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Abstract
Whirl flutter is an aeroelastic instability that affects aircraft with propellers/rotors. With their long and flexible
rotor blades, tiltrotor aircraft are particularly susceptible. Whirl flutter is known to have destroyed aircraft and in
the best case it constitutes a fatigue hazard. The complexity of whirl flutter analysis increases significantly with
the addition of nonlinearities, due to the more complex dynamical behaviours that emerge as a result. Most whirl
flutter stability analyses in current literature are grounded in linear theory, preventing the full discovery of the
nonlinearities’ effects. Continuation and bifurcation methods (CBM) may instead be used to fully appreciate and
analyse the effects of the presence of nonlinearities. Previous CBM-based work on nonlinear gimballed hub rotor-
nacelle models, representing those found on tiltrotor aircraft, are capable of whirl flutter in parametric regions
declared safe by linear analysis. Furthermore, it was found that they are capable of complex behaviours including
limit cycle oscillations, quasi-periodic behaviour and even chaos, though the whirl flutter implications of such
behaviours has not been explored. This paper investigates the impact of a smooth structural nonlinearity on the whirl
flutter stability of a basic gimballed rotor-nacelle model, compared to its baseline linear stiffness version. A 9-DoF
model with quasi-steady aerodynamics, a flexible wing and blades that can move both cyclically and collectively
in both flapping and lead-lag motions, producing gimbal flap-like behaviour, was adopted from existing literature.
A smooth stiffness nonlinearity was introduced in the blade flapping stiffness and CBM was used to find the new
whirl flutter behaviours created by the presence of the nonlinearity. Time simulations, Poincaré sections and spectral
analysis were then used to investigate the various behaviours found. This in turn allowed recommendations to be
made concerning preferable and/or hazardous parameter combinations of use to the tiltrotor designer.

Abbreviations

DoF degree(s) of freedom
LCO limit cycle oscillation
R, [rad/s] Rotor angular velocity
V, [m/s] Freestream velocity
γ , [-] Lock number
μ, [-] Advance ratio
K, [-] Normalised stiffness
C, [-] Normalised damping
I(∗), [-] Normalised inertia
ν, [-] Per-rev frequency
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Figure 1. Bell XV-15 tiltrotor. NASA Photo ID EC80-75, cropped. Public domain.

1.0 Introduction
Tiltrotor aircraft, such as the XV-15, shown in Fig. 1, are growing in importance due to their unique
flight envelope. A principal tiltrotor design challenge is ensuring that the airframe structure prevents
flutter from occurring within the operating envelope. The most basic form of whirl flutter, an aeroelastic
instability, involves a rotor or propeller mounted on a wing nacelle, whirling in a circle about its
undeflected position.

Aerodynamic forces acting on the blades and gyroscopic effects acting on the rotor as a whole can
couple with wing modes to produce an unstable vibration which can damage or even destroy the aircraft
structure. Whirl flutter claimed two L-188 Electra aircraft with all onboard, in 1959 [1] and 1960 [2],
removing an entire wing in flight. It was the suspected cause of the similar loss of a Beechcraft 1900C
in 1991 [3]. With their large and flexible blades, tiltrotor aircraft are particularly susceptible to whirl
flutter, which generally limits their maximum cruise speed [4] as the wings must be made much thicker
than would be aerodynamically optimal in order to provide sufficient stiffness. Whirl flutter remains a
design consideration for turboprop aircraft [5] and is also known to affect wind turbines [6].

Existing tiltrotor designs feature gimballed hubs. The lack of bearings allows a weight saving. The
flapping motion is replaced with hub tilt, which lowers Coriolis-induced loads [7] and thereby permits
the use of lightweight, stiff in-plane rotor blades. These stiff blades have a first in-plane (lead-lag) fre-
quency above one-per-rev, eliminating the possibility of ground resonance. The use of a gimbal at the
hub may have a destabilising effect on the rotor’s dynamics, however. A gimballed hub is in any case an
important feature of a rotor-nacelle model that is to be representative of a tiltrotor aircraft.

