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Abstract

Some non-trivial real, symmetric square roots of the infinite identity matrix are exhibited. These
may be found either from the use of involutory integral transforms and a set of real orthonormal
functions or by an algebraic factorisation procedure. The two approaches are shown to be equivalent.

Guinand (1956) has shown that square roots of the infinite identity matrix I
can be generated from a Fourier kernel using biorthogonal functions. In
particular, he gives an explicit expression for a family of asymmetric square roots
of I, an example which generalises an earlier result of Barrucand (1950).

In this paper we use Guinand's analytical method to develop families of
real, symmetric (and hence orthogonal) square roots of I, in the sequel referred
to simply as "symmetric roots". We show that all such roots can be generated by
this method, and that the method is equivalent .to an algebraic factorisation
procedure. Some examples and applications are also presented.

A number of texts on matrices give results on square roots of finite matrices
(see, for example, Perlis (1952) Theorem 9-15), and indeed there is a literature
on unilateral (polynomial) equations in a finite square matrix (MacDuffee (1946)
Chapter 8 gives a bibliography). Nevertheless, apart from the work of Guinand
noted above, scant attention seems to have been paid to square roots (or other
fractional powers) of the infinite identity matrix. In his book on infinite matrices,
Cooke (1950) mentions only some trivial examples as an exercise.

Square roots of I and orthogonal matrices, or rather the associated
transformations, have found application in connection with summation formulae
and the corresponding inversion formulae (see Guinand (1939) and Smith
(1972)).

1. Algebraic method

For any convenient set of non-vanishing constants {an; n g 0} and infinite
matrix K = {kmn; m, n g 0} we define formally the double generating function
FK(u,v) by

343

https://doi.org/10.1017/S1446788700014798 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014798


344 C. E. M. Pearce and R. B. Potts [2]

and the marginal generating function F*(z) by

F*(z)= *Zkmnanz".
n-0

If I admits of a symmetric root K, then

p=0

which in terms of our generating functions reads

Fl(u,v)=f,FZ(u)FZ(v).
p-0

Further, such a factorisation will provide a root of I if the matrix K generated by
{Fp(z);p sfl} is symmetric. We have also

p-0

from which trivial solutions

FK(v) = (-l)'(piapv
p, r(p) integral

are obvious, corresponding to the known roots

(1.1) kmn = ( - l)Hm'Smn, m,n^0.

Less trivial solutions are also immediate. Thus, taking an = 1, we have the
decomposition

F'(u, V) = (1 - uv)~x = s\\ - cu)~\\ - cv)
- c u l - c u

where c, s are subject to the constraints c2+ s2= 1. This relation is valid if

| u |, | v | < 1 and | c |, | s | S= 1. The decomposition suggests

F?(v) = s(c- vf(l -cv)-'-'.

Apart from a scale factor this is the generating function of certain discrete
orthogonal polynomials mn(p;l,c2) considered by Meixner (1941). See also
Erdelyi et al. (1953) Vol. 2, pp. 225-6. The expansion can take the forms
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[3] Symmetric square roots 345

kpn = s £ ( - l ) ' ( p _ r ) ! ( n I r ) ! r ! c
P + " 2'

( L 2 ) =scp+nmn{p;l,c2)/n\

displaying the desired symmetry between p and n. Thus (1.2) does indeed
constitute a symmetric and so orthogonal square root of I. For the kmn of (1.2)
the series 2Pfcpmfcpn does converge for all m ,ngO, justifying the original formal
relations. To keep clear the presentation of the underlying ideas we shall
generally avoid in the remainder of this paper both such post hoc justifications
and detailed prescriptions of domains of validity of relations stated.

Further essentially equivalent solutions arise (for a general symmetric root
K) if we replace kmn by ( - l)'(m)+r(n)fcmn, which provides the same pattern of sign
switches to each row and column of the matrix. K. In terms of the matrix D
defined by (1.1) K has become DTKD. Henceforth we exclude separate
consideration of such possibilities.

