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L? ESTIMATES FOR MULTILINEAR OPERATORS OF
STRONGLY SINGULAR INTEGRAL OPERATORS*!

JUNFENG LI anD SHANZHEN LU

Abstract. In this paper, the authors get the L? estimates for the commutators
generated by strongly singular integral operators and BMO functions and the
corresponding multilinear operators by the scale changing method introduced
by Carleson and Sjolin.

§1. Introduction

Let T be a linear operator, and b € BMO(R"). The commutator gen-
erated by T and b is defined by

[b, T1f (x) = b(x)T f(x) = T(bf)(x),

where f is a suitable function. Coifman, Rochberg and Weiss [CRW] proved
a celebrated result, when T is a standard Carderén-Zygmund singular in-
tegral operator, [b, T'] is bounded on LP(R"™), where 1 < p < oco. Later,
Chanillo [C1] got the LP boundedness of the commutator generated by a
BMO function and a fractional integral. In 1993, Alvarez, Bagby, Kurtz
and Pérez [ABKP] studied the LP bounedness of the commutator generated
by a BMO function and a general linear operator, and got the following re-
lation between the LP boundeness of the commutator and the weighted LP
bounedness of the corresponding linear operator.

THEOREM A. ([ABKP]) Let 1 < p, ¢ < oo. Suppose that a linear op-
erator T' satisfies the weighted norm estimate

1T fllpaw < Cllf llpw
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for all w € Ay, where the constant C depends only on n, p and the A,
constant of w, but not on the weight w. Then for any b € BMO(R"), the
commutator [b, T is bounded on LP(R™).

It is easy to prove that Theorem A is suitable to many operators in har-
monic analysis, such as standard Calderén-Zygmund integral operators, os-
cillatory integral operators with polynomial phases and Calderén-Zygmund
kernels, the Bochner-Riesz operator with the critical index and etc. But, it
should be pointed out that Theorem A can not be used to some important
operators. For instance, Hu and the second author of this paper in [HL]
considered the Bochner-Riesz operator below the critical index. In this pa-
per, we consider the commutators of strongly singular integral operators
which have important background in multiple Fourier series. Let us first
state some definitions.

Given a suitable function f, its Fourier transform is defined by

FfE) =F) = @) =27 (g

Let () be a smooth radial cut-off function, #(¢) = 1if |£| > 1 and 0(¢) =
if || < 1/2. The strongly singular integral operator is defined by

etlel®

F(T*F)(€) = 0() G f(©),

where 0 < s < 1,0 < a < ns/2. Let A\ = m{%, the convolution form of
T*% can be roughly written as

etle—yl™ <
(1) TS f(z /}x (e = y) ) dy.

Here s’ = s/(1 — s) and x denotes the characteristic function of the unit
interval (0,1) C R. Since s and « do not appear in the convolution form
apparently, we would like to use 7% instead of T5% When a = ns/2,
it turns out that A = 0. This operator will be denoted by 7', and the
convolution form of T" will be

. _s
gile—]

WX(LT —yl) f(y) dy.

(2) Tf()=po. [ T
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It is known that 7' is bounded on LP(R") for ‘%— %| <& ["/H)‘] =1-A

1
n Ll at+) 27 ns
(see [Hi], [F]), and the range of p is the best. We now consider two cases

A=0and A > 0. If A = 0, 7% turns out to be T in (2). For this kind of
operators, the author of [C2] has already got their boundeness on weighted
L? space for 1 < p < oo as follows:

THEOREM B. ([C2]) Let w € Ay, 1 < p < o0, and T be a strongly
singular integral operator defined by (2). Then

3) 1T fllpw < Cpll fllp-

It follows from Theorem A and Theorem B that when A = 0, the
commutator generated by 7% = T and a BMO function b is bounded on
LP(R™) for 1 < p < oo. In addition, the weighted norm inequalities for this
commutator was also obtained in [GHST]. The more difficulty case is A > 0.
In this case, we can not expect that the inequality |7} ||, < C||f||, holds
for all 1 < p < co. In other words, we can not use Theorem A to get the
LP boundedness of the commutator [b, Ts/’)‘]. And the method used in
[GHST] can not be used to this case either, since that the method in which
essentially is an estimate of the sharp function of [b, T'|f(x) and only suite
to the operators that are LP bounded for all g < p < 00, here 1 < ry < co.
Then an interesting question arises naturally, that is whether [b, 7% ] is
bounded on some LP(R™) under the assumption A > 0?7 Precisely, whether
[b, T%] is bounded on LP(R™) for ‘— -3 <i- 2.7 In this paper we
give an affirmative answer by using the scale changing method which is
introduced by Carleson and Sjolin in [CS]. We get

THEOREM 1.1. Let0 < s’ < o0, 0 < A< ns’/2 TS/ A be a strongly sin-

gular integral operator defined by (1), |1 5 2| < 5— W’ and b € BMO(R").

