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1. Introduction. It was proved by Harvey [8] that the order #�'� of an auto-
morphism ' of a compact Riemann surface of genus g � 2 is not bigger than 4g� 2.
This bound is sharp for all values of g, and it follows from the proof that if ' attains
this bound, it ®xes exactly one point. After that, many authors contributed to the
study of the relationship between the order and the number of ®xed points of an
automorphism, and we should mention here the papers of Macbeath [12], Moore
[15] and Szemberg [18]. The latter, who also studied these questions for auto-
morphisms of domains in the complex plane, proved that if ' has at least two ®xed
points, then Harvey's bound can be strengthened to 4g, and again this bound is
attained for all g � 2.

The starting point of this paper is the following result from [7, p. 245], which
admits an elementary proof.

Theorem 1.1. Let ' be an analytic automorphism of a compact Riemann surface
of genus g � 2, having q � 3 ®xed points. Then #�'�42g=�qÿ 2� � 1.

This theorem follows also from the ®rst formula on page 106 of the paper [12] of
Macbeath. We shall prove in the second section that this bound is sharp. Again this
almost follows from the result of Macbeath. We devote the third section to obtain
analogous results for automorphisms of compact, bordered Klein surfaces having a
®nite number of ®xed points. In particular all such points are interior points and so
Macbeath's arguments can be applied in this more general setting.

Some results concerning the number of ®xed points of automorphisms of odd
order of nonorientable compact Klein surfaces with or without boundary are due to
Etayo Gordejuela [6].

We employ combinatorial methods in the proofs, and for convenience, we refer
the reader to the book [4], although the original results concerning normal sub-
groups of non-euclidean crystallographic (NEC in short) groups are due to E.
Bujalance [2], [3] and J. A. Bujalance [5] (see also the papers [9] of A. H. M. Hoare
and [10] of A. H. M. Hoare and D. Singerman). The reader is also referred to the
papers [11], [19] and [20] for the notations and basic properties of signatures of
Fuchsian and NEC groups.

2. The classical case. We prove that the bound 2g=�qÿ 2� � 1 of Theorem 1.1 is
sharp when it is an integer. Explicit constructions of X and ' in case q � 2g� 2 or
q � g� 2 are given in [7, pp. 246±247].
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Proposition 2.1. Let g � 2 and q � 3 be integers such that M � 2g=�qÿ 2� � 1
is an integer. Then there exists a compact Riemann surface of genus g and an auto-
morphism ' of X having q ®xed points and order M.

Proof. Macbeath proved in [12, p. 106], that the number of ®xed points of the
automorphism ' of the Riemann surface X uniformized by the Fuchsian surface
group ÿ equals the number of proper periods which are equal to the order #�'� of '
in the signature of the Fuchsian group � for which h'i � �=ÿ . So let � be a Fuch-
sian group with signature �0;�; �M; . . .q ;M�; ÿf g�, whose canonical elliptic gen-
erators of order M are denoted by �1; . . . ; �q. Let � : �! ZM be the epimorphism
onto the cyclic group ZM � hai induced by the assignment:

���i� � a�ÿ1�
i

for i � 1; . . . ; q;

if q is even and

���i� � a�ÿ1�
i

; for i � 1; . . . ; qÿ 3; ���qÿ1� � ���qÿ2� � a; and ���q� � aÿ2;

if q is odd.
In either case, each ���i� has order M, because M is odd if q is, and this implies,

by [4, Theorem 2.3.3], that ÿ � Ker� is a Fuchsian surface group. Hence, if H
denotes the open complex upper half plane, then X � H=ÿ is a compact Riemann
surface on which ZM � �=ÿ acts as a group of automorphisms. Thus any generator
' of �=ÿ ®xes exactly q points of X, which by the Riemann-Hurwitz formula has
genus g. This completes the proof.

3. The real case. Theorem 1.1 and Proposition 2.1 above concern birational
automorphisms of complex (irreducible and nonsingular) algebraic curves, and we
shall extend them now to real algebraic curves. One of the main di�erences is that
while complex algebraic curves are connected, the number of connected components
of a real algebraic curve of algebraic genus p ranges, by Harnack's theorem, between
1 and p� 1. As in the above proof, we will employ combinatorial methods, and so
we prefer the language of compact bordered Klein surfaces. First of all, we obtain
an immediate consequence of Theorem 1.1.

