1.5(i) and (ii) R satisfies neither condition (SII) nor (PSII). Hence the
Dorroh extension of a permutation identity ring is not pseudo symmetric.

ExAMPLE 1.8. Observe that if C is a commutative ring, then T is a permutation identity
ring with o = (12) (for n = 3), where

C C
T= ( c ¢ )
Also the Dorroh extension of a permutation identity ring is 2-primal by Corollary 2.10 of [3]
and Proposition 2.4(ii) of [4]. Now let Z, be the field of two elements and let R be the Dorroh

extension of the ring 202 %2) by the ring Z of integers (i.e., the ring with unity formed
from %2 202 x Z with componentwise addition and with multiplication given by
(x, k)(y, m) = (xy + mx + ky, km)). Then (<(1) 8 , 1) is a noncentral idempotent. By

Lemma 1.5(ii1), R does not satisfy condition (CZ1).
Observe that in general the set O(P) is not an ideal (e.g., any simple ring R with unity
such that N(R) # 0). However our next result provides a remedy for this behaviour.

PROPOSITION 1.9. If R satisfies condition (SI), then Op = O(P) and O(P) is an ideal for all
prime ideals P of R.

Proof. As noted above, Shin observed that Op = O(P) when R satisfies condition (SI)
[17, p. 45]. To show that O(P) is an ideal, let x, y € O(P). Then there exist positive integers
m, n and s, t € R\ P such that x"Rs = 0 = y"Rt. Observe that the condition (SI) is equivalent
to the condition: for any a, b € R, ab = 0 implies «Rb = 0 by Lemma 1.2 of [17]. Using this
equivalence, a routine argument shows that there is a positive integer k£ such that
(x— y)kRsbt = (), where b € R such that shr € R\ P. Again using the equivalence of the con-
dition (SI) with the above mentioned property, yields R[O(P)] € O(P) and [O(P)IR € O(P).

2. Minimal prime ideals. In this section we use the definitions and properties introduced
in Section | to obtain characterizations of a minimal prime ideal P in terms of Op and O(P).
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The following lemma provides some characteristics of the conditions P = O(P) or
P =0p.

LEMMA 2.1. Let P be a prime ideal of R.
(i) If P = O(P), then P = Op.
(ii) If P = Op, then P is completely prime and is minimal among completely prime ideals
of R. In particular, if P = Op for every minimal prime ideal P of R, then R is 2-primal.
(iii) If Op = P and R is a 2-primal ring, then P is a minimal prime ideal of R which is
completely prime.
(iv) P = O(P) if and only if P/O(P) = N(R/O(P)).

(v) If R/O(P) is 2-primal, then P = O(P) if and only if P/O(P) is the unigue minimal
prime ideal of R/O(P) (i.e., P/O(P) = P(R/O(P))).

Proof. (i) From Proposition 1.1(ii) and Proposition 1.6 of [4], P is completely prime.
Hence Op € P and so Op = P.

(ii) By Proposition 1.1(iii), P is completely prime. If Q is a completely prime ideal of R
such that Q C P, then Q C P=0p C 5Q C Q. The remainder of proof of this part follows
from Proposition 1.11 in [17].

(iii) If Q is a prime ideal such that Q C P, then P = Op C Og. By Proposition 1.2,
5Q C Q. Hence P = Q. So P is a minimal prime ideal. Hence it is completely prime by [15].

Part (iv) follows directly from the definition of O(P), and part (v) follows from part (iv)
and the definition of a 2-primal ring.

PROPOSITION 2.2. Let P be a prime ideal of R.
(i) If P is not left essential in R, then P = O(P). _
(ii) If P" is not left essential in R for some positive integer n, then P C O(P).

Proof. (1) Assume P is not left essential in R. Then there exists a nonzero left ideal L such
that PN L =0. Hence PL = 0. So P € O(P). Hence O(P) = P.
(ii) The proof of this part is similar to part (i).

In the following result (our main theorem) we provide weak commutativity type condi-
tions which allow us to characterize minimal prime ideals P of R in terms of Op and O(P).
This result generalizes Kist’s characterization of a minimal prime ideal in a commutative
ring. (See Lemma 3.1 of [11].)