Then the commutator [b, T*"] is a bounded opemtor on LP(R"™).

More generally, we consider the multilinear operator of strongly singular
integral operator defined by

eilo=vl~ R (A;3,y)
s’ )\ m+1 L, Y
Ty f /|x Jx X (Jo — y|) =222 f(y) dy.

|z — y|™

Here Rimi1(4As2,y) = A() — 21 1<m %DVA(y)(ac —y)7 is the (m + 1)-th
order Taylor series remainder of A.
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THEOREM 1.2. Let 0 < ' < 00, 0 < A < ns'/2, T* be a strongly
singular integral operator defined in (1), 117 — %| < % — %, and DYA €

BMO(R") for any n-tuple index vy with |y| = m > 0. Then the multilinear
operator Tj A can be extended to a bounded operator on LP(R™).

Remark 1.1. Tt is clear that when m = 0, the multilinear operator
turns to be a commutator, then Theorem 1.2 can be regarded as an exten-
sion of Theorem 1.1.

§2. Some elementary results and lemmas

In this section let us give some lemmas which will be used in the proofs
of our theorems.

Let @ denote a cube in R™ with sides parallel to the axes, |Q| denote
the Lebesgue measure of Q). Let mg(g) = ﬁ fQ g(x)dx and Sy(g)(xz) =
suprQ{Wl‘ Jolg(@) — mq(g)|? dx}l/q. It is known that if ¢ € BMO(R"),
then [15;(g)lloc ~ [lgllBMO-

LEMMA 2.1. ([Hu]) Let Q1 and Q2 be two cubes whose intersections are
not empty. If d(Q1) > d(Q2) (d(Q) is the diameter of Q), p > 1, then

d(Q1)
d(Q2)

where x1 € Q2 and C' is independent of Q1 and Q5.

mo () — maou(g)] < 0(1 T log )sp<g><x1>,

It follows that if g € BMO(R") and @1, Q2 are two cubes whose inter-
sections are not empty, then

Q1)
Q2)

LEMMA 2.2. ([CG]) Let A(z) be a function on R™ with m-th order
derivatives in LY(R™) where ¢ > n. Then

W lmeo) - mau(a) < €1+ ox S lglaveo

1 1/q
iz ) < Coale =" 3 (o [ D)
i T,y

Iv[=m

where Q(x,y) is the cube centered at x with edges parallel to the azes and
having diameter 5y/n|x — y|.
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Let ¥ be a smooth function with compact support in both = and &,
and ® be real valued and smooth. We assume that on the support of ¥,
the Hessian determinant of ® is nonvanishing, i.e.

0*®(,¢)
(5) det (W) # 0.

We consider oscillatory integral

(T )(€) = / NP @OY (., €) f(x) de.

n

LEMMA 2.3. ([St]) Under the above assumptions on ® and ¥, we have
that

ITAfll c2(rny < CAT2) £l L2 (gn)-
Obviously, we also have
IToflloe®ny < CllfllLoc®ny and [ Tafllprwny < CllfllL1@n)-
By interpolations, we get
(6) T3 f |l zo ey < CATP(|fllpo@ny, 2 < p < o0,
and
(D) T @) < Ol @, 1<p<2 1p+1/p' =1

Let I =[0,1]"™ be the unit cube in R™. Let ¢t/ denote a cube with the same
center as I and side length ¢, for any ¢t > 0. Denote F'(I) = 5I \ 2I, we
will use Lemma 2.3 in different places with ®(z,y) = |z —y|~*"/2, but with
U(z,y) being different functions supported on F(I) x I. Thus we need to
show that ®(z,y) satisfies (5) on F(I) x I. Write r = Y"1 | (z; — y;)?, then
O(z,y) = r=¢'/2 Tt is easy to get