Proposition 3.1. Let X be a compact bordered Klein surface of algebraic genus
p � 2, and let ' be an automorphism of X with a ®nite number q � 2 of ®xed points.
Then #�'� � p=�qÿ 1� � 1.

Proof. As was observed in the introduction, the ®xed points of ' are in the
interior of X. Hence the canonical double cover Y of X is a compact Riemann sur-
face of genus p and from [1, Proposition 1.6.2] and the construction of the double
cover, it follows immediately that ' can be lifted to an automorphism  of Y with
r � 2q ®xed points. Hence by Theorem 1.1,

#�'� � #� � � 2p=�rÿ 2� � 1 � 2p=�2qÿ 2� � 1 � p=�qÿ 1� � 1:

As in the preceding section, we will now study under what condition this bound
is sharp. Assume that this is so. Then, of course, N � p=�qÿ 1� � 1 is an integer, and
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it was proved by Preston [16] (see also [4, Theorem 1.2.3]) that X can be uniformized
as X � H=ÿ , where ÿ is a non-euclidean crystallographic group. Then, since the
cyclic group ZN generated by ' acts as an automorphism group on X, there exist a
certain NEC group �0 and a group epimorphism � : �0! ZN whose kernel is ÿ, as
can be seen in [14]. We can determine the signature �0 of �0. In fact, if it is

�g0;�; �m1; . . . ;mr�; f�n11; . . . ; n1s1 �; . . . ; �nl1; . . . ; nlsl�g�;
the arguments used in the quoted paper of Macbeath show that m1 � . . . � mq � N
because ' has q interior ®xed points. Then the hyperbolic area of �0 is
���0� � 2���� q�1ÿ 1=N��, where

� � �g0 � lÿ 2�
Xr
i�q�1
�1ÿ 1=mi� � 1

2

Xl
i�1

Xsi
j�1
�1ÿ 1=nij�

and � � 2 if the sign of �0 is + and � � 1 otherwise: see [17] and [4, Theorem 0.2.8].
By the Riemann-Hurwitz formula,

2��pÿ 1� � ��ÿ� � N���0� � 2�N��� q�1ÿ �1=N���:

Then, since N � p=�q� 1� � 1, one gets � � ÿ1. But, as X is bordered, we must have
l � 1 and so l � 1, g0 � 0, q � r and s1 � 0, i.e.,

�0 � �0;�; �N; . . .q ;N�; �ÿ�� 	�:
The group �0 is generated by a complete elliptic system �1; . . . ; �q

� 	
of elements of

order N and a re¯ection c, which must belong to ÿ since X is bordered. Hence, it
follows from [4, Theorem 2.1.3. and Corollary 3.2.3] that X is orientable and ' pre-
serves its orientation. Moreover, by [4, Theorems 2.3.1 and 2.3.2] the number k of
boundary components of X is k � N=#���e��, where e � ��1 . . . �q�ÿ1, and in parti-
cular k divides N. Also, since ÿ is a surface group, each ���i� has order N. Conse-
quently, there exist a generator a of ZN and integers li, i � 1; . . . ; q such that
�li;N� � 1 and ���i� � ali , 1 � i � q; ��c� � 1; ��e� � aÿk. Then

Pq
i�1 li � k �modN�.

In particular, q � k �mod 2� ifN is even.We summarize the discussion above as follows.

Proposition 3.2. Suppose that the bound N � p=�qÿ 1� � 1 of Proposition 3.1 is
attained. Then the corresponding surface X is orientable, the automorphism ' preserves
the orientation of X, the number k of connected components of @X is a divisor of N, and
q � k �mod 2� if N is even.

Our next goal is to prove that these necessary conditions for attaining the bound
are also su�cient. For this we state ®rst an arithmetical lemma.

Lemma 3.3. Let N and k be positive integers. If either N is odd or both N and k are
even, there exist integers u and v such that �u;N� � �v;N� � 1 and k � u� v.

Proof. Since the case N � 1 is trivial, we assume that N > 1 and we let p1; . . . ; pr
be the distinct prime divisors of N. There exist integers k1; . . . ; kr such that each
ki 6� 0, k �mod pi�. This is clear if pi 6� 2. If pi � 2, then k is even and we choose
ki � 1. By the Chinese Remainder Theorem there exists an integer x such that
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x � ki �mod pi� for 1 � i � r. In particular, x 6� 0 �mod pi� and so x andN are coprime.
Hence by Dirichlet's Theorem, the arithmetic progression P � x� nN : n 2 Nf g
contains in®nitely many primes, and so we can choose a prime p � x� nN 2 P with
p > N. Of course, �p;N� � 1 and it su�ces to check that �kÿ p;N� � 1. If this were
not the case, then there would exist pi dividing kÿ p � kÿ xÿ nN, and so pi would
also divide kÿ x, i.e., ki � k �mod pi�, a contradiction.