A great deal of literature has addressed the issue of whirl flutter in tiltrotors, using a number of
approaches. One such approach is to raise the onset airspeed of whirl flutter, either to maximise the
performance of an aircraft or to afford its crew a greater margin of stability at the operating airspeed.
This can be achieved either by the active control of aerodynamic actuators [8, 9] or the rotor swashplate
[10, 11], or by passive design measures that act against physical drivers of the whirl flutter mechanism
and can thereby to an extent prevent incipient whirl flutter motion developing into larger oscillations. The
first such strategy was aeroelastic tailoring [12] – the exploitation of anisotropic material properties to
create dynamic couplings that are beneficial to whirl flutter stability – though rotor design modifications
[13] and uncontrolled winglets [14] have also been explored. However, whatever angle the tiltrotor whirl
flutter problem is approached from, at the heart of the matter lies the need for an accurate way to assess
the whirl flutter characteristics of a given tiltrotor system. Despite whirl flutter being long appreciated
to be a nonlinear phenomenon, from classical work such as Edenborough in the 1960s [15], through to
much more recent work by Acree et al. [16], the vast majority of literature on the topic appears in almost
all cases either to use analysis that is some form of linear theory, or to use time simulations that hope to
observe whirl flutter behaviours directly.

Linear analyses provide localised stability predictions that do not detect changes induced by nonlin-
earities in the wider parameter-state space. Time simulations, while capturing the full behaviour of a
nonlinear model, do not guarantee the discovery of whirl flutter solutions if they are present. A particu-
larly important impact of nonlinearities is that they can cause the possibility of whirl flutter in parameter
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ranges that linear analysis declares to be stable – a phenomenon associated with what are now known as
subcritical bifurcations – as shown by Breitbach [17] in another study concerning aerofoils with control
surfaces. This phenomenon results in unconservative stability boundaries that can be unsafe to use [18].
This phenomenon was observed as early as 1955 by Woolston et al. [19] in work concerning the flutter of
2D aerofoils with control surfaces, though the investigation of such a phenomenon occurring in tiltrotor
contexts has not been forthcoming.

Nonlinearities in a tiltrotor system may arise from a variety of sources. The drivetrain may provide
both discontinuous and smooth nonlinearities [20], though other sources may include the deformability
of the rotor blades and other elastic elements in the system such as elastomeric dampers [21], which
linear stiffness may not adequately model. In general, the assumption of linear stiffness is only really
representative of physical structures when deformations are small – a condition that may well not hold
for whirl flutter oscillations – and polynomial softening and/or hardening terms may describe stiffness
profiles at larger deflections more realistically [22].

Compared to the linear stability analysis methods mentioned previously, continuation and bifurcation
methods (CBM) are much better suited to the stability analysis of nonlinear systems due to their ability
to find solutions to these systems, and assess the stability thereof. Motivated by the phenomenon that
smooth changes in system parameters can result in non-smooth changes in the stability or type of a
system’s solutions, continuation is a numerical method that finds the numerical values of solutions and
their respective stability as one or more system parameters are varied. Bifurcation theory then classes
any changes in solution type and stability that are observed. CBM is still in the process of proliferation
within the field of rotorcraft design and analysis, and its application to the tiltrotor whirl flutter problem
appears to be a novel idea.

The authors investigated a basic non-gimballed rotor-nacelle system in 2017 [23] and 2018 [18],
where a smooth nonlinearity was introduced into the shaft yaw stiffness and the impacts of the nonlin-
earity were summarised and discussed using stability boundaries. A brief investigation into the impacts
of such a smooth nonlinearity on a gimballed hub model was conducted in 2019 [24], though the authors
have since discovered new results that constitute significant changes to the stability boundary and there-
fore warrant attention. Furthermore, some complex behaviours were discovered in supposedly stable
parameter regions that are analysed here. The aim of this study is to explore and understand the impact
of the aforementioned smooth nonlinearity on a gimballed rotor-nacelle model. Through this approach,
the importance of using more representative nonlinear structural stiffness models in analysing whirl
flutter stability of tiltrotor aircraft will be shown.

In this paper, the rotor-nacelle model, including details of the nonlinear adaptation, is presented in
Section 2. The stability analysis methods used in this paper are described in Section 3. These are applied
in Section 4: linear stability analysis is used to establish the baseline whirl flutter stability characteristics
of the system, followed by continuation and bifurcation analysis to uncover the effects of the nonlinear-
ity’s presence. Stability boundaries are used to summarise these effects. Further analysis of periodic and
quasi-periodic behaviours, via Poincaré sections and power spectra, is also presented in this section.