0% (x, _s L
8xz(8yjy) = _SI(S, + 2)T 2 2($i - yz)(IJ - y])a 4 75 7
and )
0°P o s
8901(;3’/?) = —s'(s' +2)r7 7 Xz —y)? ST
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Denote C,. = (—s')"r~ (% +2)” thus

2
det [ 2°2(,9)
8x¢8yj
(s'+2)(x1—y1)>—r ('+2)(z1—y1)(x2—y2) - (s'+2)(x1—y1)(Tn—yn)
—C (8'+2)(z2—y2)(z1—y1) (s'+2)(z2—y2)?—r (8 42) (@2 —y2) (Tn—yn)
(8'+2)(zn—yn)(x1—y1) (s'+2)(Tn—yn)(z2—y2) - (" +2)(xn—yn)?—r
(8'+2)(x1—y1)>—r (s'+2)(z1—y1)(w2—y2) - (s'+2)(@1—v1)(@Tn—Yn)
(s'+2)(z2—y2)(®1—y1) (s'+2)(x2—y2)*—r o (8'42) (w2 —y2) (T —yn)
(8"+2)(@n—yn)(T1—y1) (s'+2)(@n—yn)(®2—y2) - (s'+2)(xn—yn)?—r
1 (s"+2)(z1—y1) (s'+2)(z2—y2) (s'+2)(zn—yn)
0 (s'+2)(@1—y1)?—r (s"+2)(x1—y1)(x2—y2) - ('+2)(x1—y1)(Zn—Yn)
=10 (s+2)(z2—y2)(z1—11) (s'+2)(x2—y2)?—r o (8" 42) (w2 —y2) (Tn—yn)
0 (s"4+2)(@n—yn)(x1—y1) (8'4+2)(@n—yn)(z2—7y2) - (s'4+2)(@n—yn)?—r
1 (s"+2)(x1—y1) (+2)(x2—y2) - (s'+2)(zn—yn)
—(z1—-y1) - 0 0
= | —(z2—y2) 0 —r 0
—(zn—yn) 0 0 —r
—(s'+1)  ('+2)(z1—y1) (s'+2)(z2—y2) - (s'+2)(Tn—yn)
r 0 0
= 0 0 —r 0
0 0 0 .

=~ D=
When z € F(I) and y € I,

2 ’
det(iaaif;j)> = —(s'+1)smr~ T+ £ g,

This confirms the above assertion

etlzl™
Let Ky z(x) = |x|n+A x(|x|), we define

(8) ST f( /KvA (& — ) () dy,
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©) SN =N [ KoaVa = p)b) ~ bl ) d,
and
s Rm A X
(10) SR =N [ Koa(¥w ) P 1) ay
LEMMA 2.4. For any 1 < p < oo, we have
(11) HSNbeLP 1) < CN7AMblleymoll fll e (r)-
Proof. Set 0 < r < n/pand o > 0 such that
L
p+o p n

Observe that if z € F(I), then

s’ ’dy
S5 @)l < O [ 1)y < €N /m—rnr

SC’I‘N )\Ir(’fXI‘)( )7

where x(x) is the character function of I, and I, is the fractional integral
operator of order r. By the Hardy-Littlewood-Sobolev theorem, we get

(12) 1S%* Fll oo () < CNTMFllzor)-
In the same way, we can choose ¢ very small, such that
(13) 1S5 Fllzo ) < ONTMFll oo ry

Let ¢(z) € C§°(R™) such that ¢(z) = 1 if |z| < 10y/n and supp¢ C {z :
|z| < 20/n}. Set )
b(y) = [b(y) —mar(b)16(y),

where my47(b) denotes the mean value of b on 41. If z € F(I), then

Sxf (@) = b(@)Sy (@) = Sy Bf) (@) = 1+ 1.

For I, we choose 1 < r < oo such that 1/r +1/(p + o) = 1/p. By using
Holder’s inequality and inequality (12), we get

1r
T{I. {/rb mu>rm} 1S5 llwso oy

< CNMbllemoll fllLe(ry
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For II, we choose 1 < r < oo such that 1/r +1/p = 1/(p — o). From
inequality (13) and Hoélder’s inequality, it follows that

1/(p—o)
sy < N [ 1b6) = ma)P-l 2
1/r
= ON {/|b — mu( Wdy} [Nl (r)
< O pllsviollSlzscn

Combining the two estimates above, we finish the proof of this lemma. []
Similarly, we get

LEMMA 2.5. For any 1 < p < oo, we have

(14) ISy AfHLP(F(I) < C(n,p,s',\,m)N~ Z D7 Allsmoll £l ey
lyl=m

Proof. As in the proof of Lemma 2.4, select 0 > 0 and 0 < r < n such
that

Let
Alz) = [A(z)— > i—’;mI(DWA)} o(2).

