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Abstract This paper presents new existence results for the singular boundary-value problem

−u′′ + p(t)u = f(t, u), t ∈ (0, 1),

u(0) = 0 = u(1).

In particular, our nonlinearity f may be singular at t = 0, 1 and u = 0.
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1. Introduction

The singular boundary-value problem (BVP) of the form

−u′′ = f(t, u), t ∈ (0, 1),

u(0) = 0 = u(1),

}
(1.1)

occurs in several problems in applied mathematics [1–4]. In this paper we investigate a
more general non-resonant singular Dirichlet BVP, namely

−u′′ + p(t)u = f(t, u), t ∈ (0, 1),

u(0) = 0 = u(1).

}
(1.2)

where p ∈ C[0, 1], p(t) > 0 for t ∈ (0, 1), and f : (0, 1)× (0,∞) → R is continuous. Notice
that f may be singular at t = 0, 1 and u = 0. We obtain the existence of C[0, 1]∩C2(0, 1)
non-negative solutions. Of course, by a solution u of the BVP (1.2) we mean u : [0, 1] → R,
which satisfies the differential equation in (1.2) on (0, 1) and the stated boundary data.
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We will let C[0, 1] denote the class of maps u which are continuous on [0, 1], with norm
|u|∞ = maxt∈[0,1] |u(t)|. Let

M =
{

h ∈ C(0, 1) :
∫ 1

0
s(1 − s)|h(s)| ds < ∞,

lim
t→0+

t2(1 − t)|h(t)| = 0 if
∫ 1

0
(1 − s)|h(s)| ds = ∞

and lim
t→1−

t(1 − t)2|h(t)| = 0 if
∫ 1

0
s|h(s)| ds = ∞

}
. (1.3)

The main results of the paper are as follows.

Theorem 1.1. Suppose the following conditions hold.

(H1) There exists a constant L > 0 such that, for any compact set K ⊂ (0, 1), there is
ε = εK > 0 with

f(t, x) � L for all t ∈ K, x ∈ (0, ε].

(H2) For any δ > 0 there exist hδ ∈ M , hδ(t) > 0 for t ∈ (0, 1) such that

|f(t, x)| � hδ(t) for all t ∈ (0, 1), x � δ.

Then problem (1.2) has at least one positive solution u ∈ C[0, 1]∩C2(0, 1). If, moreover,
f(t, ·) is non-increasing, for each t ∈ (0, 1), then the solution is unique.

Theorem 1.2. Suppose that (H1) holds. Moreover, suppose the following conditions
also hold.

(H3) f(t, x) = q(t)m(t, x) with q > 0 on (0, 1), q ∈ M and m : [0, 1] × (0,∞) → R is
continuous with

|m(t, x)| � g(x) + h(x) on [0, 1] × (0,∞),

g > 0 continuous and non-increasing on (0,∞),

h � 0 continuous on [0,∞)

h/g non-decreasing on (0,∞).

(H4) For any R > 0, 1/g is differentiable on (0, R] with g′ < 0 a.e. on (0, R] and
g′/g2 ∈ L1[0, R]. In addition, suppose that there exists C > 0 with[

1 +
h(C)
g(C)

]−1 ∫ C

0

du

g(u)
> b0

holding; here

b0 = 2 max
{∫ 1/2

0
t(1 − t)q(t) dt,

∫ 1

1/2
t(1 − t)q(t) dt

}
.

Then problem (1.2) has at least one positive solution u ∈ C[0, 1] ∩ C2(0, 1).
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Remark 1.3. In [3], the authors consider the BVP (1.2) with p(t) ≡ 0 for t ∈ [0, 1]
under conditions (H1) and (H2).

Remark 1.4. In [1, p. 186], the authors consider the BVP (1.2) with p(t) ≡ 0 for
t ∈ [0, 1] under conditions (H1), (H3) and (H4).