2.0 Whirl flutter model
2.1 9-DoF whirl flutter model
An 18-state, 9-DoF model originally presented by Johnson [25] is used. A schematic of the model to be
used is shown in Fig. 2. A rotor of radius R spins at angular velocity�, attached to a shaft via a gimballed
hub that allows it to rotate in pitch and yaw, forming respective angles β1C and β1S between the hub
plane’s instantaneous position and undeflected position. The shaft of length h, is also able to move within
the reference frame coordinate system (x, y, z) as indicated, by virtue of movement of the supporting
wing structure in flapwise bending q1, chordwise bending q2 and torsion p. The wing is cantilevered
about its root, and has span yTw and chord cw and in its undeflected state the rotor shaft points in the
+z direction. A freestream velocity V inward along – z is incident on the rotor, and aggregate stiffness
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Figure 2. Schematic diagram of gimballed rotor-nacelle model.

and damping properties exist at both the gimbal and the wing. Additionally, the rotor blades are able to
move in cyclic lead-lag, causing rectilinear motion of the CG in both the lateral (ζ 1C) and vertical (ζ 1S)
directions as viewed in the x-y plane. The rotor blades may also flap collectively, constituting a coning
motion β0, and lead-lag collectively, constituting a perturbation of rotor speed ζ 0. The aerodynamics of
both the blades and the wing are modelled using quasi-steady strip theory [26]. Important to note is that
all blade deflection is assumed to be rigid body rotation about the hub. That is, this motion is a simplified
aggregation of deflections that might arise from both hub gimballing and from elastic deformation of
the blades’ flex-beams. Typically these motions are understood to be separate in real-world tiltrotor
systems and models made of them. Only the first mode of the blade motions (both flap and lead-lag)
and the aforementioned wing motions are considered, due to the assumption that higher modes have
negligible participation in the coupled wing-rotor motion. Additionally, the motions are considered to
be uncoupled to each other. The equations of motion of the model are far too long to state in full here,
though they are of the form:

MẌ + CẌ + KX = 0 (1)

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. The latter matrices
contain both structural and aerodynamic terms. X is the vector of generalised displacements, containing
the various system-defining quantities discussed earlier:

X = [
β1C β1C ζ1C ζ1C β0 ζ0 q1 q2 p

]T (2)

The parameter values used in the model are shown in Table 1. The nondimensionalisation factor is
generally Ib�

2; details of this and the few exceptions are given in Ref. 25.

2.2 Nonlinear adaptation
In the original model’s derivation [25], within the rotating frame, the rotor blades’ (linear) flapping
and lead-lag stiffnesses are specified implicitly in terms of the per-rev frequencies of each uncoupled
motion, νβ and νζ respectively, which the model specifies as functions of μ and � to account for cen-
trifugal stiffening and aerodynamic effects. The elastic structural contributions are therefore ν2

β
βm in the

flapping equations and ν2
ζ
ζm in the lead-lag equations, where βm is the instantaneous flap angle of the

mth blade and ζm is the instantaneous lead-lag angle of the mth blade. As mentioned before, the flap-
ping and lead-lag motions are modelled as rigid-body aggregations of motion, defined by these elastic
properties.
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Table 1. Datum parameter values used in the model

Rotor radius R 3.82 (m)
Rotor angular velocity � 48 (rad/s)
Freestream velocity V 128.6 (m/s)
Lock number γ 3.83 (-)
Advance ratio μ 0.7 (-)
Wing beamwise bending stiffness Kq1 18.72 (-)
Wing chordwise bending stiffness Kq2 50.70 (-)
Wing torsional stiffness Kp 3.595 (-)
Wing beamwise damping constant Cq1 0.880 (-)
Wing chordwise damping constant Cq2 2.670 (-)
Wing torsional damping constant Cp 0.093 (-)
Blade dimensional inertia Ib 142 (kgm2)
Blade cyclic flapping inertia I∗

β
1 (-)

Blade collective flapping inertia I∗
ζ

0.779 (-)
Blade cyclic lead-lag inertia I∗

β0 0.670 (-)
Blade collective lead-lag inertia I∗

ζ0 1 (-)
Blade per-rev flapping frequency νβ 1.018 (-)
Blade per-rev lead-lag frequency νζ 1.385 (-)

In this research, the aforementioned linear elastic structural contribution in the flapping equations is
replaced with a cubic polynomial of the form:

K1βm + K2β
3
m (3)

where the first term is simply the linear expression used in the original model. That is, K1 is equal to
ν2
β
. This nonlinear stiffness expression can provide hardening behaviour by using a positive value of K2,

and softening behaviour by using a negative value. In this paper, a positive value of 10 was used to allow
a focus on hardening behaviours, though the use of a softening profile with this particular rotor-nacelle
model was explored extensively in Ref. 24.

The nonlinear stiffness profile compared to the original linear model (i.e. K2 = 0), is demonstrated
in Fig. 3.