Since Rpy1(A;2,y) = Rpmy1(A;2,y), for any 2 € F(I) and y € I, we have

1S5 f ()] < CN / |Rm<A;x,y>r|f<y>|dy

o

[v]l=m

From Lemma 2.2 and Lemma 2.1, it follows that

[ 1R )lif)ldy <€ Y 10" Ao M (Fxr)(e),

[v]l=m
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where M (fxr) is the Hardy-Littlewood maximal function of fy;. By the
Hardy-Littlewood-Sobolev theorem, we get

‘ Lr(F(D)

1/(p—o)
<C ), </|D”A —mp(DTA) P f(y) [P~ dy)

[v|=m

'y
[,
_y|n T

[v[=m

r/n
<02(/ DAy mI<DWA>|"/’“dy) Wl

|vI=

<C Z DY Allgmo || f1l o (1)
Ivl=m

By the LP boundedness of Hardy-Littlewood maximal function and the
above estimates, we get

1S5 Fll oy < CN™ > 1D Allsmoll £l e
Iv[=m

O

Let K be a distribution with compact support in R™, locally integrable
outside the origin and satisfying the conditions

A(p) R©)] < BA+E) ™2, ¢err,

and

B(6) / K(z—y) - K(o)|de < B, |y <d.
|| >2|y|* ¢

Here K is the Fourier transform of K, B and d denote positive constants
and 0 < (<0<

LEMMA 2.6. ([Sj]) If 0 < B < 0 < 1, then Tk f(x) = K * f(z) can
be extended to bounded linear operators from LP(R™) to L1(R™) for all K
satisfying the above assumption if and only if p < q and

B/2>1/p—1/q+bmax(1/2 —1/p, 1/q—1/2, 0),

where b= (nB(1 —6)+20)/(n(1 —06)+2).
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Let 1 -6 =1/(A+5 +1) and 8 = 2a/n. In [Sj], the author pointed
out that K ) satisfied condition A(3) and B(6). Recently, we [LL] get that
for any |y| = m, Ky ~(z) = Ky ()% satisfies A(3) and B(#). Thus

|z|™

we have for any p < ¢ satisfying
(15) a/n>1/p—1/q+smax(1/2—1/p, 1/qg—1/2,0), p<gq,
T and TS f(z) = Ky )~ * f(x) are bounded from LP(R™) to L9(R™).

83. Proof of Theorem 1.1
If we want to show that [b, 7%"*] is bounded on LP(R™) for 11 -1 <

P
% — %, it suffices to prove that for any positive number N > 1,
P
[ Koale =)0 - ) @) dy| da
[0,N]™ /0, N]™
<Clbllpo | 1F)P dy
[0,N]"

By changing the scale, we need to show that

P

dx

J

N7 [ a8 = ) 6(N2) = HN ) Plo) dy
< Cliblto [ IFG)P do.

where F'(y) = f(Ny). Note that if b(z) € BMO(R"), then b(tx) € BMO(R")
and ||b(-)|[Bmo = ||b(t - )||Bmo for any ¢ > 0, it is equal to show

J

N7 [ Ko p(N G = )00e) — b T |

< Clillo [ 1701 do
We reduce our proof into proving the following lemma.

LEMMA 3.1. Under the same conditions of Theorem 1.1, we have

(16) 1S5 Flloqy < Cln,p, 8", Ml[blleyoll Fll .
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Proof. Let €,, n = 0,1,..., denote the set of all dyadic cubes in
(=2, 2)" with side length 27#, and let Q}, denote the set of all cubes which
are the union of 2" cubes in Q. Let f € LP(I) and set f equal to zero
outside I. If x € I and x does not belong to the boundary of any dyadic
cubes, let wy,(x) be the unique element of 27, which satisfies x € %w:}(x),
and set w* | (z) = (-2, 2)".