Remark 1.5. If p ∈ C[0, 1], p(t) > 0 for t ∈ (0, 1), then note that

−u′′ + p(t)u = 0, t ∈ (0, 1),

u(0) = 0 = u(1),

has only the trivial solution.

Corollary 1.6. Suppose (H1) and (H2) (or (H1), (H3) and (H4)) hold. Then, for
every fixed λ > 0, the problem

−u′′ + λu = f(t, u), t ∈ (0, 1),

u(0) = 0 = u(1),

has at least one positive solution u ∈ C[0, 1] ∩ C2(0, 1).

To conclude this section we look at an example. Consider the BVP

−u′′(t) + λu =
1
uα

for t ∈ (0, 1),

u(0) = u(1) = 0,

⎫⎬
⎭ (1.4)

where λ � 0 and α > 0.
For this example we cannot apply [3, Theorem 2]. Also it is difficult to demonstrate

the conditions (for example λ = 2, α = 20) [1, Theorem 2.7.7]. However Corollary 1.6
immediately guarantees that (1.4) at least has a solution u ∈ C[0, 1] ∩ C2(0, 1) with
u(t) > 0 for t ∈ (0, 1) for every fixed λ � 0, α > 0.

2. The proof of Theorem 1.1

From [1, Theorem 1.11.1], we know that

−u′′ + p(t)u = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = 1,

has only one increasing positive solution e1(t) = tb1(t) ∈ C[0, 1] ∩ C1[0, 1), where b1 ∈
C[0, 1] satisfies

b1(t) = 1 +
1
t

∫ t

0

∫ η

0
τp(τ)b1(τ) dτ dη.

Also,

−u′′ + p(t)u = 0, t ∈ (0, 1),

u(1) = 0, u′(1) = −1
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has only one decreasing positive solution e2(t) = (1 − t)b2(t) ∈ C[0, 1] ∩ C1(0, 1], where
b2 ∈ C[0, 1] satisfies

b2(t) = 1 +
1

1 − t

∫ 1

t

∫ 1

η

(1 − τ)p(τ)b2(τ) dτ dη.

Let

G(t, s) =
1
ω

{
e2(t)e1(s), 0 � s � t � 1,

e2(s)e1(t), 0 � t � s � 1,
(2.1)

where

ω =

∣∣∣∣∣e2(t) e′
2(t)

e1(t) e′
1(t)

∣∣∣∣∣ = const. > 0.

It is easy to see that
0 � G(t, s) � G(s, s), 0 � s, t � 1. (2.2)

Consider the two-point BVP

−u′′ + p(t)u = v(t, u), t ∈ (0, 1),

u(0) = a = u(1),

}
(2.3)

where v : D → R is a continuous function and D ⊂ (0, 1) × R. By a solution u(·) of (2.3)
we mean a function u ∈ C[0, 1] ∩ C2(0, 1) such that (t, u(t)) ∈ D for all t ∈ (0, 1) and
−u′′ + p(t)u = v(t, u) for all t ∈ (0, 1) with u(0) = a = u(1).

Let α ∈ C[0, 1]∩C2(0, 1) satisfy the following conditions: (t, α(t)) ∈ D for all t ∈ (0, 1)
and

−α′′ + p(t)α � v(t, α), t ∈ (0, 1),

α(0) � a, α(1) � a.

In this case, we say that α(·) is a lower solution of problem (2.3). The definition of an
upper solution β(·) of problem (2.3) is given in a completely similar way, just by reversing
the above inequalities. Also, if α, β ∈ C[0, 1] are such that α(t) � β(t) for all t ∈ [0, 1],
we define the set

Dβ
α := {(t, x) ∈ (0, 1) × R : α(t) � x � β(t)}.

We then have the following result.

Theorem 2.1. Let α and β be, respectively, a lower solution and an upper solution
of problem (2.3) such that

(a1) α(t) � β(t) for all t ∈ [0, 1], and

(a2) Dβ
α ⊂ D.
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Assume also that there is a function h ∈ M , h(t) > 0, for t ∈ (0, 1), such that

(a3) |v(t, x)| � h(t) for all (t, x) ∈ Dβ
α.