To obtain the dimensional values of K1,2 they should be multiplied by Ib�
2 (see Table 1). K1 is selected

as the independent variable in the results to follow and it is therefore the continuation parameter in the
continuations shown. However, it will be controlled not by its absolute value but rather as a multiple of
its datum value, ν2

β,datum. This variable, termed K#
β
, is defined as K1

ν2
β,datum

. Lastly, as this quantity is controlled
indirectly by adjusting the frequency νβ in the model, the variable K#

β
is referred to as the effective blade

flapping stiffness.
In Ref. 25 the rotor equations of motion are obtained by considering flapping and lead-lag equations

for each individual blade within the rotating frame of reference, and summing these over the whole
rotor via a Fourier Coordinate Transform to obtain equations in the external, non-rotating frame. These
summations also lead to a transformation of the degrees of freedom: coning angle β0, gimbal pitch β1C

and gimbal yaw β1S. These are defined thus:

β0 = 1

N

N∑
m=1

βm (4)

β1C = 2

N

N∑
m=1

βm cosψm (5)
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Figure 3. Nonlinear stiffness profile (green) compared to linear profile (blue).

β1S = 2

N

N∑
m=1

βm sinψm (6)

where ψm is the instantaneous angle of the mth blade. That is, by applying the respective summation in
each of Equations (4)–(6) to the blade flapping equations in the rotating frame, the equations of motion
in the non-rotating frame are obtained. A similar process is used to form the lead-lag equations of motion
in the non-rotating frame.

As the K1βm term of the new nonlinear profile is just the existing ν2
β

term in the flapping equations,
only the new K2β

3
m term needs to be processed in this way. In a more sophisticated model, the blade flap-

ping and coning motions would have differing origins, but due to the aggregated rigid body modelling
used in Johnson’s model, the stiffness nonlinearity introduced here will manifest in both the gimballing
and coning equations. Using the following relationship:

βm = β0 + β1C cosψm + β1S sinψm (7)

the K2β
3
m term can be expanded:

K2β
3
m = K2(β0 + β1C cosψm + β1S sinψm)

3

= K2

[
β3

0 + 3β2
0β1C cosψm + 3β2

0β1S sinψm + 3β0β
2
1Ccos2ψm + 6β0β1C cosψmβ1S sinψm (8)

+ 3β0β
2
1Ssin2ψm + β3

1Ccos3ψm + 3β2
1Ccos2ψmβ1S sinψm + 3β1C cosψmβ

2
1Ssin2ψm

+β3
1Ssin3ψm

]
(8)

The application of the respective summation in each of Equations (4)–(6) produces the additions to
be made to the coning (β0) equation, the gimbal pitch (β1C) equation and the gimbal yaw (β1S) equation.
The respective additions to these equations are:

K2

4

(
2β2

0 + 3β2
1C + 3β2

1S

)
β0 (9)

K2

4

(
12β2

0 + 3β2
1C + 3β2

1S

)
β1C (10)
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K2

4

(
12β2

0 + 3β2
1C + 3β2

1S

)
β1S (11)

The model in both its linear and nonlinear forms was implemented in MATLAB R2015a [27].

3.0 Stability analysis methods
3.1 Eigenvalue analysis
To form a baseline stability analysis of the model before the nonlinear analysis is conducted, eigenvalue
analysis is employed. This standard method for analysing linear dynamical systems uses the Jacobian
matrix J, defined as:

Ẏ = JY (12)

where Y, the state vector, is defined as:

Ẏ = f (Y, p) , Y ∈R
2n, p ∈R

l (13)

Y =
[

X

Ẋ

]
(14)

where p is a vector of l system parameters and n is the dimension of X, the vector of generalised
displacements defined in Equation (2).

The 2n eigenvalues of the Jacobian matrix contain information about the decay rate (i.e. stability)
and frequency of the system’s modes. The undamped natural frequency ω and damping ratio ζ for each
mode are calculated from the real and imaginary parts of its eigenvalue λ using Equations (15) and (16).

ω=
√

Re(λ)2 + Im(λ)2 (15)

ζ = −Re (λ)

ω
(16)

Scripts for this eigenvalue analysis were written in MATLAB so that a direct interface with the model
was possible.

3.2 Continuation and bifurcation methods
For nonlinear systems, numerical continuation and bifurcation theory are used. Continuation is a numer-
ical method that finds the steady-state solution values of a dynamical system as one or more of its
parameters, called the continuation parameter(s), is varied [28], constructing solution branches or “con-
tinuing” the set of solutions. Continuation can find both fixed point solutions and periodic solutions. At
fixed points the system is considered to be in equilibrium, such as a rigid pendulum standing motionless
at either the bottom or top of its arc of motion. Periodic solutions, also known as limit cycle oscilla-
tions (LCOs), are closed trajectories through the state space that return precisely to their starting point
and constitute motions that repeat periodically. For each solution point calculated, the stability is then
computed. For fixed points, an eigenvalue analysis of the type described in Section 3.1 can be used,
requiring local linearisation in the case of a nonlinear system. Periodic behaviour on the other hand
requires Floquet theory to determine stability [29].