For a measurable set D C I, we define E(x, D) by

N~ o a—y|
E(x.D) = N~ / oy XVl = ) (0) — b)) F )

where z € I and we also set E,(z) = E(x, (@) \wi(z)NI), p=>0.
Defining pn by 27#8 1 < N=1 < 27KN | we have

(17) Sanf@) =" Eu(@) + E(w,w), (z) N 1).

=0

From the construction of wj,(z) it follows that |E,(z)| < > weq, [E(z,w)|
wNI#D
XF(w) (), where F(w) = 5w \ 2w and Xxp(,) is the characteristic func-

tion of F'(w). Since ZwEQH XF(w)(T) < 5" — 2", Hélder’s inequality yields
|EBu(z)P < C Y wea, |E(x,w)[PXpuw)(r) and hence for any p < uy,

wNI#D
(18) /|E Wde<C > / E(x,w)|P dz.
weQ,
wﬂl#@

Performing a change of scale and using Lemma 2.4, we obtain
/ |E(z, w)[P dz < C(N27H) AP||b|yBMo/ |f(z)|P d.
F(w)

A combination of this inequality with (18) yields
(19) IEull oy < CN22(bllgmol 1l e (1)

And assume that we have

1/p
(20) {/ rE<x,w:N<x>m>rpdx} < Cllsollf L
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a combination of (17), (19) with (20) yields (16). Now we suffer to prove
inequality (20). From the construction of w*(x) it follows that E(x,w), (x)N
I = ZwGQ:N E(:J:,w)xéw(x), where X%w(l') is the characteristic function
wNI#Q
of %w. Since ZwGQ;N X%w(x) = 1, Holder’s inequality yields
wNI#D

|B(x,w) () NP < - [E(z,w0)["x1, ().
wEQ;N

wNI#Q
Hence

/\E:chN ﬂI]pd:):<Z/ xw|pdx*ZB

wEQ* 2 wGQ*
wﬂ[;ﬁ@ wﬂ[#@

For any fixed w € ), , and wN [ # 0, denote x, = (z1,x2,...,2,) such
that for any y = (yl,yg,...,yn) Cw, x; <y, i=1,2,...,n Let b,(x) =
b(x + 2,), fo(z) = f(x +2,), and J = [0,2]". Noticing that 27#¥~1 <
N—1 < 27N we may assume that N~! = 274~ Since the side length of
w is 27ANFL

Bw:/
1
Pt

/ / Ky \(N(x —y))[bw(z) — bu(y)] fu(y) dy‘p do
w—xy ' J[0,2N—

/ N"K o y(N(z — 1)) b(x) — b)) dy| da

v [ / Koale = ) bu(N"12) = b (N )] fulN ) dy da
<N [ || Kuata = plbuN 1)~ b (N gy da

Here, Q = N(iw — z,) is a cube in J. Recall that ¢(z) € C§°(R") such
that ¢(x) =1 if |2| < 10y/n and supp¢ C {z : |z| < 20y/n}. Set

b(y) = [bu(N"y) — my(bu (N1 )] (y),

where m ;(b,,) denotes the mean value of b, on J. Letting f.,(N~1y)xs(y) =
F(y), we write

N"B, < / b(2)T* A F ()P da + / |75 AbF)()|P da := I + II.
J J
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It follows from Lemma 2.6, that for any ‘— — —| < % — % = =, there exist

1 < g1 <p< g < oo, such that T is a bounded linear operator from
L9 (R™) to LP(R™), and from LP(R™) to L% (R™).

For I, let 1 < r < oo such that %—i— q% = zl?’ by using Holder’s inequality
and noting that 7% is bounded from LP(R") to L%(R"), we have

p/r
r< {0t ) s mi v e T ARG
J

< C|lbl1% MOHFHLP )
< CN”HbHBMOHfHLP(w)'

For the second inequality, we used Holder’s inequality again. During the
estimate, C' is independent of N.

