POSITIVE SOLUTIONS FOR NON-RESONANT SINGULAR BOUNDARY-VALUE PROBLEMS WITH A LINEAR TERM

HAISHEN LÜ ${ }^{1}$, DONAL O'REGAN ${ }^{2}$ AND RAVI P. AGARWAL ${ }^{3}$
${ }^{1}$ Department of Applied Mathematics, Hohai University, Nanjing 210098, People's Republic of China
${ }^{2}$ Department of Mathematics, National University of Ireland, Galway, Ireland
${ }^{3}$ Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA (agarwal@fit.edu)

(Received 31 March 2005)

Abstract This paper presents new existence results for the singular boundary-value problem

$$
\begin{gathered}
-u^{\prime \prime}+p(t) u=f(t, u), \quad t \in(0,1) \\
u(0)=0=u(1)
\end{gathered}
$$

In particular, our nonlinearity f may be singular at $t=0,1$ and $u=0$.

Keywords: non-resonant singular boundary-value problems; positive solution; upper and lower solution 2000 Mathematics subject classification: Primary 34B15

1. Introduction

The singular boundary-value problem (BVP) of the form

$$
\left.\begin{array}{c}
-u^{\prime \prime}=f(t, u), \quad t \in(0,1) \tag{1.1}\\
u(0)=0=u(1)
\end{array}\right\}
$$

occurs in several problems in applied mathematics $[\mathbf{1}-\mathbf{4}]$. In this paper we investigate a more general non-resonant singular Dirichlet BVP, namely

$$
\left.\begin{array}{c}
-u^{\prime \prime}+p(t) u=f(t, u), \quad t \in(0,1) \tag{1.2}\\
u(0)=0=u(1)
\end{array}\right\}
$$

where $p \in C[0,1], p(t)>0$ for $t \in(0,1)$, and $f:(0,1) \times(0, \infty) \rightarrow R$ is continuous. Notice that f may be singular at $t=0,1$ and $u=0$. We obtain the existence of $C[0,1] \cap C^{2}(0,1)$ non-negative solutions. Of course, by a solution u of the BVP (1.2) we mean $u:[0,1] \rightarrow R$, which satisfies the differential equation in (1.2) on $(0,1)$ and the stated boundary data.

We will let $C[0,1]$ denote the class of maps u which are continuous on $[0,1]$, with norm $|u|_{\infty}=\max _{t \in[0,1]}|u(t)|$. Let

$$
\begin{align*}
& M=\left\{h \in C(0,1): \int_{0}^{1} s(1-s)|h(s)| \mathrm{d} s<\infty\right. \\
& \quad \lim _{t \rightarrow 0^{+}} t^{2}(1-t)|h(t)|=0 \text { if } \int_{0}^{1}(1-s)|h(s)| \mathrm{d} s=\infty \\
& \left.\quad \text { and } \lim _{t \rightarrow 1^{-}} t(1-t)^{2}|h(t)|=0 \text { if } \int_{0}^{1} s|h(s)| \mathrm{d} s=\infty\right\} \tag{1.3}
\end{align*}
$$

The main results of the paper are as follows.
Theorem 1.1. Suppose the following conditions hold.
(H1) There exists a constant $L>0$ such that, for any compact set $K \subset(0,1)$, there is $\varepsilon=\varepsilon_{K}>0$ with

$$
f(t, x) \geqslant L \quad \text { for all } t \in K, x \in(0, \varepsilon]
$$

(H2) For any $\delta>0$ there exist $h_{\delta} \in M, h_{\delta}(t)>0$ for $t \in(0,1)$ such that

$$
|f(t, x)| \leqslant h_{\delta}(t) \quad \text { for all } t \in(0,1), x \geqslant \delta
$$

Then problem (1.2) has at least one positive solution $u \in C[0,1] \cap C^{2}(0,1)$. If, moreover, $f(t, \cdot)$ is non-increasing, for each $t \in(0,1)$, then the solution is unique.

Theorem 1.2. Suppose that (H1) holds. Moreover, suppose the following conditions also hold.
(H3) $f(t, x)=q(t) m(t, x)$ with $q>0$ on $(0,1), q \in M$ and $m:[0,1] \times(0, \infty) \rightarrow R$ is continuous with

$$
|m(t, x)| \leqslant g(x)+h(x) \text { on }[0,1] \times(0, \infty)
$$

$g>0$ continuous and non-increasing on $(0, \infty)$, $h \geqslant 0$ continuous on $[0, \infty)$
h / g non-decreasing on $(0, \infty)$.
(H4) For any $R>0,1 / g$ is differentiable on $(0, R]$ with $g^{\prime}<0$ a.e. on $(0, R]$ and $g^{\prime} / g^{2} \in L^{1}[0, R]$. In addition, suppose that there exists $C>0$ with

$$
\left[1+\frac{h(C)}{g(C)}\right]^{-1} \int_{0}^{C} \frac{\mathrm{~d} u}{g(u)}>b_{0}
$$

holding; here

$$
b_{0}=2 \max \left\{\int_{0}^{1 / 2} t(1-t) q(t) \mathrm{d} t, \int_{1 / 2}^{1} t(1-t) q(t) \mathrm{d} t\right\}
$$

Then problem (1.2) has at least one positive solution $u \in C[0,1] \cap C^{2}(0,1)$.