If in place of an = 1 we choose

(1.3) an = (r(a + n + l))m(n! T(a + 1))"1/2,

we obtain similarly a factorisation

y ( y
P p ( ) l-cuj \l-cv)

leading to a solution

kpn = s1+°cp+"[r(a +p + \)]m[p\n\T{a + n + l)]-mmn(p; 1 + a, c2)

(1.4) = s1+acp+T(p + n+a + l)[p\n\r(a +p + l )r(a + n + I)]""2

x 2 F , ( - p , - n; -p-n - a;c~2).

We deduce also that

(1.5) FK(u, v) = sl+°[l - c(u + v)+uv]-1-".

In view of the discussion of the following sections it is perhaps worth noting
that the factorisation method, while set up here to deal with symmetric roots, can
also be adapted to the context of asymmetric roots.
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2. Analytical method

Suppose that K(x, y) = K(y, x) is the symmetric kernel of an involutory
transformation, exhibited by

f(x)=JK(x,y)g(y)dy, g(y) = j K(x, y)/(x)dx,

and further that

are expansions of / and g in terms of a set of real orthonormal functions {<?„}.
Then, by a formal argument,

am = I f(x)(pm(x)dx

= jj<pm(x)K(x,y)g(y)dxdy

= 2 { | -P-,(x)K(x, y)<pn(y)dxdybn,

that is,

am = X kmnbn,

where

(2.1) kmn = j j<pm(x)K(x,y)<pn(y)dxdy.

In the same way the relation

K = £ knmam

follows so that the matrix K = (kmn) satisfies the relations

(2.2) K2 = /, KT = K.

This formal argument follows that of Guinand except that he considers the
special case when K(x, y) = K(xy) is a Fourier kernel and employs biorthogonal
functions {(pm(x)}, {t//m(x)}. The use of biorthogonal functions destroys the
symmetry property of the matrix K.

In particular, take as kernel the Bessel function /a[2(xy)^] so that the
involutory transformation is the Hankel transform. As a set of orthonormal
functions over (0, =<=) choose

(2.3)
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[5] Symmetric square roots 347

where the L° are the generalised Laguerre polynomials. Then by (2.1) the
elements ka

mn(t) of the matrix K"(t) can be expressed as double integrals by

K ' [r(a + m + l ) r ( a + n + l)J

f f x*' exp(-ltx)LZ(tx)J.[2(xyf\y*- exp(-lty)L"K(*y)dxdy.
Jo Jo

Following a transformation (tx)1'2 = u, 2(y/t)"2 = v, the integration on x can
be evaluated through the Hankel transform

f H ' ^ + 2 L : ( M 2 ) / . ( «
Jo

(Erdelyi et al. (1954), Vol. 2, 8.9(3)) to yield

m i n i 1 * ~i+ a,

The second integration may be found by use of the Laplace transform

\ e"y°L°n(\y)La
m(Ky)dy

Jo

_r(m+n + a + l)(s - A)"(s - K ) "

- \ -

(Erdelyi et al. (1954), Vol. 2, 4.11 (35)), as

x 2F,( - m, - n; - m - n - a; q~')

with

(2.6) p = 16f2(4+f2r2>0, q = l-p=(4-t2f(4+t2y2>0.

The symmetry of K°(0 is evident from equation (2.5) and its orthogonality
can be verified by appeal to the identity

(2.7) r(/ + n + a + 1)2F, ( - /, - n; - / - n - a ; q'1) = T(a + / + l)wn(/; 1 + a, q)

in the Meixner polynomials. Equation (2.4) can be regarded as an integral
expression for these polynomials.
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Equation (2.5) is, of course, simply the solution (1.4) with c = q^, s = pK
When a = 0, the matrix entries simplify for suitable choices of t. Thus for t = 1,
so that p = 16/25 and q = 9/25, the matrix takes the form

<!)*-

3. Correspondence between the methods

We now correlate our two approaches through the following constructive
principle:

Every symmetric root K corresponds formally to a Guinand scheme.