Then problem (2.3) has at least one solution ũ(·) such that

α(t) � ũ(t) � β(t) for all t ∈ (0, 1).

Proof of Theorem 2.1. The proof follows the argument in [3]. For convenience, we
sketch it here.

First of all we define an auxiliary function

v∗(t, x) :=

⎧⎪⎨
⎪⎩

v(t, α(t)), x < α(t),

v(t, x), α(t) � x � β(t),

v(t, β(t)), x > β(t).

By (a2) and the definition of v∗ it can easily be checked that v∗ : (0, 1) × R → R is
continuous. From (a3) we have

|v∗(t, x)| � h(t) for (t, x) ∈ (0, 1) × R. (2.4)

Consider now the problem

−u′′ + p(t)u = v∗(t, u) for t ∈ (0, 1),

u(0) = a = u(1).

}
(2.5)

It can easily be verified that the Green function of the problem

−u′′ + p(t)u = v∗(t, u) for t ∈ (0, 1),

u(0) = 0 = u(1)

is the function G : [0, 1] × [0, 1] → [0,∞) given by (2.1). Define the operator T by

(Tu)(t) := a +
∫ 1

0
G(t, s)v∗(s, u(s)) ds.

From (2.4) and the definition of v∗ it follows that

T : X = C[0, 1] → X

is defined, continuous and that T (X) is a bounded set. Moreover, u ∈ X is a solution
of (2.5) if and only if u = Tu.

The existence of a fixed point for the operator T will now follow from the Schauder
fixed-point theorem if we show that T (X) is relatively compact.

Let t ∈ (0, 1). Then, using (2.4), we have∣∣∣∣ d
dt

T (u)(t)
∣∣∣∣ � C1

ω

[∫ 1

t

e2(s)h(s) ds +
∫ t

0
e1(s)h(s) ds

]
,
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where

C1 = max
{(

1 +
∫ 1

0
τp(τ)b1(τ) dτ

)
,

(
1 +

∫ 1

0
(1 − τ)p(τ)b2(τ) dτ

)}
.

Letting

τ(t) =
∫ 1

t

e2(s)h(s) ds +
∫ t

0
e1(s)h(s) ds,

we obtain ∫ 1

0
|τ(t)| dt � 2ω

∫ 1

0
G(s, s)h(s) ds < ∞.

This is sufficient to ensure the relative compactness of the image T (X) via the Ascoli–
Arzelà theorem.

As a result, (2.5) has a solution u ∈ C[0, 1]. We claim that

α(t) � u(t) � β(t) for all t ∈ [0, 1]. (2.6)

Suppose that, without loss of generality, the first inequality is not true. Then there
exists a t∗ ∈ (0, 1) with u(t∗) < α(t∗). By continuity, we can find a maximal open interval
(t1, t2) ⊂ (0, 1) such that t∗ ∈ (t1, t2) and

u(t1) = α(t1), u(t2) = α(t2), u(t) < α(t) for all t ∈ (t1, t2). (2.7)

For t ∈ (t1, t2), we have v∗(t, u(t)) = v(t, α(t)) and, therefore,

−u′′ + p(t)u = v(t, α(t)) for all t ∈ (t1, t2).

On the other hand, as α is a lower solution of (2.3), we also have

−α′′ + p(t)α � v(t, α(t)) for all t ∈ (t1, t2).