Remark 1.3. In [3], the authors consider the BVP (1.2) with $p(t) \equiv 0$ for $t \in[0,1]$ under conditions (H1) and (H2).

Remark 1.4. In [1, p. 186], the authors consider the BVP (1.2) with $p(t) \equiv 0$ for $t \in[0,1]$ under conditions (H1), (H3) and (H4).

Remark 1.5. If $p \in C[0,1], p(t)>0$ for $t \in(0,1)$, then note that

$$
\begin{aligned}
-u^{\prime \prime}+p(t) u & =0, \quad t \in(0,1) \\
u(0) & =0=u(1)
\end{aligned}
$$

has only the trivial solution.
Corollary 1.6. Suppose (H1) and (H2) (or (H1), (H3) and (H4)) hold. Then, for every fixed $\lambda>0$, the problem

$$
\begin{gathered}
-u^{\prime \prime}+\lambda u=f(t, u), \quad t \in(0,1) \\
u(0)=0=u(1)
\end{gathered}
$$

has at least one positive solution $u \in C[0,1] \cap C^{2}(0,1)$.
To conclude this section we look at an example. Consider the BVP

$$
\left.\begin{array}{rl}
-u^{\prime \prime}(t)+\lambda u & =\frac{1}{u^{\alpha}} \quad \text { for } t \in(0,1) \tag{1.4}\\
u(0) & =u(1)=0
\end{array}\right\}
$$

where $\lambda \geqslant 0$ and $\alpha>0$.
For this example we cannot apply [3, Theorem 2]. Also it is difficult to demonstrate the conditions (for example $\lambda=2, \alpha=20$) [1, Theorem 2.7.7]. However Corollary 1.6 immediately guarantees that (1.4) at least has a solution $u \in C[0,1] \cap C^{2}(0,1)$ with $u(t)>0$ for $t \in(0,1)$ for every fixed $\lambda \geqslant 0, \alpha>0$.

2. The proof of Theorem 1.1

From [1, Theorem 1.11.1], we know that

$$
\begin{gathered}
-u^{\prime \prime}+p(t) u=0, \quad t \in(0,1) \\
u(0)=0, \quad u^{\prime}(0)=1
\end{gathered}
$$

has only one increasing positive solution $e_{1}(t)=t b_{1}(t) \in C[0,1] \cap C^{1}[0,1)$, where $b_{1} \in$ $C[0,1]$ satisfies

$$
b_{1}(t)=1+\frac{1}{t} \int_{0}^{t} \int_{0}^{\eta} \tau p(\tau) b_{1}(\tau) \mathrm{d} \tau \mathrm{~d} \eta
$$

Also,

$$
\begin{gathered}
-u^{\prime \prime}+p(t) u=0, \quad t \in(0,1) \\
u(1)=0, \quad u^{\prime}(1)=-1
\end{gathered}
$$

has only one decreasing positive solution $e_{2}(t)=(1-t) b_{2}(t) \in C[0,1] \cap C^{1}(0,1]$, where $b_{2} \in C[0,1]$ satisfies

$$
b_{2}(t)=1+\frac{1}{1-t} \int_{t}^{1} \int_{\eta}^{1}(1-\tau) p(\tau) b_{2}(\tau) \mathrm{d} \tau \mathrm{~d} \eta
$$

Let

$$
G(t, s)=\frac{1}{\omega} \begin{cases}e_{2}(t) e_{1}(s), & 0 \leqslant s \leqslant t \leqslant 1 \tag{2.1}\\ e_{2}(s) e_{1}(t), & 0 \leqslant t \leqslant s \leqslant 1\end{cases}
$$

where

$$
\omega=\left|\begin{array}{ll}
e_{2}(t) & e_{2}^{\prime}(t) \\
e_{1}(t) & e_{1}^{\prime}(t)
\end{array}\right|=\text { const. }>0
$$