THEOREM 2.3. Let R be a 2-primal ring and P a prime ideal of R.

(i) If R satisfies condition (CZ1), then P is a minimal prime ideal of R if and only if P = Op.

(i) If R satisfies condition (CZ2), then P is a minimal prime ideal of R if and only if
P = O(P).

Proof. Assume that P is a minimal prime ideal. Using the 2-primal condition we will
develop a property of P that allows us to use conditions (CZ1) and (CZ2). By [17] P is
completely prime and so S=R\P is multiplicatively closed. By Proposition 1.2(i), Op C P.
Assume that a € P. If a =0, then a € Op. Now suppose that a # 0. Let F be the multi-
plicative system generated by SU {a}. We assert that 0 € F. Assume to the contrary that
0 ¢ F. Partial order the collection of ideals disjoint with F by inclusion. By Zorn’s lemma, we
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get an ideal M which is maximal disjoint with F. Then M is a prime ideal and M is properly
contained in P, a contradiction. Hence 0 € F, so that

0=d"s; - a%sy,

where 5; € S and we may assume that the integers ny, iy, .. ., 1, are positive.

Since N(R) is completely semiprime, Lemma 7 of [5] yields a"s) ---s; € N(R), where
n=n+---+ng Let s =5 -5 Since P is completely prime, s € S and so 5™ € S for any
positive integer m. Again, since N(R) is completely semiprime, it follows that as € N(R) and
so there is n such that (as)" = 0.

(i) By condition (CZ1), there exists m such that ¢”s” = 0. Thus a € Op. Hence P = Op.
The converse follows from Lemma 2.1(iii).

(ii) By condition (CZ2), there exists m such that ¢"Rs™ = 0. Thus a € O(P). Hence
P = O(P). The converse follows from Lemma 2.1(iii) and Proposition 1.2(i), since P = O(P)
COpc P

From Proposition 2.2 in [4], subrings of 2-primal rings are 2-primal. Since the conditions
(CZ1) and (CZ2) are both inherited by subrings, we see that if a ring R satisfies the condi-
tions of Theorem 2.3 then so do its subrings. We note that Corollary 1.10 of [17] could be
used to show as € N(R) in the above proof. However this result relies on Theorem 1.8 of [17]
and Corollary 1.9 of [17]. We have included our proof which is direct and somewhat different
than Shin’s. The following corollary, which characterizes the 2-primal condition, is a direct
consequence of Theorem 2.3 and Lemma 2.1(ii).

COROLLARY 2.4. Let R be a ring which satisfies condition (CZ1). Then R is 2-primal if and
only if P = Op for every minimal prime ideal P of R.

Note that Example 1.8(i) illustrates Theorem 2.3(i) and Corollary 2.4, but it is not
pseudo symmetric.

In Theorem 2.3, the condition ““R is 2-primal” is not superfluous. The following example
shows that we cannot replace the condition “R is 2-primal” with the condition “N,(R) =
N(R)” (i.e., the nil radical equals the set of nilpotent elements). This condition was investi-
gated in [6].

ExAMPLE 2.5. Let G be an abelian group which is the direct sum of a countably infinite
number of infinite cyclic groups; and denote by {6(0), b(1), b(—1), - - -, b(i), b(—i), - - -} a basis
of G. Then there exists one and only one homomorphism u(i), for i=1, 2, - - - of G such that
u(i)(b(j)) = 0 if j = 0(mod 2°) and u(i)(b(j)) = b(j — 1) if j # 0(mod 2'). Denote U the ring of
endomorphisms of G generated by the endomorphisms u(l), u(2),---. Let A be the ring
obtained from U by adjoining the identity map of G. Then by [2] the ring 4 is a semiprime
ring with N,(4) = U. Now let Q be the field of rational numbers, and R = 4 ® Q, where Z
is the ring of integers. Then as was shown in Example 3.3 of [6], the ring R is semiprime, local
and N,(R) = N(R) = U ®z Q, which is the maximal ideal. Thus the ring R is not 2-primal.