PROOF. For any complete orthonormal family {<]>„ ;m SO} on (0,°°), con-
sider the function

The symmetry of (fcmn) entails K(x, y) = K(y,x), that is, K(x, y) is symmetric.
From the orthonormality of the 4>m, we have immediately that K(JC, y) satisfies

Further, define

Jo Jo
<}>m(x)<l>n(y)K(x,y)dxdy.

Then

and so

mn = f
Jo

= o

for all m, from which we see that
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(3.1) 4>n(x)= f <f>n(y)K(x,y)dy.
Jo

We can readily deduce from K2 = I that also

(3.2) Mx)=l <S>n{y)K{x,y)dy.
JO

As an arbitrary analytic function can be expressed as a linear combination of the
<j>n (or the 4>n), it follows from (3.1) and (3.2) that K is a Fourier kernel,
completing the proof.

Consideration of the equation

</>m (x)[K(x, y)- H(x, y )]<fr, (y )dxdy = 0

gives easily that for a specific choice of orthonormal family the kernel in the
integral representation is unique. By virtue of the relations

the family {kmx; in = 0,1, • •} for x a non-negative integer is orthonormal and the
decomposition

J=0y-0

is always trivially available as a degenerate integral representation. The con-
struction makes it clear that the selection of kernel and orthonormal family in
the integral representation will not be unique. Fresh representations are often
available by simple change of variable — the introduction of t in equation (2.4)
can in particular be regarded as a change of variable. In the case a = — j in the
example above, let us make the transformations

From the relations

y=\z\

cosu

it quickly follows that

•[(2m)!(2n)!P TT

exp ( - \tw2)Helm (t*w)cos wz exp ( - \tz2)He2n (t*z)dwdz.
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Thus kmn/2(0 n o w utilises the Fourier cosine kernel (2/TT)'COSW and takes for
orthonormal functions

(3.3) «pm(r; w) = ( - ir[(2m)!]-'(2r/7ryexp(-|fw2)He2m(Pw).

A similar result arises for a = \ using the Fourier sine kernel and the odd
order Hermite polynomials.

Despite the completeness of the Guinand scheme, relatively few Fourier
kernels together with their associated orthonormal functions are known, and
many of the integrals of orthonormal functions are difficult to evaluate.
Sometines the derivation of square roots K through the factorisation procedure
involves quite simple algebra. Thus choosing an = (n\)~*, we find

F'(u, v) = exp(uv)

= exp[(c - u)(c - v) + c(u + v)- c2]

k2) exp (cu) Z§? e*P (~ k2) exp (ct;) ^C V= £ exp ( - k2) exp (cu) Z§? e*P (~ k2) exp (ct;) ,

for c arbitrary, suggesting

F^(v) can be recognised as a multiple of a generating function of the Charlier
polynomials (see Erdelyi et al. (1953), Vol. 2, p. 226) and leads to

kmn = exp(-k2)cm + n(m!n!r 'c(m;c2)
(3.4)

= exp ( - k2)cm+n(m\n\)'2Fo( - m, - n; - ; - c~2),

displaying an appropriate symmetry in m and n.
Equation (3.4) can also be obtained by a limiting process from (1.4) and the

identity

l i m b ~ " m n ( x ; b , a / b ) = c n ( x ; a )
b-

(reference as above). However, there is no obvious corresponding non-trivial
integral representation, the constructive theorem (with natural choice of or-
thonormal family) and the limiting form of equation (2.4) both giving the
degenerate representation, which is simply the standard orthogonality property
of the Charlier polynomials.