It is easy to see that

$$
\begin{equation*}
0 \leqslant G(t, s) \leqslant G(s, s), \quad 0 \leqslant s, t \leqslant 1 \tag{2.2}
\end{equation*}
$$

Consider the two-point BVP

$$
\left.\begin{array}{c}
-u^{\prime \prime}+p(t) u=v(t, u), \quad t \in(0,1) \tag{2.3}\\
u(0)=a=u(1)
\end{array}\right\}
$$

where $v: D \rightarrow R$ is a continuous function and $D \subset(0,1) \times R$. By a solution $u(\cdot)$ of (2.3) we mean a function $u \in C[0,1] \cap C^{2}(0,1)$ such that $(t, u(t)) \in D$ for all $t \in(0,1)$ and $-u^{\prime \prime}+p(t) u=v(t, u)$ for all $t \in(0,1)$ with $u(0)=a=u(1)$.

Let $\alpha \in C[0,1] \cap C^{2}(0,1)$ satisfy the following conditions: $(t, \alpha(t)) \in D$ for all $t \in(0,1)$ and

$$
\begin{gathered}
-\alpha^{\prime \prime}+p(t) \alpha \leqslant v(t, \alpha), \quad t \in(0,1) \\
\alpha(0) \leqslant a, \quad \alpha(1) \leqslant a
\end{gathered}
$$

In this case, we say that $\alpha(\cdot)$ is a lower solution of problem (2.3). The definition of an upper solution $\beta(\cdot)$ of problem (2.3) is given in a completely similar way, just by reversing the above inequalities. Also, if $\alpha, \beta \in C[0,1]$ are such that $\alpha(t) \leqslant \beta(t)$ for all $t \in[0,1]$, we define the set

$$
D_{\alpha}^{\beta}:=\{(t, x) \in(0,1) \times R: \alpha(t) \leqslant x \leqslant \beta(t)\}
$$

We then have the following result.
Theorem 2.1. Let α and β be, respectively, a lower solution and an upper solution of problem (2.3) such that
(a1) $\alpha(t) \leqslant \beta(t)$ for all $t \in[0,1]$, and
(a2) $D_{\alpha}^{\beta} \subset D$.

Assume also that there is a function $h \in M, h(t)>0$, for $t \in(0,1)$, such that
(a3) $|v(t, x)| \leqslant h(t)$ for all $(t, x) \in D_{\alpha}^{\beta}$.
Then problem (2.3) has at least one solution $\tilde{u}(\cdot)$ such that

$$
\alpha(t) \leqslant \tilde{u}(t) \leqslant \beta(t) \quad \text { for all } t \in(0,1)
$$

Proof of Theorem 2.1. The proof follows the argument in [3]. For convenience, we sketch it here.

First of all we define an auxiliary function

$$
v^{*}(t, x):= \begin{cases}v(t, \alpha(t)), & x<\alpha(t) \\ v(t, x), & \alpha(t) \leqslant x \leqslant \beta(t) \\ v(t, \beta(t)), & x>\beta(t)\end{cases}
$$

By (a2) and the definition of v^{*} it can easily be checked that $v^{*}:(0,1) \times R \rightarrow R$ is continuous. From (a3) we have

$$
\begin{equation*}
\left|v^{*}(t, x)\right| \leqslant h(t) \quad \text { for }(t, x) \in(0,1) \times R . \tag{2.4}
\end{equation*}
$$

Consider now the problem

$$
\left.\begin{array}{c}
-u^{\prime \prime}+p(t) u=v^{*}(t, u) \quad \text { for } t \in(0,1) \tag{2.5}\\
u(0)=a=u(1)
\end{array}\right\}
$$

It can easily be verified that the Green function of the problem

$$
\begin{gathered}
-u^{\prime \prime}+p(t) u=v^{*}(t, u) \quad \text { for } t \in(0,1) \\
u(0)=0=u(1)
\end{gathered}
$$

is the function $G:[0,1] \times[0,1] \rightarrow[0, \infty)$ given by (2.1). Define the operator T by

$$
(T u)(t):=a+\int_{0}^{1} G(t, s) v^{*}(s, u(s)) \mathrm{d} s
$$

From (2.4) and the definition of v^{*} it follows that

$$
T: X=C[0,1] \rightarrow X
$$

is defined, continuous and that $T(X)$ is a bounded set. Moreover, $u \in X$ is a solution of (2.5) if and only if $u=T u$.

The existence of a fixed point for the operator T will now follow from the Schauder fixed-point theorem if we show that $T(X)$ is relatively compact.