A bifurcation is a qualitative change in the system behaviour due to the variation of a parameter.
When the stability of a system changes, or the type of the solution changes (fixed/periodic), the system
bifurcates. The points at which these stability changes happen are called bifurcations. If the system is
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nonlinear, new solution branches may emerge from the bifurcation points, leading to the presence of
multiple solutions for a given set of system parameters.

Branches are explored as desired to uncover the global dynamics of the system within the desired
parametric ranges. The results of the continuations are displayed on bifurcation diagrams, where the
values of solution branches are shown as the continuation parameter value varies. The type (equilib-
rium/periodic) of each solution branch, along with the location of any bifurcations it encounters, is also
indicated. The solutions exist in a space whose number of dimensions is the number of states plus the
number of continuation parameters. To allow plotting, conventional bifurcation diagrams are 2D graphs
with the continuation parameter on the x-axis and a chosen state on the y-axis. The plotting of the solu-
tions in terms of that chosen state is known as a “projection” or a “plane”, e.g. the “β1C projection”, or
the “Kq2-p plane”. Alternatively, if a 2-parameter continuation is conducted, the results can be plotted
on a bifurcation diagram where both axes are parameters.

Bifurcation diagrams for this research were produced using the Dynamical Systems Toolbox for
MATLAB by Coetzee [30], which uses an implementation of AUTO-07P [31]. Time simulations were
also used to corroborate the predictions of both stability methods.

Key bifurcation types that are relevant to understanding the behaviour of this rotor-nacelle system,
are Hopf bifurcations and torus bifurcations. At a Hopf bifurcation, the stability of a fixed point (i.e. an
equilibrium) changes, and a periodic solution arises, caused by a pair of complex conjugate eigenvalues
crossing the complex plane imaginary axis. At a torus bifurcation, a torus-shaped manifold smoothly
emerges around an existing periodic solution, encasing it. While the periodic solution still exists, trajec-
tories may now flow on the torus manifold and crucially, such trajectories are quasi-periodic. That is,
the motion around the torus never quite exactly repeats. Both these bifurcation types are illustrated and
explained in the context of this research in Section 4. A generalised, in-depth theoretical treatment of
these bifurcations is given in Ref. 32.

4.0 Results and discussion
4.1 Linear analysis
The eigenvalue analysis methods detailed in Section 3.1 are now applied to the model to fulfil two
purposes. Firstly, this work’s implementation of Johnson’s model is validated by conducting a parameter
sweep identical to one shown in Johnson’s original work [25]. Secondly, the eigenvalue analysis is used
to generate a baseline stability boundary that will be the basis of comparison for understanding the
effects of the presence of the nonlinearity introduced.

Shown in Fig. 4 are the eigenvalues and associated modal damping ratios and modal frequencies
for the system undergoing an airspeed sweep of V ∈ [13, 309]m/s. All other parameters are kept at
their datum values, as given in Table 1. This figure corresponds to Fig. 18 within Ref. 25, which
uses an airspeed range of 25–600Kn (i.e. 13–309m/s), uses the damped definition of natural frequency
(i.e. ω= Im(λ) rather than Equation (15)), only shows the positive-imaginary root of each complex con-
jugate pair, and uses two co-located x-axes of different scales. The plot lines in this original figure have
been imported to Fig. 4 and are shown in thin, beaded black lines. In the original figure, the damping
ratio data is only provided in the bracket of ζ ∈ [0,0.15]. Furthermore, the eigenvalue loci data for the
complete sweep are not shown in all modes. All the data that is given is shown here.

The mode naming used in Fig. 4 (shown far right) is taken directly from Johnson, who devised the
naming scheme based on the prominence of participation of the system’s degrees of freedom in each
mode, and the proximity of modal frequencies to uncoupled natural frequencies of the system’s degrees
of freedom.