The practical inequivalence of the algebraic and analytical approaches can
be utilised as a source of unexpected but premeditated identities. For instance,
take (kmn) to be as in the basic Guinand scheme example of section two with
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[9] Symmetric square roots 351

kernel Ja(2(xyf) and orthonormal functions given by (2.3), but let us deviate
from the choice (1.3) of an selected in the algebraic approach and instead set

an =

Then

where /„ represents a modified Bessel function of the first kind. Also, on forming
double generating functions and evaluating the integrals, we find that

FK(u,v)=t( ( (uvp" exp(«
Jo Jo

x /„ (2(tyv)*) exp ( - \ty )dxdy

aF'oF.C- ; 1 + a; -

where p, q are given by (2.6). This leads to

+m + l) /m!] ' ,F,(- m; 1 + a;upq~i)

) q [ r ( a + m + l)]*L

Thus we have the identity

= i p u " exp[(u + v)q>]qmm\[r(l + a + m)]~> L
m-0

This striking decomposition manifesting symmetry between the two argu-
ment components of / is just the Hille-Hardy formula

= (1 - z ) - e x p [ - z(x + y)/(l - z)](xyz)-*"/„[2(jcyz)l/(l - z)]

is can be seen from the substitutions u = xz*l{\ — z), v = y^V(l - z), with z = q.
For discussion of the Hille-Hardy formula see Erdelyi et al. (1953), Vol. .3,
19.12(15), Hardy (1932) and Watson (1933b). The same method can be used to
provide other symmetric decompositions of Ia; thus, for the same orthonormal
ramily and a kernel Jv, v/ a, we derive a straightforward, though somewhat
:umbersome, extension of the Hille-Hardy expansion of the modified Bessel
'unction in terms of Laguerre functions.
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4. Generalised Hermite polynomials ;

In the previous section we noted for a = ±5 an alternative representation to
(2.4) in terms of Fourier sine (cosine) transforms. The representation employing
Hermite polynomials can be extended to hold for any a (with kernel w^Ja(w))ii
the Hermite polynomials are suitably generalised. Although the naturalness of a
generalisation is suggested by a number of results in the theory of special
functions, the authors have been unable to locate any version of one in the
literature. The following generalisation seems useful; for convenience, we refer
to the functions H" rather than functions He" and define for real x

Ha
2n(x) = 22"V(-n,a + l;x2)

H?n+1(x) = 22n+1x^( -n,a+ 2; x2)

where ¥ represents the confluent hypergeometric function. With these defini-
tions

Hn"
2(x)=Hn(x),

and H° is of proper degree and parity as indicated by its subscript. The
polynomials are orthonormal on (— °°, °°) for the weight function

\x \2"+'e-\

with orthonormalised forms

respectively for H"n{x) and H°n+i(x). In terms of the H", the entities kmn in the
example can for general a now be expressed in Guinand form through the
functions h° (or glT1) orthonormal on (0,°°).

The definitions lead to alternative expressions

(4.1) H2"n(x

(4.2) H2"B+l(x)

from which salient properties of -the H° can be derived via the properties of the
Laguerre polynomials. Thus the identities

L"n(y)=Li+»(y)-Lr+"(y)

yLlHy) = (n + « + \)Ll(y)- (n + 1)L:+I(y)

generate the recurrence relations

(4.3) HJn+1(x)
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and

whilst the differential equation for L°(y),

yL" + (a + \-y)L'+nL = 0

provides

(4.4) x (Ha
2n)"(x) + (2a + 1 - 2x2)(Ha

2n)'(x) + 4xnH2'n(x) = 0

and

(4.4') x(H2V,)"(*) + (2a + 1 - 2x2)(Ha
2n+i)'(x)

+ [(2n + l)2x - (2a + l)/x]HZn+l(x) = 0.

The divergence in form between (4.3), (4.4) and (4.3'), (4.4') for even and odd
subscripted Hn contrasts sharply with the behaviour of classical orthogonal
polynomials. Bochner (1929) has shown that the classical polynomials fn(x) are
completely characterised by satisfying differential equations of the form

A(x)y"+B(x)y'+Any =0,

where A and B are independent of n and An is independent of x. As the
generalised Hermite polynomials do not satisfy such relation, we see that despite
relations (4.1) and (4.2) we should not take them as being in any real sense
equivalent to a classical system. We note also that this entails the absence of a
Rodrigues' formula for the generalised Hermite polynomials, as Tricomi (1948)
has shown that possessing such a formula again completely characterises the
classical orthogonal polynomials.