Now let M = U ®z Q. Then it can be checked that (i) R satisfies condition (SII) (hence
(CZY)), (ii)M = Oy, (iii) M is not a minimal prime ideal because R is semiprime, and (iv)
P # Op for some minimal prime ideal P by Corollary 2.4. Thus in Theorem 2.3 we cannot
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replace the hypothesis “R is 2-primal” with the condition “N,(R) = N(R)”. Furthermore
since R is a local ring with nil Jacobson radical, then it satisfies condition (CZ2). However it
does not satisfy condition (PSII), by Lemma 1.5(v).

The following example shows that conditions (CZ1) and (CZ2) are not superfluous in
Theorem 2.3.

ExAMPLE 2.6. There is a 2-primal ring in which there is a minimal prime ideal P such
that Op # P (hence by Lemma 2.1(i), P # O(P)). Since Corollary 1.10 in [17] shows that
P = N(P), we have Op # N(P) and O(P) # N(P). Let 4 be a domain which is not right Ore.
So there are two nonzero elements @ and » in 4 such that a4 NbA4 = 0. Consider the fol-

lowing ring
A A
R= ( 0 4 )

Then since A is 2-primal, the ring R is also 2-primal by Proposition 2.5 of [4]. Next it can be
easily checked that the following ideal
4 A
P=(3 4)

_fa b
P=\0 o
is in P. But we claim that p ¢ Op. Assume to the contrary that p € Op. Then there is a posi-
tive integer » and an element ¢ € R\ P such that p"q = 0. Say

_[* B
q'(o V)
with ¢, 8, y € A. Then since g € R\P, it follows that y % 0. Now from
0. a’ au—lb o ﬁ _
’”’“(o o No )=0

it follows that a"8+ " 'by =0 and so af+ by =0. Thus af = b(—y) € adNbA =0. So
by = 0, but this is absurd because y # 0. Consequently p ¢ Op.

of R is a minimal prime ideal. Thus

Our next result indicates that our characterization of minimal prime ideals P in terms of
O(P) holds for a substantial class of noncommutative rings. For this result we need to recall
the following definition: Let T be a ring and M a (T, T)-bimodule. Then the split-null exten-
sion (or trivial extension) S(T, M) of M by T is the ring formed from the Cartesian product
T x M with componentwise addition and with multiplication given by (x, k)(y, m) = (xy,
xm +ky).

COROLLARY 2.7. If R satisfies any of the following conditions, then P = O(P) for every
minimal prime ideal P of R:
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(1) R is a local ring with P(R) equal to the Jacobson radical;
(ii) R has a right unity and satisfies condition (PSII);
(i) R is pseudo symmetric, in particular almost symmetric or a permutation identity ring;
(iv) R = (T Z), the Dorroh extension of a ring T by Z, where P(T) = T;
(v) R =8(T, M), where T is a 2-primal ring satisfying condition (CZ2).
Furthermore, if R is almost symmetric or satisfies a permutation identity, then P/O(P) is
the unique minimal prime ideal of R/ O(P) for every minimal prime ideal P of R.

Proof. (1) This part follows from the note after Definition 1.3 and Theorem 2.3(ii).

(ii) This part is a consequence of Lemma 1.5(i) and (v), and Theorem 2.3(ii).

(iii) Since condition (PSI) implies R is 2-primal, Lemma 1.5(i) and Theorem 2.3(ii) yield
this assertion. From Proposition 1.6 in [17], every almost symmetric ring is pseudo symmetric.
Proposition 1.6 shows that every permutation identity ring is pseudo symmetric.

(iv) This part follows from the fact that P(R) = (P(7); 0) = (T 0) is the unique prime
ideal of R and R/P(R) = Z.

(v) Since S(T, M) is isomorphic to a subring of the triangular matrix ring

(6 7)

Propositions 2.2 and 2.5(ii) of [4] show that R is 2-primal. A straightforward calculation
yields that if T has condition (CZ2) then so does S(T, M). Thus Theorem 2.3(i1) yields this
assertion.

Observe that if R is either almost symmetric or a permutation identity ring, then R/O(P)
is 2-primal for every prime ideal P of R. From Lemma 2.1(v), we have that P/O(P) is the
unique minimal prime ideal of R/O(P) for every minimal prime ideal P of R.