The concept of a stability boundary diagram between two parameters can be useful for understanding
the sensitivity of a system’s stability to changes in various parameters. Such a diagram can be produced
from a grid of the combinations of different values for each parameter. The Jacobian matrix and its
eigenvalues are calculated at each point, and a surface is overlaid on the grid whose height at each point
is determined by the maximum real component of the Jacobian’s eigenvalues there. As only one unstable
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Figure 4. Eigenvalues (top) and their corresponding modal damping ratios (centre) and frequencies
(bottom) for a sweep in airspeed V, original linear model.

eigenvalue is required for overall system instability, a horizontal plane cut of this surface at the level 0
will produce a contour that denotes the boundary between the stable and unstable regions of the grid.

As aeroelasticity is such an important consideration during the design of tiltrotor aircraft, stability
boundaries between structural parameters that are controllable to some degree are a useful tool for
the designer. To provide a simple basis for the introduction of the continuation methods employed in
subsequent sections, the stability boundary chosen for this work is between (linear) gimbal flapping
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Figure 5. Stability boundary between datum-normalised blade flapping stiffness K#
β

and datum-nor-
malised wing torsional stiffness K#

p .

stiffness K#
β

(which is used as the continuation parameter in Section 4.2) and the datum-normalised
wing torsional stiffness K#

p = Kp

Kp,datum
. The latter is chosen as the boundary thereby lends insight into

the relative influence of the two main components of the model: the rotor and the wing. This stability
boundary, generated with the linear analysis detailed in Section 3.1, is shown in Fig. 5. All other system
parameters use their datum values, as given in Table 1.

Crucially, the linear analysis returns the same results for both the original linear form of the model and
the adapted nonlinear version, regardless of the value of K2 used. For the fixed point solution branches,
this is correct. However, as will be shown in Section 4.3, nonlinearity is able to create new periodic
solutions whose parametric ranges may not match those of the fixed point branches. The linear analysis
is not able to detect the new periodic solutions, and therefore it is not sufficient just to use a model that
successfully replicates nonlinearities in a real-world system: with only linear analysis, the impacts of
these nonlinearities are still lost.

4.2 Bifurcation analysis: Linear model
To demonstrate the link between eigenvalue analysis and CBM, Fig. 5 can also be generated by contin-
uation methods, as the system has an equilibrium at Y = 0 that can be used as a starting solution. This
vector corresponds to the rotor-nacelle system at rest and in an entirely undeflected state. Generating the
stability boundary using CBM in fact affords deeper insight than the contour cut method.

Firstly, a one-parameter continuation is performed on the system. Choosing K#
p = 0.55 so that a con-

tinuation in K#
β

will intersect a region of interest in the stability boundary, the bifurcation diagram shown
in Fig. 6 (top) is obtained. The modal damping ratios for this sweep are shown at the bottom. A key to
the bifurcation diagrams in this paper is shown in Table 2.

Moving in the sense of decreasing blade flap stiffness on the damping ratio plot, the q1 mode (red)
is the first to lose stability, followed by the p mode as previously mentioned, followed by the q2 mode
(yellow). However the q1 mode restabilises shortly afterward, and by approximately K#

β
= 0.45 the q2

mode has also restabilised. While this variety of types of whirl flutter is not in itself a hazard, it is
their coexistence in the parameter space that may pose a threat, as if more than one stable whirl flutter
solution exists at a certain value, it increases the likelihood that a perturbation will cause the system
to encounter whirl flutter of some form. The continuation finds five Hopf bifurcations (hollow square
icons in the top of the figure) and when their K#

β
coordinates are cross-referenced with the damping ratio

plot, it becomes apparent that they may signal either the loss of stability or the re-stabilisation of an
individual whirl flutter mode. The continuation also finds that the gimbal pitch coordinate (β1C) of this

https://doi.org/10.1017/aer.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.10


1244 Mair et al.

Figure 6. Bifurcation diagram (top), β1C projection, with corresponding modal damping ratios
(bottom), as K#

β
is varied while K#

p = 0.55.

equilibrium remains at 0◦ over the whole continuation, however only the branch segment to the right of
the right-most Hopf bifurcation at approximately K#

β
= 0.65 is stable. This correlates with the damping

ratio plot, which shows that there is always at least one unstable eigenvalue at K#
β

< 0.65. The equilibrium
remaining at 0◦ is to be expected given the linear form of the equations.

Performing two-parameter continuations in K#
β

and K#
p on each of these Hopf bifurcations reconstructs

the stability boundary and this is shown in Fig. 7. The very bottom-right of the boundary is defined by
a branch point bifurcation of the pitchfork type that is found by a separate continuation downward in
K#

p at any fixed value of K#
β

(not shown). This pitchfork gives rise to secondary equilibrium branches
though as they do not relate to whirl flutter, they are not explored. Regions shaded red are subject to
oscillatory instability (an unstable complex conjugate root pair) and regions shaded blue are subject to
non-oscillatory instability (an unstable single real root).