Let $t \in(0,1)$. Then, using (2.4), we have

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} t} T(u)(t)\right| \leqslant \frac{C_{1}}{\omega}\left[\int_{t}^{1} e_{2}(s) h(s) \mathrm{d} s+\int_{0}^{t} e_{1}(s) h(s) \mathrm{d} s\right],
$$

where

$$
C_{1}=\max \left\{\left(1+\int_{0}^{1} \tau p(\tau) b_{1}(\tau) \mathrm{d} \tau\right),\left(1+\int_{0}^{1}(1-\tau) p(\tau) b_{2}(\tau) \mathrm{d} \tau\right)\right\}
$$

Letting

$$
\tau(t)=\int_{t}^{1} e_{2}(s) h(s) \mathrm{d} s+\int_{0}^{t} e_{1}(s) h(s) \mathrm{d} s
$$

we obtain

$$
\int_{0}^{1}|\tau(t)| \mathrm{d} t \leqslant 2 \omega \int_{0}^{1} G(s, s) h(s) \mathrm{d} s<\infty
$$

This is sufficient to ensure the relative compactness of the image $T(X)$ via the AscoliArzelà theorem.

As a result, (2.5) has a solution $u \in C[0,1]$. We claim that

$$
\begin{equation*}
\alpha(t) \leqslant u(t) \leqslant \beta(t) \quad \text { for all } t \in[0,1] \tag{2.6}
\end{equation*}
$$

Suppose that, without loss of generality, the first inequality is not true. Then there exists a $t^{*} \in(0,1)$ with $u\left(t^{*}\right)<\alpha\left(t^{*}\right)$. By continuity, we can find a maximal open interval $\left(t_{1}, t_{2}\right) \subset(0,1)$ such that $t^{*} \in\left(t_{1}, t_{2}\right)$ and

$$
\begin{equation*}
u\left(t_{1}\right)=\alpha\left(t_{1}\right), \quad u\left(t_{2}\right)=\alpha\left(t_{2}\right), \quad u(t)<\alpha(t) \quad \text { for all } t \in\left(t_{1}, t_{2}\right) \tag{2.7}
\end{equation*}
$$

For $t \in\left(t_{1}, t_{2}\right)$, we have $v^{*}(t, u(t))=v(t, \alpha(t))$ and, therefore,

$$
-u^{\prime \prime}+p(t) u=v(t, \alpha(t)) \quad \text { for all } t \in\left(t_{1}, t_{2}\right)
$$

On the other hand, as α is a lower solution of (2.3), we also have

$$
-\alpha^{\prime \prime}+p(t) \alpha \leqslant v(t, \alpha(t)) \quad \text { for all } t \in\left(t_{1}, t_{2}\right)
$$

Then, setting

$$
z(t):=\alpha(t)-u(t) \quad \text { for } t \in\left[t_{1}, t_{2}\right]
$$

we obtain

$$
\begin{equation*}
-z^{\prime \prime}+p(t) z \leqslant 0 \quad \text { for } t \in\left(t_{1}, t_{2}\right) \tag{2.8}
\end{equation*}
$$

with $z(t)>0$ for $t \in\left(t_{1}, t_{2}\right)$ and $z\left(t_{1}\right)=0=z\left(t_{2}\right)$. Multiplying (2.8) by

$$
G_{0}(t, s)=\frac{1}{t_{2}-t_{1}} \begin{cases}\left(s-t_{1}\right)\left(t_{2}-t\right) & \text { for } t_{1} \leqslant s \leqslant t \leqslant t_{2} \\ \left(t-t_{1}\right)\left(t_{2}-s\right) & \text { for } t_{1} \leqslant t \leqslant s \leqslant t_{2}\end{cases}
$$

and integrating both sides from t_{1} to t_{2} we have

$$
-\int_{t_{1}}^{t_{2}} G_{0}(t, s) z^{\prime \prime}(s) \mathrm{d} s+\int_{t_{1}}^{t_{2}} G_{0}(t, s) p(s) z(s) \mathrm{d} s \leqslant 0
$$

Using

$$
-\int_{t_{1}}^{t_{2}} G_{0}(t, s) z^{\prime \prime}(s) \mathrm{d} s=z(t)
$$

we have

$$
\begin{equation*}
z(t)+v(t) \leqslant 0 \quad \text { for } t \in\left[t_{1}, t_{2}\right] \tag{2.9}
\end{equation*}
$$

where

$$
w(t)=\int_{t_{1}}^{t_{2}} G_{0}(t, s) p(s) z(s) \mathrm{d} s
$$

Now, since $z(t)>0$ for $t \in\left(t_{1}, t_{2}\right)$, we have

$$
w^{\prime \prime}=-p(t) z(t)<0 \quad \text { for } t \in\left(t_{3}, t_{4}\right)
$$

and $w\left(t_{1}\right)=w\left(t_{2}\right)=0$. Thus, $w(t) \geqslant 0$ for $t \in\left(t_{1}, t_{2}\right)$, so $z(t)+w(t)>0$ for $t \in\left(t_{1}, t_{2}\right)$. This contradicts (2.9).