From Proposition 1.9 and Corollary 2.7, one might suspect that Op = P for every
minimal prime ideal P of a ring with condition (SI) or (PSI). But the following example
negates this possibility.

ExampLE 2.8. There is a ring with the condition (SI) (it satisfies the (PSI) condition by
Proposition 1.6 in [17] and is 2-primal by Theorem 1.5 of [17]) in which there is a minimal
prime ideal P such that Op # P. Assume that F{X, Y} is the free algebra over a field F gen-
erated by X and Y, and < YX > is the ideal of F{X, Y} generated by the element YX. Let
R=F{X,Y}/ < YX> Putx=X+ < YX>and y= Y+ < YX > in R. Then

R={fo(x)+/ix)y+ - +Lfi(x)"|n=0,1,2,..., and fix) € Fx]},

the polynomial ring such that yx = 0. Now let «, 8 € R such that «f = 0. Say o = fo(x)+
[y + - +fu(x)y" and B = go(x) + g1(X)y + -+ + gm(x)y™ with f,(x) # 0 and g,(x) # 0.
Case I. fy(x) =0. Then axf=foy(x)xB=10. From the fact that yg(x) =g(0)y for
g(x) € F[x], it can be checked that go(0) =g1(0) =+ = g,(0) =0. Thus ayf = a(go(0)+
gi1(0)y + -+ gm(0)y™)y = 0. Thus aRB = 0.
Case 2. go(x) = 0. Of course we may assume that fy(x) # 0. In this case, it also can be
checked that g1(x) = g2(x) = - - = gm(x) =0 and so 8 =0. Thus aRB = 0.
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From Cases | and 2, R satisfies the condition (SI) by Lemma 1.2(d) of [17]. Next the
ideal P =< x > of R generated by x is a prime ideal, since R/ < x >= F[y]. Furthermore,
assume that Q is a prime ideal of R such that Q € P. Since yx =0, yRx =0 by the (SI)
condition and so either y € Q or x € Q. But since Q € P =< x >, it follows that x € Q and
thus Q = P. Therefore P is a minimal prime ideal of R. But for any positive integer » and any
s € R\P, we have x"s # 0 and so x ¢ Op. Furthermore note O(P) =0, and <y > is also
another minimal prime ideal of R.

Theorem 2.3(1) shows that condition (CZ1) distinguishes a class of rings in which
P = Op, for every minimal prime ideal P. Our next result and corollary provide a large class
of rings which do not satisfy condition (CZ1), but they have the property that P = Op, for
every prime ideal P.

Recall a ring R is called strongly m-regular if for every x € R there exists a positive integer
n = n(x), depending on x, such that x" € x"*! R. Strong n-regularity is left-right symmetric.

THEOREM 2.9. Let

Ay Ap -0 A

0 Ay - Ay
R= . . . . )

0 0 - A,

where each A; is a ring with unity and Ay is a left A;-right A;-bimodule for i < j. Then R is a
2-primal strongly m-regular ring if and only if each A; is a 2-primal strongly n-regular ring.

Proof. Let M denote the strictly upper triangular submatrix of R. Assume R is a 2-primal
strongly m-regular ring. Then P(R) = M + Y_P(A4;) = N(R) = M + [ JN(4,). Consequently,
P(A4;) = N(A4;). Hence each 4; is a 2-primal ring. Observe there exists a set of orthogonal
idempotents {ey, ..., e,} such that 1 = ¢, + --- + ¢, and A4; = ¢;Re;. Define h; : R — ¢;Re; by
hi(x) = e;xe;. Then #; is a surjective ring homomorphism. Hence each 4; is strongly n-regular.

Conversely, assume each A; is a 2-primal strongly m-regular ring. Observe R/P(R) = @
A;i/P(4;). Since each A4;/P(4;) is reduced and strongly n-regular, then R/P(R) is reduced and
strongly n-regular. In particular, R is 2-primal and every prime factor ring of R is strongly n-
regular. By Theorem 2.1 of [7], R is strongly m-regular.