Two levels of K#
p are chosen as analysis cases for the rest of the chapter: K#

p = 1.1 and K#
p = 0.2. They

are also indicated in Fig. 7. This choice of cases provides a concise demonstration of the influence of
K#

p as they span the range of analysis: one at high pitch stiffness and one at lower stiffness.

4.3 Bifurcation analysis: Nonlinear model
Using the nonlinear stiffness profile given in Equation (3), with a K2 value of 10, a continuation in K#

β

for the first analysis case (K#
p = 1.1) is conducted and shown in Fig. 8. Two projections are shown to

illustrate the behaviour in the two main components of the model, the rotor (gimbal pitch β1C , top) and
the wing (wing torsion p, bottom).

It is worth noting that several of the solutions found here are likely to have too large amplitude to be
physically meaningful. That is, a real-world system would experience structural failure before achieving
such displacements. As the model does not consider structural strength, such failure may only be implied
or assumed. However, they are still useful for clear demonstration of the key phenomena described in this
section, which are likely to occur in smaller-amplitude solutions in either this model or similar systems.
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Table 2. Key to symbols and line colours used in bifurcation
diagrams in this paper

Stable equilibrium branch
Unstable equilibrium branch
Stable periodic solution branch
Unstable periodic solution branch

Hopf bifurcation
Limit point (fold) bifurcation

Torus bifurcation

Figure 7. K#
β
-K#

p stability boundary regenerated through two-parameter continuations.

Once again, an equilibrium branch that remains at 0◦ is present that is visible in both projections.
This branch will hereafter be referred to as “the main branch”. Three Hopf bifurcations are visible on
this main branch, whose locations in K#

β
correspond to the three intersections of a line at K#

p = 1.1 with
the Hopf loci present at that level (see Fig. 7).

New to this bifurcation diagram, compared to that shown in Fig. 6, is the indication of the periodic
solution branches that emanate from the Hopf bifurcations. These are indicated slightly differently to
equilibrium branches; while an equilibrium has only one coordinate in each state at each continuation
parameter value, the same is not true for periodic solution branches as at each parameter point, a whole
LCO exists, covering a range of values in the states. The convention then is to indicate periodic solution
branches via the maximum (i.e. most positive) value of the given projection state in the LCO at each
point.

The most significant wing torsion participation occurs in the periodic solution branch emanating
from the middle Hopf bifurcation, with much less prominent participation in the branches emanating
from the left and right Hopf bifurcations. The hardening component in the blade flap stiffness profile
bends the periodic solutions leftward. As K#

β
is lowered, the amplitude of all three whirl flutter branches

increases in both projections. Lastly, there are three torus bifurcations present on the diagrams. As
explained earlier, torus bifurcations signal the emergence of a torus manifold from an LCO, on which
system trajectories may flow in a quasi-periodic manner. This is explored and illustrated shortly.

The periodic solution branches mostly coexist – that is, at a given continuation parameter value,
more than one periodic solution branch is generally present – and the system may join any stable solu-
tion branch segments depending on what perturbation it receives. This constitutes the possibility of
whirl flutter. It is important to note that CBM’s prediction of stable branches in parametric regions
that lie within the unstable region predicted by linear analysis does not indicate that these regions have
been made safe by the presence of the nonlinearity. The model does not account for any damage that
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Figure 8. Bifurcation diagram for case 1 (K#
p = 1.1), β1C and p projections.

the occurrence of whirl flutter LCOs would likely cause to the system, leading to the widening of the
oscillations and likely structural failure.

Bifurcation diagrams, while not counterintuitive, require some familiarisation to be used effectively.
Thus, to aid the reader in becoming fluent at visualising Fig. 8 and the remaining bifurcation diagrams
in this paper, a selection of β1S-β1C phase planes is provided in Fig. 9, showing a selection of the various
types of solutions, both stable and unstable, present at a number of K#

β
cuts.

Observing the figure from right to left, the first cut at K#
β

= 0.8 shows the stable main branch with
no other solutions present, the second at K#

β
= 0.45 shows the main branch now unstable with a single

stable whirl flutter LCO present, and the third shows three whirl flutter LCOs all present at the K#
β

value
of 0.1. Some torus flow was located at this value of K#

β
on the branch emanating from the right-most

Hopf bifurcation at K#
β
= 0.497, shortly after the torus bifurcation has made the LCO unstable. The LCO
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Figure 9. Phase plane planes showing solutions in detail at various K#
β

values in Fig. 8.