The proof of Theorem 1.1 follows closely the ideas in [3]. For completeness we briefly sketch the proof.

Proof of Theorem 1.1. For any $n \in N, n \geqslant 1$, let e_{n} be the compact subinterval of $(0,1)$ defined by

$$
e_{n}:=\left[\frac{1}{2^{n+1}}, 1-\frac{1}{2^{n+1}}\right]
$$

From assumption (H1), there exists an $\varepsilon_{n}>0$ such that

$$
f(t, u)>L \text { for }(t, u) \in e_{n} \times\left(0, \varepsilon_{n}\right] \quad \text { and } \quad \varepsilon_{n} \leqslant \frac{L}{\max _{t \in[0,1]} p(t)}
$$

Without loss of generality (taking, if we need to, a smaller ε_{n}), we can assume that $\left\{\varepsilon_{n}\right\}$ is a decreasing sequence and $\lim _{n \rightarrow+\infty} \varepsilon_{n}=0$.

We can choose a function $\alpha \in C[0,1] \cap C^{2}(0,1)$ (see $[\mathbf{3}$, p. 692]) such that

$$
\left.\begin{array}{c}
\alpha(0)=0, \quad \alpha(1)=0 \tag{2.10}\\
\alpha(t)>0 \quad \text { for } t \in(0,1) \\
\left.\alpha(t) \leqslant\left\{\begin{array}{ll}
\varepsilon_{1} & \text { for } t \in e_{1} \\
\varepsilon_{n} & \text { for } t \in e_{n} \backslash e_{n-1}, n \geqslant 2
\end{array}\right\} ;\right\} ? ~
\end{array}\right\}
$$

Note that

$$
\begin{equation*}
f(t, u) \geqslant L, \quad \forall(t, u) \in(0,1) \times\{u \in(0, \infty): 0<u \leqslant \alpha(t)\} \tag{2.11}
\end{equation*}
$$

Set

$$
k_{0}:=\min \left\{1, \frac{L}{\left|\alpha^{\prime \prime}\right|_{\infty}+|p \alpha|_{\infty}+1}\right\}
$$

Now we make some claims that yield the proof of the theorem.

Claim 1. Let $h(t, u) \geqslant f(t, u)$ for $(t, u) \in(0,1) \times(0, \infty)$ with $h:(0,1) \times(0, \infty) \rightarrow$ $(0, \infty)$ a continuous function and let $v \in C[0,1] \cap C^{2}(0,1), v(t)>0$ for $t \in(0,1)$ be any solution of

$$
\begin{aligned}
& -v^{\prime \prime}+p(t) v=h(t, v) \\
& v(0) \geqslant 0, \quad v(1) \geqslant 0
\end{aligned}
$$

Then

$$
\begin{equation*}
v(t) \geqslant k_{0} \alpha(t) \quad \text { for } t \in[0,1] \tag{2.12}
\end{equation*}
$$

The proof is similar to the proof of [1, Theorem 2] and that of (2.6) in this paper. We omit it here.

We define now, for each $n \in N, n \geqslant 1$,

$$
\eta_{n}(t):=\max \left\{\frac{1}{2^{n+1}}, \min \left\{t, 1-\frac{1}{2^{n+1}}\right\}\right\} \quad \text { for } t \in(0,1)
$$

and set

$$
\tilde{f}_{n}(t, u):=\max \left\{f\left(\eta_{n}(t), u\right), f(t, u)\right\} .
$$

We find that, for each index n, $\tilde{f}_{n}:(0,1) \times(0, \infty) \rightarrow(-\infty, \infty)$ is continuous and

$$
\begin{aligned}
& \tilde{f}_{n}(t, u) \geqslant f(t, u) \quad \text { for }(t, u) \in(0,1) \times(0, \infty) \\
& \tilde{f}_{n}(t, u)=f(t, u) \quad \text { for }(t, u) \in e_{n} \times(0, \infty)
\end{aligned}
$$

Hence, the sequence of function $\left\{\tilde{f}_{n}\right\}$ converges to f uniformly on any set of the form $K \times(0, \infty)$, where K is an arbitrary compact subset of $(0,1)$.