COROLLARY 2.10. If R satisfies any of the following conditions, then P = Op for every
prime ideal P of R:

(i) R is a 2-primal ring with unity which satisfies condition (CZ1), and every prime ideal of
R is a maximal ideal of R.

(i) R is the ring as in Theorem 2.9, where each A; is a 2-primal strongly m-regular ring
(e.g., R is the n x n upper triangular matrix ring over a 2-primal strongly m-regular ring with
unity).

Proof. (i) This part follows directly from Theorem 2.8 in [6].

(ii) Since a strongly n-regular ring is weakly m-regular, Lemma 2.2(2) in [6], Theorem 2.8
in [6], and Theorem 2.9 yield the assertion.
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Since, in general, idempotents are not central in the rings indicated in Corollary 2.10(ii),
these rings do not satisfy conditions (CZ1). (See Lemma 1.5(iii).)

3. Properties of R/O(P). In this section we use our previous results to investigate
R/O(P). We focus on conditions which guarantee that P/O(P) is the unigue minimal prime
ideal of R/O(P). Our first proposition shows that a minimal prime ideal P in a 2-primal ring
has an essential decomposition in terms of O(P) and P(R).

PROPOSITION 3.1. Let R be a 2-primal ring and P a prime ideal of R. Then:
(i) O(P)+P(R) S O(P) S Op C P.
(i) If P is a minimal prime ideal, then O(P) + P(R) is right essential in P.

Proof. (i) This follows from Proposition 1.2.

(i) Let 0 # x € P. Then there exists s € R\ P such that xs € N(R) = P(R) (see proof of
Theorem 2.3). If xRs = 0, then 0 # x € O(P) + P(R). If xRs # 0, then there exists € R such
that xrs # 0. Since P(R) is completely semiprime, Lemma 7 of [5] yields xrs € P(R). There-
fore O(P) + P(R) is right essential in P.

LemMa 3.2. Let P be a prime ideal. Then O(P/O(P)) € Op/O(P).

Proof. Let x + O(P) € O(P/O(P)). Then xRb C O(P) for some b € R\P. Thus bRb ¢ P.
So there exists r € R such that brb ¢ P. Hence xbrb € xRb C O(P). Then there exists s € R\P
such that xbrbRs = 0. Now since brb¢ P and s¢ P, brbRs € P. Take t € brbRs such that
t ¢ P. Then xt = 0 with r € R\P. So x € Op. Therefore x + O(P) € Op/O(P).

We say a right ideal X of R is properly right essential in a right ideal Y of R if X is right
essential in Y and X # Y.

THEOREM 3.3. Let P be a minimal prime ideal of R with O(P) = Op and R/O(P) a 2-primal
ring. Then exactly one of the following conditions holds:

(i) P = O(P) (i.e., P/O(P) is the unique minimal prime ideal of R/O(P)), or

(ii) 0 # P(R/O(P)) is properly right essential in P/O(P) and [P/O(P)]" is left essential in
R/O(P) for all positive integers n.

Proof. Since P(R/O(P)) # P/O(P) in condition (ii), then at most only one of the condi-
tions (i) or (ii) can hold. So assume P # O(P). Since R/O(P) is 2-primal, P(R/O(P)) =
O(P)/O(P). Observe that P/O(P) is a minimal prime ideal in R/O(P). By Proposition 1.11 of
[17], P/O(P) is completely prime. Hence P is completely prime in R. By Proposition 3.1(i)
and Lemma 3.2, we have that O(P/O(P))+ P(R/O(P)) C Op/O(P) = O(P)/O(P) =
P(R/O(P)). Now Proposition 3.1(ii) shows that P(R/O(P)) is right essential in P/O(P). From
Lemma 3.2, O(P/O(P)) € Op/O(P) = O(P)/O(P). Assume [P/O(P)]" is not left essential in
R for some positive integer n. From Proposition 2.2(ii), P/O(P) € O(P/O(P)). Hence
P/O(P) € O(P)/O(P). Since P is completely prime, O(P) € P, and so P/O(P) = O(P)/O(P).
Thus P = O(P), a contradiction.
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We leave open the following question: does there exist a right duo ring (i.e., every right
ideal is an ideal) which satisfies Theorem 3.3(ii) for some minimal prime ideal P? Observe
that if R is a right duo ring, then R satisfies condition (SI) (hence Op = O(P)) and R/O(P) is
right duo (hence 2-primal). Thus if R is right duo, then every minimal prime ideal satisfies the
hypothesis of Theorem 3.3.