5. More general solutions

Further symmetric roots K can be constructed by the use of different
Fourier kernels. The fullest reference to collections of Fourier transforms is
perhaps that given in Chapter 8 of Titchmarsh (1937), which notes in particular
the very general work of Fox (1929) and Kuttner (1934). Some subtle but simple
transforms have also been found by Guinand (1942), (1950).

Consider the Meijer G-function specified by

(5.1) C/2n2m(x)= Cj2n2m[

We have formally that the Mellin transform of a general Meijer G-function
a u • -,ap

b q ,• A ' 1 S
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f[r (bi + s)t\r(\-a,-s)

ft ra-b,-s) ft r(a, + s)
j = m + 1 / = n + 1

(for a discussion see Erdelyi et al. (1953)). Hence the Mellin transform M(s) of
the function given in (5.1) satisfies M(s)M(\ — s) = 1. By a result due to Watson
(1933a) and Hardy and Titchmarsh (1933), G is thus a Fourier kernel. This role
for the G -function does not appear to have been previously noted in the
literature, although the results are implicit in the work of Kuttner (1934).

With a double application of the relation

G', wt rpe-"" dt =
bt,--,bk I

and ap set equal to (V(a + p + 1))2(F(1 + a)p\)\ the double generating function
for the symmetric root K deriving from the orthonormal functions <pa

p(t;x)
given by (2.3) with this kernel is seen to be

«)]—"[ f exp[-\x(\ + u)
Jo Jo

'2y(l + v)/(\ - v)]y*°dxdy

or

(5.2) FK(u, v) = 2 2 + " ( r ( l 4- a))l[t(\ + u)(

r m n+2 (4(\ ~ U)(\ ~ v)

In the general case, the matrices generated by this procedure are of a very
complicated nature indeed. When n = 0, m = 1 and b, = \a, the kernel reduces
to

Go" (x

and the G-function in (5.2) is

-1«, - \a
I, - l a

= Gii

r ( l + a ) [4 r 2 ( l - u)(l - u)(l + u

,FO(1 + a ; - ; - 4 r 2 ( l - M)(1 - u)
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[13] Symmetric square roots 355

so that

FK(u, v) = (4f/(4 + f2))1+"[1 - ( 4 - 12)(4 + t2Y\u + v)+ M I ; ] " - ,

the solution already obtained as (1.5).

6. Eigenvalue problem

The possible eigenvalues of K satisfying (2.2) are 1 or - 1 with correspond-
ng eigenvectors related to self-reciprocal and skew-reciprocal functions
satisfying

/(*)= ±JK(x,y)f(y)dy.

For the matrix K"(t) arising from the Hankel transform and exhibited in
2.5), the solution of the eigenvalue problem proceeds as follows. It is evident
'rom (2.5) that in the limiting case q—*0 (or f —>2), kZn(t)—*(— l)"8mn giving a
iiagonal matrix D with elements 1 and — 1 alternating on the diagonal. The
imiting expression for the orthonormal functions given by (2.3) is

vhich for m even are self-reciprocal and m odd are skew-reciprocal functions of
he Hankel transform. In fact, neglect of an inconsequential multiplicative factor
;ives the identity

To derive the eigenvectors of Ka(t) we only need to specify the expansion

"he coefficients /"„ are the elements of an orthogonal matrix L"(t) which
liagonalises K"(t), and the columns of L"(t) are the required eigenvectors.