For II, we choose 1 < r < oo such that % —1—1% = q%‘ The LT to LP

boundedness of T and Holder’s inequality yield
I < C’HbFHqu(J
p/r
<of v e o) moGv - v ara) 1P,
J

< CHbH%MoHFWzP J
< CN"[1bl B0l 110

Combining the estimates of I with I, we get
B, < CHbH%MOHf”]ZP(w)

where C' is independent of N. For a fixed w € €, the number of w'e Yy
such that w’ Nw # ¢ is at most 3™ — 1. Thus We have

[ 1B @i )P do < Clbluol Mg
We finish the proof of Lemma 3.1. 0
Turn back to the very beginning. It is clear that
16, T A1l o cen) < Cllbllsyollfll o),

for ‘— — —‘ < 2 We finish the proof of Theorem 1.1.

ns’ :
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84. Proof of Theorem 1.2

Noticing that DI A(Nz) = NmDVA(,u)‘M:Nm for |y| = m, in the same
way as the proof of Theorem 1.1, our aim becomes to prove under the
conditions of Theorem 1.2,

21) ISy Ay < Clnap, s, A m) S 1D Allsuol 1l oo ry-
[y|=m

As in the proof of Theorem 1.1, for a measurable set S C I, we define
E(z,S) by

E(z,5) / fﬂx_—wy))RmH(A £,y f () dy.

Set By (r) = E(z,w),_y(z) \ w(x) N I). py denotes a number such that
27—l < N7 < 27KV We have

HUN

(22) Saaf(@) =" Bu(w) + Bz, o (x) N 1)
n=0

Similarly we have

(23) /|E )P dz < C Z/ E(z,w)[P dz.

weQy,
wﬂ[#@

For a fixed w € Q,,, denote x, = (x1,%2,...,2,) such that for any y =
(Y1,Y2, -5 Yn) i < ¥y, @ = 1,2,...,n. Noting that the side length of
w = 27#, we have

/ |E(z,w)|P do

/ PR e e P Y
F(w)

|z —y|™
[ |f, el
F(w)—zw '/ [0,27H]™ ‘x_y‘m
X Rm-i—l(A;w + Tw,Y + JJUJ)f(y + xw) dy‘pdx
= / 9—HN /2(#)(nm)Nn Ky A(27'N(z —y))
F(I) I

|z —y[™
p
X Rm—l—l(A? 27Fr + Lw, Q_Hy + xw)f(Q_”y + xw) dy‘ dz.
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By Lemma 2.5 and noting that |DYA(27"-)|smo = 27#"|| DY Allsmo for
any |y| = m, we obtain

/ B, w)P dz < CV2 ) 3™ D7 Allhuo / (@) d.
F(w)

w
[v]=m

A combination of this inequality with (23) yields

(24) I1Eulloy < CNT2M Y [DY Allsmio L f Lo (ry-

[vl=m

Corresponding to inequality (20), we suffer to show

1/p
(25) { / rE<x,w;N<x>m>rpda:} <0 Y 1D Allssiolf

[v[=m

For a fixed w € Q) with woN I # (), denote x5 = (x1,x2,...,x,) such that
for any y = (y1,%2,---,Yn) € @, ©; < y;, i = 1,2,...,n. Recall that ¢(z) €
C§°(R™) with ¢(x) =1 if || < 10y/n and supp ¢ C {z ; |z| < 20y/n}. Set
~ 1
A(z) = [A(z) — Y —mi(DTANT! - —I—x@))zq o(2).

yl=m !

It is known that Ry, 41(A;2,9) = Rpni1(A;z,y) for 2 € F(@) and y € @.
We write

Be,a) = [ N B g G ) dy

|z — y|™

+30 [ NKaa (N = ) D7 Al) 1) dy
[yl=m ¥
= EW(2,0) + E? (2,).
Since ZQEQ;N X1 5(x) =1, Holder’s inequality yields
@NI#£D

Bz, 2, (2) N 1P
< D 1EV@e)Pxig@) + Y 1ED(@,0)Pxig@).

2
wGQ;N weN*
@NIH#D @NIF#D
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Hence
/ Bz, %, () N P da
I
< gD )P (2 P
_Z/1w| (xw]dx+2/|E (x,w)|P dx.

@EQ;N 2 WEQ*

@NIH#D wﬂ[;é@

For a fixed w € €2}, , noticing that 2 HN—l <« N=1 < 27HN  we may assume
that N~! = 27#~_ Since the side length of @ is 2 #N+1,

Phad

1
i Z /“’ %‘/[0,21\7—1]71 N"Kgx~(N(z —y))

Iv[=m

/ |E@) (2, @) P dx

X DVA(y—i—x@)f(y%—x@)dy‘pdx
= N" Z /‘

—mi(DYAN" .+ :1:@))] FIN Yy + 25) dy(” dz.