Then, setting
z(t) := α(t) − u(t) for t ∈ [t1, t2],

we obtain
−z′′ + p(t)z � 0 for t ∈ (t1, t2), (2.8)

with z(t) > 0 for t ∈ (t1, t2) and z(t1) = 0 = z(t2). Multiplying (2.8) by

G0(t, s) =
1

t2 − t1

{
(s − t1)(t2 − t) for t1 � s � t � t2,

(t − t1)(t2 − s) for t1 � t � s � t2,

and integrating both sides from t1 to t2 we have

−
∫ t2

t1

G0(t, s)z′′(s) ds +
∫ t2

t1

G0(t, s)p(s)z(s) ds � 0.
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Using

−
∫ t2

t1

G0(t, s)z′′(s) ds = z(t),

we have
z(t) + v(t) � 0 for t ∈ [t1, t2], (2.9)

where

w(t) =
∫ t2

t1

G0(t, s)p(s)z(s) ds.

Now, since z(t) > 0 for t ∈ (t1, t2), we have

w′′ = −p(t)z(t) < 0 for t ∈ (t3, t4)

and w(t1) = w(t2) = 0. Thus, w(t) � 0 for t ∈ (t1, t2), so z(t) + w(t) > 0 for t ∈ (t1, t2).
This contradicts (2.9). �

The proof of Theorem 1.1 follows closely the ideas in [3]. For completeness we briefly
sketch the proof.

Proof of Theorem 1.1. For any n ∈ N , n � 1, let en be the compact subinterval of
(0, 1) defined by

en :=
[

1
2n+1 , 1 − 1

2n+1

]
.

From assumption (H1), there exists an εn > 0 such that

f(t, u) > L for (t, u) ∈ en × (0, εn] and εn � L

maxt∈[0,1] p(t)
.

Without loss of generality (taking, if we need to, a smaller εn), we can assume that {εn}
is a decreasing sequence and limn→+∞ εn = 0.

We can choose a function α ∈ C[0, 1] ∩ C2(0, 1) (see [3, p. 692]) such that

α(0) = 0, α(1) = 0,

α(t) > 0 for t ∈ (0, 1),

α(t) �
{

ε1 for t ∈ e1,

εn for t ∈ en \ en−1, n � 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.10)

Note that
f(t, u) � L, ∀(t, u) ∈ (0, 1) × {u ∈ (0,∞) : 0 < u � α(t)}. (2.11)

Set

k0 := min
{

1,
L

|α′′|∞ + |pα|∞ + 1

}
.

Now we make some claims that yield the proof of the theorem.
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Claim 1. Let h(t, u) � f(t, u) for (t, u) ∈ (0, 1) × (0,∞) with h : (0, 1) × (0,∞) →
(0,∞) a continuous function and let v ∈ C[0, 1] ∩ C2(0, 1), v(t) > 0 for t ∈ (0, 1) be any
solution of

−v′′ + p(t)v = h(t, v),

v(0) � 0, v(1) � 0.

Then
v(t) � k0α(t) for t ∈ [0, 1]. (2.12)

The proof is similar to the proof of [1, Theorem 2] and that of (2.6) in this paper. We
omit it here.

We define now, for each n ∈ N , n � 1,

ηn(t) := max
{

1
2n+1 , min

{
t, 1 − 1

2n+1

}}
for t ∈ (0, 1)

and set
f̃n(t, u) := max{f(ηn(t), u), f(t, u)}.

We find that, for each index n, f̃n : (0, 1) × (0,∞) → (−∞,∞) is continuous and

f̃n(t, u) � f(t, u) for (t, u) ∈ (0, 1) × (0,∞),

f̃n(t, u) = f(t, u) for (t, u) ∈ en × (0,∞).

Hence, the sequence of function {f̃n} converges to f uniformly on any set of the form
K × (0,∞), where K is an arbitrary compact subset of (0, 1).

Next we define, by induction,

f1(t, u) := f̃1(t, u),

f2(t, u) := min{f1(t, u), f̃2(t, u)},

...

fn+1(t, u) := min{fn(t, u), f̃n+1(t, u)},

...

Each of the fi is a continuous function defined on (0, 1) × (0,∞). Moreover,

f1(t, u) � f2(t, u) � · · · � fn(t, u) � fn+1(t, u) � · · · � f(t, u) (2.13)

and the sequence {fn} converges to f uniformly on compact subsets of (0, 1) × (0,∞).
We also note that

fn(t, u) = f(t, u) for (t, u) ∈ en × (0,∞).