Explicit calculation gives the non-symmetric elements

f
= (-1)" , , r l r r ; T F T n ,_m !n!F(w + 1 + a)Y(n + 1 + a)

2Fi(— m, — n; — m — n — a; s

/ith
/ •

5.1)
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Comparison with (2.5) shows that the matrix L"(t) is simply

(6.2) L"(t) = K°((2tf)D

since replacing t by (2/)' transforms q given by (2.6) to s given by (6.1). The
diagonalising relation

L°(t)TK°(t)L"(t)=D

together with (6.2) leads to

(6.3) K" ((2t^)Ka (t)Ka ((2f)') = D,

that is, K"((2t)*) is also a diagonalising matrix for Ka(t). This identity,

K" (t)K"((2t$) = K" ((2^)D,

written in explicit component form, is a bilinear relation for hypergeometric
functions:

V / 2s \ T ( p + m + l + q) r (p + w + l + a )
p^oVl + s / p T ( p + l + a )

2F,(- p,- m\- p - m - a ; ( l + s)2 /(4s))-2F,(-p, - n ; - p - n - a ;x" ' )

= ( - 1)"(1 + s)m + I + a2-m(l - s ) " K T ( m + n + 1 + a ) •

2 F , ( - m, — n; — m — n — a\ s"1),

a particular example of the general bilinear relations derived by Meixner (1941).
We note for reference that the matrix L associated with the numerica

example ending section two has the form:

• -I ( ! ) ' • •

4)-4
©' -4VO «G)'-«G)"*'

with

l^m +. ̂ 2Ft(- m,- n;~ m - n;9).

In the case previously instanced of a Fourier cosine transform, a simila
analysis pivots on the functions <pm(f; w) given by (3.3) with t set equal to 2
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These functions are easily verified to be the parabolic cylinder functions,
well-known examples of self- and skew-reciprocal functions of the Fourier cosine
transform.

7. Discussion

The remarkable result (6.3), that the diagonalisation of K"(t) is effected by
the orthogonal matrix K"((2t)^), also follows from more general considerations:

We have trivially that if K is a square root of I, then so is an arbitrary
similarity transform S'KS. When both K and S are orthogonal, S'lKS will be
symmetric. Thus further symmetric roots can be constructed from a given one
/ia the orthogonality transform.

Suppose

7.1) kmn= j j K(x,y)<f>m(x)My)dxdy

exhibits an integral representation of a root in terms of an orthonormal family
<pm(x)} and that {ijjm(x)} is a complete orthonormal set of self- and skew-
eciprocal functions for the kernel K(x, y), for definiteness, say

<l>m(x) = (-iyt">JK(x,y)<l,rn(y)dy, r(m) integral.

;ubstitution from the last two relations in equation (7.1) gives

7.2) K = LDLT,

vhere L = (/„,„) and D = d iag( ( - l)r("°).
Writing <$> = (</>„,(x)), (A = (4>m(x)), we have also

o that the relations

[ cf>cpTdx =1 = j 4"i>Tdx

irovide

7.3) LLT = I.

Finally, set X = LD. Then from (7.2), (7.3) we have immediately

K = XDXT and XX7 = /.
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The matrix K thus derives from the "elementary" root D of / through an
orthogonality transform X. X must clearly contain all the free parameters
incorporated in K. Incidentally, any pair of orthonormal families 4>, 4> on (0, °°)
with <f> = Lip, say, obviously induce a symmetric root K through the matrix L
and any diagonal matrix diag((— l)r(m>).

To return to our specific example, let Ku K2 be matrices of form (2.5) with
characteristic parameters c, = q\'2, c2 = q\n and a common value for a. Then
choosing

an = (r(a + n

we have at once from the identity

^ r ( l + a + m + n)2F1(— m , — n ; — m — n — a ; c 2 ) z " / n !