Ky pn(z — ){DVA(N_ly +5)
02"

Here Q = N [2w—x5] is a cube in [0,2]". Not1ngthat|——— <%—4:i

it follows from Lemma 2.6 that there exists ¢ < p such that T 1s bounded
from L(R") to LP(R™). Choosing 1 < r < oo such that % —|— = = q, we have

1 -
2&]

N© / B (2, )P do

<C > {/ IDYA(N~Yy + z5) —mp(DVAN"Y - + 25))|¢
ly|=m [0,2]™

. P/q
< |f(N y+x@>rwy}
p/r
<C Z {/ |IDYA(N Yy + x5) —mp(DVAN! - —I—x@))]Tdy}
[0,2]

[vl=m
X ||F(NT +$w)||1£p([o,2]n)
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<C S ID Aol FN T+ 200

|v[=m
< CON™" Z HDWAH%M()H]P”]ZP(@)
Iv[=m

Here C' is a constant independent of V. Noting that the number of w € Q7, .
with w N@ # 0 is at most 3" — 1, we have

Z / |E@ (z,0)Pde < C Z | DY Al o||f”1£p(1)'

wGQ* 2 |v|=m
wﬂ[;ﬁ@

For EW(z,), we define E&l)(x) = E(l)(x,w:j_l(:):) \w}i(z) Nw) and write

(26) EW(z,0) = i EM (x)

p=pN

And it is clear that |E£L1)(x)] < D we, \E(l)(x,wﬂXF(w) (x), in the same
wN@#D
way as in the case p < py, we get

wGQ;N 2
@NI#D
1/pyp
SCZ{ {Z/ ﬂcw|pdx} }
WeEQ . “uZ2pN S weQy F(w)
wNI#£D wﬂw#@
Fix u > pn, © € Qy,, and w € Q. Denote z, = (21,22, ..., ;) such that

for any y = (y1,¥2,---,Yn) € w, x; < y;, © = 1,2,...,n. Noting that the
side length of w = 27#, we have

/ |EW (2, w)|P da
F(w)
SRR e YO

[z —y|™
/F(w)xw [

(V@ — y))
X R A+ i,y + 20) (g + 20) dy | do

0,2-#]n |z —y|™
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= / 2‘#”‘/2(—M)(n—m)Nn KS’,A(QiuN(l" —y))
F(I) I

|z —y|™

X Ry (A; 270 4 2, 27y + 2,) f (27 My + 2) dy " .

B

Select zg € 81\ 6/, and denote K“Nm( ) = 2(=#)(n=m) N
Then

/ |EW (2, w)|P da
F(w)

F(1)

— Ry (A; 2710 + 3, 272 + $w)} f@7 Yy 4+ m,)dy " da

/ KN (@ = ) [ Ron(A52700 4 20,270y + )
K

+/ 27 Ry, ( 1 27He + 2y, 27 P + )P
F(I)

‘/K“’Nm y)f(2_”y+xw)dy‘pdx.

Recall that for any g with m-th order derivatives [CG],

T — x0)”
Rpn(g;2,y) — Rin(g;2,20) = Y %Rm_w(l?ag; 0, Y)-

laj<m

‘We have

/ |EW (2, w) [P da
F(w)
<oy [ o

lal<m

- P
X Ry o) (DY A; 27 20 + 20, 271y + 20) f(27Hy + 20) dy| da

92— ual/Kqum z—y)(x — z0)®

+ / 27HP Ry (A5 27 P e 4 2y, 27 2o + ) P
F(I)

(/ K4N™ (@ — ) f @y + 20 dy| da.
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Denote Qztty = Q(27"xo+ 2y, 2 *y+2,,). From Lemma 2.2, it follows that
for any |o| < m,

| Rpjal (D®A; 2 M xg + x4y, 27y + Zy)|
< qu(mflal)’xo _ y‘mfla\

1 1/q
x> <fu [DYA(z) = my(DYANT -+ mw)
|Qzq.y] Qzyry
< o2~ rHm=lal|gg — y|mlel

x 3 {ID7 Allyio + gy (D7A) = my(DVAN !+ + )|}

Iv[=m

[v[=m

Noting that m(DTA(N™! - + 25)) = ma(D7A), Qzly and @ are not
disjoint, d(@) > d(Qz4y) and the side length of QL. is approximately 27+,
we get by inequality (4) that
| Rpjal (Do‘fl; 27z + 2w, 27y + x|
< o270l — ) Y7 ID7 Allpvio
Iv|=m

In the same way, we obtain

| R (A;272 + 20, 2720 + 20,)] < C27P™ (= ) D ID7 Allguo.
[v|=m

For p > 2, we use inequality (6) with U(z,y) approximating to kt(f’;'% on

F(I)x I for the case that |a] < m, and ¥(x,y) approximating to
on F(I) x I for the case that |a| = 0.