Next we define, by induction,

$$
\begin{aligned}
f_{1}(t, u) & :=\tilde{f}_{1}(t, u), \\
f_{2}(t, u) & :=\min \left\{f_{1}(t, u), \tilde{f}_{2}(t, u)\right\}, \\
& \vdots \\
f_{n+1}(t, u) & :=\min \left\{f_{n}(t, u), \tilde{f}_{n+1}(t, u)\right\},
\end{aligned}
$$

Each of the f_{i} is a continuous function defined on $(0,1) \times(0, \infty)$. Moreover,

$$
\begin{equation*}
f_{1}(t, u) \geqslant f_{2}(t, u) \geqslant \cdots \geqslant f_{n}(t, u) \geqslant f_{n+1}(t, u) \geqslant \cdots \geqslant f(t, u) \tag{2.13}
\end{equation*}
$$

and the sequence $\left\{f_{n}\right\}$ converges to f uniformly on compact subsets of $(0,1) \times(0, \infty)$. We also note that

$$
f_{n}(t, u)=f(t, u) \quad \text { for }(t, u) \in e_{n} \times(0, \infty)
$$

Consider the sequence of BVPs

$$
\left.\begin{array}{rl}
-u^{\prime \prime}+p(t) u & =f_{n}(t, u) \quad \text { in }(0,1) \tag{2.14}\\
u(0) & =u(1)=\varepsilon_{n}
\end{array}\right\}
$$

Claim 2. For any $c \in\left(0, \varepsilon_{n}\right]$, the constant function $\alpha_{n}(\cdot) \equiv c$ is a lower solution of problem $(2.14)_{n}$.

It is easy to prove (i.e. it is clear once we prove (use induction), for each $t \in(0,1)$, that $c p(t) \leqslant f_{n}(t, c)$ for $\left.t \in\left(0, \varepsilon_{n}\right]\right)$, so we leave the details to the reader.

Claim 3. Any solution $u_{n}(\cdot)$ of (2.14) n_{n} is an upper solution of $(2.14)_{n+1}$.
Proof of Claim 3. From (2.13) we have

$$
-u_{n}^{\prime \prime}+p(t) u_{n}=f_{n}\left(t, u_{n}\right) \geqslant f_{n+1}\left(t, u_{n}\right) \quad \text { for } t \in(0,1)
$$

Moreover, $u_{n}(0)=u(1)=\varepsilon_{n}>\varepsilon_{n+1}$ and the conclusion follows.
Claim 4. Problem (2.14) ${ }_{1}$ has at least one solution.

Proof of Claim 4. We fix a constant $c_{1}>\varepsilon_{1}$. From (H2) we can find a function $h_{c_{1}} \in M$ such that

$$
|f(t, u)| \leqslant h_{c_{1}}(t) \quad \text { for }(t, u) \in(0,1) \times\left(c_{1}, \infty\right)
$$

Moreover,

$$
\left|f\left(\eta_{1}(t), u\right)\right| \leqslant h_{c_{1}}\left(\eta_{1}(t)\right) \leqslant R \quad \text { for }(t, u) \in(0,1) \times\left(c_{1}, \infty\right)
$$

where $R>c_{1} \max _{t \in[0,1]} p(t)$ is a suitable constant. Setting $q(t):=h_{c_{1}}(t)+R$, we have $q \in M$ with

$$
\begin{equation*}
\left|f_{1}(t, u)\right| \leqslant q(t) \quad \text { for }(t, u) \in(0,1) \times\left(c_{1}, \infty\right) \tag{2.15}
\end{equation*}
$$

Let $\beta \in C[0,1] \cap C^{2}(0,1)$ be the solution of the BVP

$$
\begin{gathered}
-u^{\prime \prime}+p(t) u=q(t), \\
u(0)=u(1)=c_{1} .
\end{gathered}
$$

It is easy to check that such a solution exists. We can prove (see the proof of (2.6)) that

$$
\beta(t) \geqslant c_{1} \quad \text { for } t \in[0,1] .
$$

From (2.15), we have

$$
-\beta^{\prime \prime}+p(t) \beta=q(t) \geqslant f_{1}(t, \beta)
$$

and so β is an upper solution of problem $(2.14)_{1}$.
If we now take $\alpha_{1} \equiv \varepsilon_{1}$ and recall Claim 2, we find that α_{1} and $\beta_{1}:=\beta$ are a lower solution and an upper solution, respectively, of problem $(2.14)_{1}$ with $\alpha_{1}(t) \leqslant \beta_{1}(t)$ for $t \in(0,1)$. Then, by Theorem 2.1 we know that there is a solution $u_{1}(\cdot)$ of $(2.14)_{1}$ such that $\varepsilon_{1}=\alpha_{1}(t) \leqslant u_{1}(t) \leqslant \beta_{1}(t)$ for $t \in(0,1)$. Claim 4 is thus proved.