= T(l + a + m )(1 - zc "2)m (1 - 2
that

FK
p(z) = s'+ac"(r(a +p + iy)Kp\r(a + 1))-*(1 - zc - ) p ( l - « ) - ' — "

and

F%K*(z) = ( - l)m(s,s2/(l - c,c2))1+°((c2- c,)/(l - c,c2))
m.

a + m )f(m !r(l + a))- '[l - z(l - c,c2)/(c2 - c,)]m

Since
( s I s 2 ) 2 + (c 2 - c , ) 2 = ( l - c 1 c 2 ) 2 ,

it follows that K,K2 is of the same form as K (with parameter c =
(c2 - Ci)/(1 - c,c2)) except for a minus sign attached to the entries in rows whose
labels gave odd parity. Hence a product K^K2K^ of three such matrices equals a
fourth such matrix K4 characterised by parameter

C4 = (C, - C2 + Ci - C,C2C3)/(1 - C,C2 - C2C, + Cid)

From the symmetry between indices 1 and 3 we have incidentally that

/v i K 2 JV 1 ^ JV3/C2lV|.

Setting c, = c3, c4 = 0, we see that K2 is diagonalised when c2 = 2ci/(l + c?),
that is, when f, = (2f2)', in our earlier notation, as before. The relation

KtK2 = K4K1

can again be expanded to yield bilinear relations derived by Meixner by complex
variable methods.
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The union of the set of all K and the set H of all products of pairs of such
elements constitutes a multiplicative group G. H is a normal subgroup of G and
the corresponding factor group consists of two elements. The evaluations of
third and higher order products of elements of G provide further identities in
the hypergeometric functions.

An exactly analogous argument holds for the matrices (3.4), starting from an
easy demonstration that the product KtK2 of two matrices with parameters cu c2

is another such matrix with parameter c2-c, except in that entries in rows of
odd parity carry a minus unity multiplier. The same result also follows from a
limiting argument.

Since the similarity transform of a root of / is also a root, we can furnish
asymmetric roots from a matrix S provided S"1 can be exhibited explicitly.
Guinand's discussion (1956), particularised to treat of square roots of /, exploits
the fact that the matrix

s =

las an explicit i

1

c,

c,c2/2!

c,c2c3/3!

nverse

1

- c,

c,c2/2!

- CiC2c3/3!

0

1

c2

c2c3/2!

0

1

- c2

c2c3/2!

0

0

1

c3

0

0

1

- c,

0

0

0

1

0

0

0

1

to provide for the discovery of a very general class of square roots

1 0 0 0

2c, - 1 0 0

K= 4c,c2/2! ( - l )2c 2 ( -1) 2 0

8c,c2c3/3! (-l)4c2c3/2! ( - l ) 22c3 ( -1 ) 3

from the basic root diag((— l)m).
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In the same way the matrices (2.5) are all transforms of diag((-l)m).
Indeed, we have seen that any symmetric root can be obtained from an
"elementary" diagonal root with the aid of an orthogonal matrix X. It is clear
from the argument of section one that finding such a matrix X is equivalent to
determing a factorisation

F'(u,v)=tlH
x(u)Hx(v),

p=0

where H is of the form

with the helpful difference from that section that the matrix X encapsulated in
the generating functions {H*(z), p § 0} is no longer required to be symmetric.

Straightforward solutions to this factorisation pTob\em aTe obtained if one
constructs orthogonal matrices from the five classical orthogonal polynomials in
a discrete variable y (see Erdelyi et al. (1953), volume 2). Of these, the
Tchebychev and Krawtchouk systems are non-zero only for a finite range of
values of y, and so give rise to roots K which are the direct sum of an
"elementary" root and a symmetric solution to the corresponding square root
problem for finite matrices. For any of the remaining Meixner, Charlier and
Hahn systems, let {<f>n(y)} represent the orthonormalised family. Then we have
at once an associated system of symmetric roots given by

fcmn = Z(-l)'<y)<My)<My), '(y) integral.
y

From our earlier discussion, these roots include ones already exhibited in
the cases of the Meixner and Charlier families when r (y )= y. No such result
holds for the Hahn family as the basic functions <\>m (x; /3, y, S) do not possess
symmetry between m and x.
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