1
o=y

/ |EW (2, w)[P d
F(w)

<C Z 9= kng=p(=mtlallpoup N=Ap (=1 NV (1 — 1y )P

|o]<m
X HRm—|a\(DaA§ 27w + Lw, 27+ xw)f(Q_u -+ xw)”iv([)
+ C27 A NP (27EN) (1 — gy )P
< S ID AR I+ B

[v[=m
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< 27N NTI(QTENY (14— iy )P

< S DT AllgyollF@ -+ 2l
[vl=m

= CEPNY (= a3 1D Aol 12
[v|l=m

In the same way, for 1 < p < 2 by using inequality (7), we get

/ |EW (2, w) [P da
F(w)

< CETINY P — )P S DY Ao 15
[y|=m

Recalling that 27! < N=! < 27# and !— — —! < % — %, there exists
o > 0 such that

/ |EW (2, w)|P dx
F(w)
< C27(=IN)TP (1) — ) Z D7 Al MOHf”}ZP(w)

[y|=m
Thus
Z / |ED (2, w)[P dx
wey,
wNW#AD
< C2 I (p— ) S D7 Al I
[y[=m
And
" 1/p
S{X [ Eeare}” <c ¥ ip ol e
HZEN © wEL, [y|=m

wNw#£D

As the same as in the estimate of E?)(z, whi (@) N T), we can obtain

p Y
Z /1 (z,w)|Pdx < C Z D7 Al MOHfHLP(I

R yl=m
wﬁ[#@
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Turn back to the very beginning, we obtain

1752 Fllony < C S 1D Allgatol| 1l o en),

Iv[=m

where ‘l -1l <

i — % We finish the proof of Theorem 1.2.

1
2

Acknowledgement. The authors would like to express their deep
gratitude to the referees for there invaluable suggestions and comments.

REFERENCES

[ABKP] J. Alvarez, R. J. Bagay, D. S. Kurtz and C. Pérez, Weighted estimates for
commutators of linear operators, Studia Math., (2) 104 (1993), 195-200.

[C1] S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16.

[C2] S. Chanillo, Weighted norm inequality for strongly singular convolution opera-
tors, Trans. Amer. Math. Soc., 281 (1984), 77-107.

[CG] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integrals,
Hlinois J. Math., 30 (1986), 445-464.

[CRW] R. R. Coifman, R. Rochberg and G. Weiss, Fractorization theorems for Hardy
spaces in several variable, Ann. of Math., 103 (1976), 611-625.

[CS] L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the
disc, Studia Math., 44 (1972), 287-299.
[F] C. Fefferman, Inequality for strongly singular convolution operators, Acta Math.,

124 (1970), 9-36.

[GHST] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. L. Torrea, Weighted norm
inequalities for commutators of strongly singular integrals, Ind. Univ. Math. J.,
(4) 40 (1991), 1397-1420.

[Hi] I. 1. Hirschman, On multiplier transformations, Duke Math. J., 26 (1959),
221-242.

[HL] G. E. Hu and S. Z. Lu, The commutators of the Bochner-Riesz operator, T6hoku
Math., 124 (1996), 259-266.

[Hu] Y. Hu, On multilinear fractional integrals, Approximation Theory and Its Ap-
plications, 3 (1985), 33-51.

[LL] J. F. Li and S. Z. Lu, The boundedness of multilinear operators of strongly
singular integral operators on Hardy spaces, Progress in Nature Science (China),
15 (2005), 10-16.

[Si] P. Sjolin, L? estimate for strongly singular convolution operators in R™, Ark.
Math., 14 (1976), 59-64.
[St] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and

Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.

https://doi.org/10.1017/50027763000025666 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025666

62 J. LI AND S. LU

Junfeng Li

School of Mathematical Sciences
Beijing Normal University
Beiging 100875

China

junfli@yahoo.com.cn

Shanzhen Lu

School of Mathematical Sciences
Beijing Normal University
Beiging 100875

China

lusz@bnu.edu.cn

https://doi.org/10.1017/50027763000025666 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025666