By Claim 2 and proceeding by induction using Claim 3, we obtain (via Theorem 2.1) a sequence $\left\{u_{n}(\cdot)\right\}$ of solutions to $(2.14)_{n}$ such that

$$
\begin{array}{cc}
\varepsilon_{n} \leqslant u_{n}(t) \leqslant u_{n-1}(t) & \text { for } t \in[0,1], \\
k_{0} \alpha(t) \leqslant u_{n}(t) & \text { for } t \in[0,1], \\
u_{n}(0)=\varepsilon_{n}, \quad u_{n}(1)=\varepsilon_{n} .
\end{array}
$$

We see that the series of functions $\left\{u_{j}(t)\right\}_{j=1}^{\infty}$ converges pointwise on $[0,1]$. Let

$$
u(t)=\lim _{n \rightarrow \infty} u_{n}(t) .
$$

It is clear that, for any $n \geqslant 1$,

$$
\begin{equation*}
k_{0} \alpha(t) \leqslant u(t) \leqslant u_{n}(t) \quad \text { for } t \in[0,1] . \tag{2.16}
\end{equation*}
$$

Now let $K \subset(0,1)$ be a compact interval.
There is an index $n^{*}=n^{*}(K)$ such that $K \subset K_{n}$ for all $n \geqslant n^{*}$ and, therefore, for these $n \geqslant n^{*}$,

$$
-u_{n}^{\prime \prime}+p(t) u_{n}=f_{n}\left(t, u_{n}(t)\right)=f\left(t, u_{n}(t)\right) \quad \text { for } t \in K .
$$

Hence, the function u_{n} is a solution of equation (1.2) for all $t \in K$ and $n \geqslant n^{*}$. Moreover,

$$
\sup \left\{|f(t, x)|+p(t) x: t \in K, k_{0} \alpha(t) \leqslant x \leqslant u_{n^{*}}(t)\right\}<\infty .
$$

Thus, by the Ascoli-Arzelà theorem one can conclude that u is a solution of (1.2) on interval K. Since K was arbitrary, we find that

$$
-u^{\prime \prime}+p(t) u=f(t, u) \quad \text { for } t \in(0,1) .
$$

Moreover, $u(0)=u(1)=\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. One can easily prove (see [3, p. 697]) that u is continuous at $t=0,1$.

Using the method in the proof of (2.6) we can easily make the following claim.
Claim 5. Suppose that, for each $t \in(0,1), f(t \cdot)$ is non-increasing. Then (1.2) has at most one solution.

3. The proof of Theorem 1.2

Let

$$
f^{*}(t, x)= \begin{cases}f(t, x), & x \leqslant C, \\ f(t, C), & x>C,\end{cases}
$$

and

$$
m^{*}(t, x)= \begin{cases}m(t, x), & x \leqslant C, \\ m(t, C), & x>C\end{cases}
$$

Consider the BVP

$$
\left.\begin{array}{c}
-u^{\prime \prime}+p(t) u=f^{*}(t, u), \quad t \in(0,1) \tag{3.1}\\
u(0)=0=u(1)
\end{array}\right\}
$$

Theorem 1.1 guarantees that problem (3.1) has a positive solution $u^{*} \in C[0,1] \cap C^{2}(0,1)$.
Next we show that

$$
\begin{equation*}
u^{*}(t) \leqslant C \quad \text { for } t \in[0,1] \tag{3.2}
\end{equation*}
$$

Suppose that (3.2) is false. Now, since $u^{*}(0)=u^{*}(1)=0$, there exists either
(i) $t_{1}, t_{2} \in(0,1), t_{2}<t_{1}$ with $0<u^{*}(t) \leqslant C$ for $t \in\left[0, t_{2}\right), u^{*}(t)=C$ and $u^{*}(t)>C$ on $\left(t_{2}, t_{1}\right)$ with $u^{* \prime}\left(t_{1}\right)=0$, or
(ii) $t_{3}, t_{4} \in(0,1), t_{4}<t_{3}$ with $0<u^{*}(t) \leqslant C$ for $t \in\left(t_{3}, 1\right], u^{*}\left(t_{3}\right)=C$ and $u^{*}(t)>C$ on $\left(t_{4}, t_{3}\right)$ with $u^{* \prime}\left(t_{4}\right)=0$.