We are now ready to prove the following converse of Proposition 3.2.

Proposition 3.4. Let p � 2 and q � 2 be integers such that N � p=�qÿ 1� � 1 is
an integer. Let k be a positive divisor of N such that q � k �mod 2� if N is even. Then
there exists an orientable compact Klein surface X of algebraic genus p whose bound-
ary has k connected components, and an orientation-preserving automorphism ' of X
of order N which ®xes q points.

Proof. Let �0 be an NEC group with signature �0 � �0;�; �N; . . .q ;N�; �ÿ�� 	�.
Let �1; . . . ; �q

� 	
be a complete elliptic system of �0. The preceding discussion shows

that all we need is to construct an epimorphism � : �0! ZN � hai such that
��c� � 1, each ���i� has order N and if e � ��1 . . . �q�ÿ1, then ��e� has order N=k.

If q is even then, either N is odd or both N and k are even. In either case, by the
Lemma 3.3, we can write k � u� v for some integers u and v which are coprime with
N. We can then choose

���1� � au; ���2� � av; ���i� � a�ÿ1�
i

; for i � 3; . . . ; q:

So let q be odd. Now if N is even then k� 1 is also even since k � q �mod 2�. Thus,
by the Lemma 3.3, both for even and odd N, there exist u and v such that
k� 1 � u� v and �u;N� � �v;N� � 1. In this case we de®ne

���1� � au; ���2� � av; ���i� � a�ÿ1�
i

; for i � 3; . . . ; q:

In both cases, X � H=Ker� is the required surface and any generator ' of �0=Ker� is
the automorphism we are looking for.

Proposition 3.2 shows in particular that the bound p=�qÿ 1� � 1 can be
strengthened if X is a nonorientable surface. This is equivalent to minimizing the
hyperbolic area ���� of those NEC groups containing a surface NEC group with
sign ``-'' as a normal subgroup with a cyclic quotient of order R1 we are looking for
and whose signature contains q proper periods equal to R1. A straightforward
computation shows that the signature �1 of the group �1 with minimizing area is

�1 � �0;�; �R1; . . .q ;R1�; �2; 2�
� 	�:

Let g be the topological genus and k the number of boundary components of X. The
algebraic genus p of X equals g� kÿ 1, and the Riemann-Hurwitz formula applied
to the groups with signatures �1 and

� � �g;ÿ; �ÿ�; �ÿ�; . . .k ; �ÿ�� 	�
gives us: pÿ 1 � R1�ÿ1� q�1ÿ 1=R1� � 1=2� and so R1 � 2�p� qÿ 1�=�2qÿ 1�.
This way we have proved:
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Proposition 3.5. Let X be a nonorientable, compact, bordered Klein surface of
algebraic genus p � 2, and let ' be a dianalytic automorphism of X leaving q � 2 ®xed
points. Then #�'� � 2�p� qÿ 1�=�2qÿ 1�.

We will now see that this bound R1 � 2�p� qÿ 1�=�2qÿ 1� is sharp if it is an
integer, but in contrast with the orientable case, the number of boundary compo-
nents of X is completely determined. In fact, let �1 be an NEC group with signature
�1 generated by the complete elliptic system �1; . . . ; �q

� 	
, whose elements have order

R1, and the canonical re¯ections c0, c1, c2. Let � : �1! ZR1
� hai be an epimorph-

ism whose kernel ÿ has signature �. Since X is bordered, and R1 is even, it follows
from [4, Theorems 2.3.2 and 2.3.3] that ��c0� � ��c2� � aR1=2 and k � R1=2. As in the
proof of Proposition 3.1, the existence of the epimorphism � implies that
q � k �mod 2�, i.e., p must be odd, and in fact, repeating the proof of Proposition
3.4, it is easily seen that these conditions su�ce to construct such an epimorphism �
mapping the �i onto elements of order R1. Consequently we get:

Proposition 3.6. Let p � 2, q � 2 and k � 1 be integers such that R1 �
2�p� qÿ 1�=�2qÿ 1� is an integer. Then there exists a nonorientable compact Klein
surface X of algebraic genus p with k boundary components, and a dianalytic auto-
morphism of X of order R1 with q ®xed points if and only if p is odd and k � R1=2.