Consider the sequence of BVPs

−u′′ + p(t)u = fn(t, u) in (0, 1),

u(0) = u(1) = εn.

}
(2.14)n
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Claim 2. For any c ∈ (0, εn], the constant function αn(·) ≡ c is a lower solution of
problem (2.14)n.

It is easy to prove (i.e. it is clear once we prove (use induction), for each t ∈ (0, 1),
that cp(t) � fn(t, c) for t ∈ (0, εn]), so we leave the details to the reader.

Claim 3. Any solution un(·) of (2.14)n is an upper solution of (2.14)n+1.

Proof of Claim 3. From (2.13) we have

−u′′
n + p(t)un = fn(t, un) � fn+1(t, un) for t ∈ (0, 1).

Moreover, un(0) = u(1) = εn > εn+1 and the conclusion follows.

Claim 4. Problem (2.14)1 has at least one solution.

Proof of Claim 4. We fix a constant c1 > ε1. From (H2) we can find a function
hc1 ∈ M such that

|f(t, u)| � hc1(t) for (t, u) ∈ (0, 1) × (c1,∞).

Moreover,

|f(η1(t), u)| � hc1(η1(t)) � R for (t, u) ∈ (0, 1) × (c1,∞),

where R > c1 maxt∈[0,1] p(t) is a suitable constant. Setting q(t) := hc1(t) + R, we have
q ∈ M with

|f1(t, u)| � q(t) for (t, u) ∈ (0, 1) × (c1,∞). (2.15)

Let β ∈ C[0, 1] ∩ C2(0, 1) be the solution of the BVP

−u′′ + p(t)u = q(t),

u(0) = u(1) = c1.

It is easy to check that such a solution exists. We can prove (see the proof of (2.6)) that

β(t) � c1 for t ∈ [0, 1].

From (2.15), we have

−β′′ + p(t)β = q(t) � f1(t, β),

and so β is an upper solution of problem (2.14)1.
If we now take α1 ≡ ε1 and recall Claim 2, we find that α1 and β1 := β are a lower

solution and an upper solution, respectively, of problem (2.14)1 with α1(t) � β1(t) for
t ∈ (0, 1). Then, by Theorem 2.1 we know that there is a solution u1(·) of (2.14)1 such
that ε1 = α1(t) � u1(t) � β1(t) for t ∈ (0, 1). Claim 4 is thus proved. �
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By Claim 2 and proceeding by induction using Claim 3, we obtain (via Theorem 2.1)
a sequence {un(·)} of solutions to (2.14)n such that

εn � un(t) � un−1(t) for t ∈ [0, 1],

k0α(t) � un(t) for t ∈ [0, 1],

un(0) = εn, un(1) = εn.

We see that the series of functions {uj(t)}∞
j=1 converges pointwise on [0, 1]. Let

u(t) = lim
n→∞

un(t).

It is clear that, for any n � 1,

k0α(t) � u(t) � un(t) for t ∈ [0, 1]. (2.16)

Now let K ⊂ (0, 1) be a compact interval.
There is an index n∗ = n∗(K) such that K ⊂ Kn for all n � n∗ and, therefore, for

these n � n∗,

−u′′
n + p(t)un = fn(t, un(t)) = f(t, un(t)) for t ∈ K.

Hence, the function un is a solution of equation (1.2) for all t ∈ K and n � n∗. Moreover,

sup{|f(t, x)| + p(t)x : t ∈ K, k0α(t) � x � un∗(t)} < ∞.

Thus, by the Ascoli–Arzelà theorem one can conclude that u is a solution of (1.2) on
interval K. Since K was arbitrary, we find that

−u′′ + p(t)u = f(t, u) for t ∈ (0, 1).

Moreover, u(0) = u(1) = limn→∞ εn = 0. One can easily prove (see [3, p. 697]) that u is
continuous at t = 0, 1.