We can assume without loss of generality that either $t_{1} \leqslant \frac{1}{2}$ or $t_{4} \geqslant \frac{1}{2}$. Suppose $t_{1} \leqslant \frac{1}{2}$.
Notice that for $t \in\left(t_{2}, t_{1}\right)$ we have

$$
\begin{align*}
-u^{* \prime \prime} & \leqslant-u^{* \prime \prime}+p(t) u^{*} \\
& =q(t) m^{*}\left(t, u^{*}\right) \\
& =q(t) m(t, C) \\
& \leqslant q(t)[g(C)+h(C)] . \tag{3.3}
\end{align*}
$$

Integrate (3.3) from t_{2} to t_{1} to obtain

$$
u^{* \prime}\left(t_{2}\right) \leqslant[g(C)+h(C)] \int_{t_{2}}^{t_{1}} q(s) \mathrm{d} s
$$

and this, together with $u^{*}\left(t_{2}\right)=C$, yields

$$
\begin{equation*}
\frac{u^{* \prime}\left(t_{2}\right)}{g\left(u^{*}\left(t_{2}\right)\right)} \leqslant\left[1+\frac{h(C)}{g(C)}\right] \int_{t_{2}}^{t_{1}} q(s) \mathrm{d} s \tag{3.4}
\end{equation*}
$$

Also, for $t \in\left(0, t_{2}\right)$ we have

$$
\begin{aligned}
-u^{* \prime \prime} & \leqslant-u^{* \prime \prime}+p(t) u^{*}=q(t) m\left(t, u^{*}\right) \\
& \leqslant q(t)\left[g\left(u^{*}(t)\right)+h\left(u^{*}(t)\right)\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{-u^{* \prime \prime}(t)}{g\left(u^{*}(t)\right)} & \leqslant q(t)\left[1+\frac{h\left(u^{*}(t)\right)}{g\left(u^{*}(t)\right)}\right] \\
& \leqslant q(t)\left[1+\frac{h(C)}{g(C)}\right] \quad \text { for } t \in\left(0, t_{2}\right)
\end{aligned}
$$

Integrate from $t \in\left(0, t_{2}\right)$ to t_{2} to obtain

$$
\begin{equation*}
\frac{-u^{* \prime}\left(t_{2}\right)}{g\left(u^{*}\left(t_{2}\right)\right)}+\frac{u^{* \prime}(t)}{g\left(u^{*}(t)\right)}+\int_{t}^{t_{2}}\left\{\frac{-g^{\prime}\left(u^{*}(t)\right)}{g^{2}\left(u^{*}(t)\right)}\right\}\left[u^{* \prime}(t)\right]^{2} \mathrm{~d} t \leqslant\left[1+\frac{h(C)}{g(C)}\right] \int_{t}^{t_{2}} q(s) \mathrm{d} s \tag{3.5}
\end{equation*}
$$

and this, together with (3.4) and (3.5), yields

$$
\frac{u^{* \prime}(t)}{g\left(u^{*}(t)\right)} \leqslant\left[1+\frac{h(C)}{g(C)}\right] \int_{t}^{t_{1}} q(s) \mathrm{d} s \quad \text { for } t \in\left(0, t_{2}\right)
$$

Integrate from 0 to t_{2} to find

$$
\int_{0}^{C} \frac{\mathrm{~d} v}{g(v)} \leqslant\left[1+\frac{h(C)}{g(C)}\right] \frac{1}{1-t_{1}} \int_{0}^{t_{1}} s(1-s) q(s) \mathrm{d} s
$$

i.e.

$$
\begin{aligned}
\int_{0}^{C} \frac{\mathrm{~d} v}{g(v)} & \leqslant 2\left[1+\frac{h(C)}{g(C)}\right] \int_{0}^{1 / 2} s(1-s) q(s) \mathrm{d} s \\
& \leqslant b_{0}\left[1+\frac{h(C)}{g(C)}\right]
\end{aligned}
$$

This is a contradiction, so (3.2) holds (a similar argument yields a contradiction if $t_{4} \geqslant \frac{1}{2}$). Thus, we have

$$
0<u^{*}(t) \leqslant C \quad \text { for } t \in(0,1), \quad u^{*}(0)=u^{*}(1)=0
$$

so $u^{*} \in C[0,1] \cap C^{2}(0,1)$ is a positive solution of problem (1.2).
Acknowledgements. This research is supported by the National Natural Science Foundation of China (Grant no. 10301033).

References

1. R. P. Agarwal and D. O'Regan, Singular differential and integral equations with applications (Kluwer, Dordrecht, 2003).
2. C. Aranda and T. Godoy, On a nonlinear Dirichlet problem with a singularity along the boundary, Diff. Integ. Eqns 15 (2002), 1313-1324.
3. P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fower equation, J. Math. Analysis Applic. 181 (1994), 684-700.
4. D. O'Regan, Theory of singular boundary value problems (World Scientific, 1994).