To ®nish, we deal with the case in which either R1 is not an integer or k 6� R1=2.
Then the signatures �2 and �3 providing groups �2 and �3 with the minimum
hyperbolic area among those containing a group with signature � as a normal sub-
group with cyclic quotient are

�2 � �1;ÿ; �R2; . . .q ;R2�; �ÿ�
� 	

and �3 � �0;�; �R2; . . .q ;R2�; �2; 2; 2; 2�
� 	�;

for a suitable value of R2. In both cases, ���i� � 2�q�1ÿ 1=R2�, and so, if � : �i !
ZR2

is an epimorphism whose kernel ÿ has signature �, then 2��pÿ 1� �
2�qR2�1ÿ 1=R2�, i.e., R2 � �pÿ 1�=q� 1. Let us study under what conditions this
bound is sharp. Of course, R2 must be an integer, and we suppose ®rst that it is odd.
Let d; �1; . . . ; �q; e; c

� 	
be a set of canonical generators of the group �2 with sig-

nature �2, where d is a glide-re¯ection, �1; . . . ; �q are elliptic elements of order R2, c
is a re¯ection and �1 . . . �q � e � d2 � 1. Let � : �2! ZR2

� hai be the epimorphism
induced by the assignment

��c� � 1; ���i� � a; 1 � i � q; ��e� � ak; ��d� � au;

where k is an arbitrary positive divisor of R2 and 2u� k� q � 0 �modR2�. Then
ÿ � Ker� has signature � from [4, Theorems 2.1.2, 2.2.3 and 2.3.1] and so X � H=ÿ
is a nonorientable compact surface of algebraic genus p with k boundary compo-
nents, and ZR2

� �2=ÿ acts as a group of automorphisms on X in such a way that
any of its generators ®xes exactly q points. If R2 is even, a necessary and su�cient
condition to produce an epimorphism with suitable kernel is that q � k �mod 2�. In
such a case we can ®nd u 6� 0 �modR2� such that 2u� k� q � 0 �modR2�, and the
same epimorphism above produces, by virtue of [4, Theorems 2.1.3, 2.2.4 and 2.3.2],
the required surface X and automorphism '. In case R2 is even and q 6� k �mod 2�,
one could try to ®nd an epimorphism �3! ZR2

whose kernel has signature � but as

KLEIN SURFACES WITH FIXED POINTS 187

https://doi.org/10.1017/S0017089599970751 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970751


in the proof of Proposition 3.2, the inequality q 6� k �mod 2� is an obstruction for the
existence of such an epimorphism. We have thus proved the following:

Proposition 3.7. Let p � 2, q � 2 and k � 1 be integers and assume that either
R1 � 2�p� qÿ 1�=�2qÿ 1� is not an integer or k 6� R1=2 or p is even. If X is a non-
orientable, compact, Klein surface of algebraic genus p, having k boundary compo-
nents, and ' is a dianalytic automorphism of X which ®xes q points, then
#�'� � R2 � �pÿ 1�=q� 1. Moreover, this bound is sharp if and only if either R2 is an
odd integer or R2 is even and q � k �mod 2�.

Final remarks. (1) Throughout the paper we have considered as given the
algebraic genus of our surface. But, since we have studied the values of its number k
of boundary components for which an automorphism of maximal order and pres-
cribed number of ®xed points exists, we actually have control on its topological
genus. For example, if the bound N of Proposition 3.1 is attained for a sphere, i.e.,
g � 0, then p � kÿ 1 and since k � N we get p� 1 � k � N � p=�qÿ 1� � 1, i.e.,
k � N and q � 2. It follows from Proposition 3.4 that this possibility actually occurs
for all values of p.

(2) In the nonorientable case, the bound R1 of Proposition 3.5 is attained just
for k � R1=2, and so g � p� �qÿ p�=�2qÿ 1�. On the other hand if the bound
R2 � �pÿ 1�=q� 1 is attained, then g � 3, unless g � k � q � 2, p � 3.

(3) By a theorem of Maskit [13], given an open Riemann surface X of genus g
and an automorphism ' of X, there exists a compact Riemann surface ~X of genus g,
an automorphism ~' of ~X and a conformal embedding of X into ~X such that ~'jX � '.
Hence, also in this context, the bound 2g=�qÿ 2� � 1 for the order of ' holds, and
this bound is sharp as stated in Proposition 2.1.
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