Using the method in the proof of (2.6) we can easily make the following claim.

Claim 5. Suppose that, for each t ∈ (0, 1), f(t·) is non-increasing. Then (1.2) has at
most one solution.

�

3. The proof of Theorem 1.2

Let

f∗(t, x) =

{
f(t, x), x � C,

f(t, C), x > C,

and

m∗(t, x) =

{
m(t, x), x � C,

m(t, C), x > C.
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Consider the BVP
−u′′ + p(t)u = f∗(t, u), t ∈ (0, 1),

u(0) = 0 = u(1).

}
(3.1)

Theorem 1.1 guarantees that problem (3.1) has a positive solution u∗ ∈ C[0, 1]∩C2(0, 1).
Next we show that

u∗(t) � C for t ∈ [0, 1]. (3.2)

Suppose that (3.2) is false. Now, since u∗(0) = u∗(1) = 0, there exists either

(i) t1, t2 ∈ (0, 1), t2 < t1 with 0 < u∗(t) � C for t ∈ [0, t2), u∗(t) = C and u∗(t) > C

on (t2, t1) with u∗′(t1) = 0, or

(ii) t3, t4 ∈ (0, 1), t4 < t3 with 0 < u∗(t) � C for t ∈ (t3, 1], u∗(t3) = C and u∗(t) > C

on (t4, t3) with u∗′(t4) = 0.

We can assume without loss of generality that either t1 � 1
2 or t4 � 1

2 . Suppose t1 � 1
2 .

Notice that for t ∈ (t2, t1) we have

−u∗′′ � −u∗′′ + p(t)u∗

= q(t)m∗(t, u∗)

= q(t)m(t, C)

� q(t)[g(C) + h(C)]. (3.3)

Integrate (3.3) from t2 to t1 to obtain

u∗′(t2) � [g(C) + h(C)]
∫ t1

t2

q(s) ds,

and this, together with u∗(t2) = C, yields

u∗′(t2)
g(u∗(t2))

�
[
1 +

h(C)
g(C)

] ∫ t1

t2

q(s) ds. (3.4)

Also, for t ∈ (0, t2) we have

−u∗′′ � −u∗′′ + p(t)u∗ = q(t)m(t, u∗)

� q(t)[g(u∗(t)) + h(u∗(t))],

and so

−u∗′′(t)
g(u∗(t))

� q(t)
[
1 +

h(u∗(t))
g(u∗(t))

]

� q(t)
[
1 +

h(C)
g(C)

]
for t ∈ (0, t2).

Integrate from t ∈ (0, t2) to t2 to obtain

−u∗′(t2)
g(u∗(t2))

+
u∗′(t)

g(u∗(t))
+

∫ t2

t

{
−g′(u∗(t))
g2(u∗(t))

}
[u∗′(t)]2 dt �

[
1 +

h(C)
g(C)

] ∫ t2

t

q(s) ds (3.5)
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and this, together with (3.4) and (3.5), yields

u∗′(t)
g(u∗(t))

�
[
1 +

h(C)
g(C)

] ∫ t1

t

q(s) ds for t ∈ (0, t2).

Integrate from 0 to t2 to find

∫ C

0

dv

g(v)
�

[
1 +

h(C)
g(C)

]
1

1 − t1

∫ t1

0
s(1 − s)q(s) ds,

i.e. ∫ C

0

dv

g(v)
� 2

[
1 +

h(C)
g(C)

] ∫ 1/2

0
s(1 − s)q(s) ds

� b0

[
1 +

h(C)
g(C)

]
.

This is a contradiction, so (3.2) holds (a similar argument yields a contradiction if t4 � 1
2 ).

Thus, we have

0 < u∗(t) � C for t ∈ (0, 1), u∗(0) = u∗(1) = 0,

so u∗ ∈ C[0, 1] ∩ C2(0, 1) is a positive solution of problem (1.2).
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