LEMMA 3.4. Let P be a nonzero minimal prime ideal such that P(R) is right essential in P.
If Q is any prime ideal such that P # Q, then Q is right essential in R.

Proof. Let x € Q such that x € R\P. Let Y a right ideal of R which satisfies [P(R)+
<x>gl(1Y=0. Then Y <x>g=0¢ P yields Y € P. But P(R){}Y =0 implies ¥ =0.
Hence P(R)+ < x >y is right essential in R. Thus Q is right essential in R.

COROLLARY 3.5. Let P be a minimal prime ideal of R with O(P) = Op and R/O(P) a
2-primal ring. If Q/O(P) is a nonzero prime ideal of R/O(P) such that P # Q, then Q/O(P) is
right essential in R/O(P).

Proof. 1If P = O(P), then R/O(P) is a domain and we are finished. So assume P # O(P).
Then from Theorem 3.3, 0 # P(R/O(P)) is right essential in P/O(P). The result now follows
from Lemma 3.4.

PROPOSITION 3.6. Let R be a 2-primal ring with unity satisfying condition (CZ2). Then the
Sfollowing conditions are equivalent.
(i) Every prime ideal is maximal,
(i) Every prime ideal is a minimal prime ideal;
(ili) P = O(P), for each prime ideal P;
(iv) P/O(P) = P(R/O(P)), for each prime ideal P;
(v} R/P(R) is biregular;
(vi) R is weakly m-regular.

Furthermore, if R/ O(P) is 2-primal for every prime ideal P of R, then these are equivalent to

(vii) P/O(P) is the unique prime ideal of R/O(P), for each prime ideal P,
(viii) P/O(P) is the unique maximal ideal of R/O(P), for each prime ideal P,
(ix) P/N(P) is the unigue maximal ideal of R/N(P), for each prime ideal P.

Proof. ()= (ii). Since every prime ideal is maximal, then obviously every prime ideal is a
minimal prime ideal.

(ii)=(i). Obviously, if every prime ideal of R is a minimal prime ideal, then every prime
ideal is maximal.

(i)=>(iii). By Theorem 2.3(ii), P = O(P), for each prime ideal P.

(ii))=(i). Since R is 2-primal, P(R) = N(R) = N,(R), where N,(R) is the nil radical of R.
By Lemma 1.5(iii), every idempotent of R is central. By Lemma 2.1(i), P = Op for each
prime ideal P of R. Now Proposition 2.11(1) of [6] and Theorem 2.8 of [6] yield that every
prime ideal is maximal.

(iii)(iv). This equivalence is a consequence of Lemma 2.1(iv).

(i)e(v)e(vi). This equivalence is also a consequence of Theorem 2.8 in [6].
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(iii)=>(vii). By Lemma 2.1(v), P/O(P) is the unique minimal prime ideal of R/O(P). Since
(iii) is equivalent to (i), then P/O(P) is the unique maximal ideal of R/O(P).

(vii)=(viii). This implication follows from the fact that every maximal ideal of R/O(P) is
a prime ideal of R/O(P).

(viii)=(i). This implication is obvious.

(vi))=(ix). By Lemma 2.1(v) and Proposition 1.2(ii), P = O(P) = N(P). So it follows that
R/N(P) = (R/O(P))/(P/O(P)) which is a simple domain, since R/O(P) is 2-primal. Hence
P/N(P) is the unique maximal ideal of R/N(P).

(ix)=(i). This implication is obvious.

Observe that a ring R, which is either right duo with the (CZ2) condition or almost
symmetric, is 2-primal, satisfies condition (CZ2), and has R/O(P) a 2-primal ring for each
prime ideal P of R. Thus Proposition 3.6 is an extension of Shin’s Theorem 4.2 in [15].
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