Figure 10. Torus flow found at K#
β
= 0.1 in case 1, shown in (β1C, β1S, p) space (bottom), with Poincaré

section placed at β1C = 0◦ (top).

https://doi.org/10.1017/aer.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.10


1248 Mair et al.

Figure 11. Bifurcation diagram for case 2 (K#
p = 0.2), β1C and p projections. A time simulation starting

close to the LCO branch at K#
β
= 1.015 is also shown.

at this point is visible on the left-most phase plane of Fig. 9; it is the larger of the two unstable LCOs
(red). This torus flow is demonstrated in Fig. 10 in a 3-dimensional projection of the phase space using
gimbal pitch β1C , gimbal yaw β1S and wing torsion p, produced by a time simulation over a period of
250 rotor revolutions (bottom). A Poincaré section placed at β1C = 0◦ on the positive β1S side of the LCO
shows a cross-section of the torus’ 3D projection at this point in the LCO, over a period of 5,000 rotor
revolutions (top). The torus can clearly be seen surrounding the LCO.

The second analysis case (K#
p = 0.2) is now considered, shown in Fig. 11. Once again, there are three

Hopf bifurcations present. The middle and left periodic solution branches are both unstable within the
domain of analysis. The right-most Hopf’s flutter branch is the only one of the three to contain stable
portions, and after emanating from the main branch it folds back and forth in K#

β
a number of times

before eventually departing to the left. The much lower wing torsional stiffness value of case 2 allows
all three whirl flutter branches to be much larger in amplitude than those in case 1.

There are also two torus bifurcations present, and the time history of the β1C state during some torus
flow that was found is shown at the top of Fig. 11. The quasi-periodicity of the second half of the time
history is evident from the notable breaking of the strict regularity symptomatic of LCO activity that is
present in the first half of the time history.

Most pressing however is the overhanging of the stable main (equilibrium) branch by a portion of
the first Hopf’s whirl flutter branch which, due to the torus bifurcation at approximately K#

β
= 1, is sur-

rounded by torus flow in at least some neighbourhood of that torus bifurcation. A time simulation with
K#
β
= 1.015 (top of Fig. 11) is shown to demonstrate the system’s ability to be attracted to whirl flutter

behaviours – of both the LCO and quasi-periodic varieties – in this vicinity. The simulation of 1,000
rotor revolutions is started with initial conditions 99% the size of a point on the LCO (in all states)
and the transition from the LCO to the quasi-periodic behaviour on the torus surrounding the LCO is
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Figure 12. Overhang instances (top) with redrawn K#
β

- K#
p stability boundary (bottom).

noticeable in the time histories for each state shown. This overhang stretches as far in K#
β

as the torus
bifurcation, and is partially shadowed by a lesser overhang by the same branch at a larger amplitude,
which provides stable LCOs up to approximately K#

β
= 0.95.

4.4 Impacts on stability boundary
The whirl flutter branches created by the nonlinearities are seen to overhang the stable main branch
(the undeflected position of the rotor-nacelle system) at several points in the results. This means that
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Figure 13. Analysis of an LCO found in the system. Phase space (top), Poincaré section (bottom left)
and frequency analysis (bottom right).

flutter can be encountered in parametric regions that linear eigenvalue analysis predicts to be stable. The
stability boundary must therefore be redrawn to include such regions.

To do so, individual instances of overhang observed in the bifurcation diagrams produced for the two
K#

p analysis cases must be tracked over the full K#
β

- K#
p domain under consideration. This is done through

a variety of different continuations: continuations in K#
β

at levels of K#
p that are otherwise not used for

analysis cases, continuations in K#
p at various positions in K#

β
, and two-parameter continuations in K#

β

and K#
p simultaneously.

There are two instances of overhang that require tracking, shown in Fig. 12, top. The first is an LCO
overhang, marked ‘O1’. In case 1 it originates from the middle Hopf bifurcation (the connection is not
visible within the K#

β
range shown), and overhangs as far as approximately K#

p = 0.76, while in case 2 it
originates from the right-most Hopf bifurcation and overhangs as far as approximately K#

p = 1. The other
overhang present is an outcrop of the rightmost whirl flutter branch, which contains a torus bifurcation,
marked ‘O2’ in Fig. 12. It does not have a corresponding presence in the previously shown case 1
diagrams due to not having any Hopf connections there, and exists there solely due to a large overhang
in K#

p . Tracking these overhangs within the K#
β

- K#
p plane renders the redrawn stability diagram shown

at the bottom of Fig. 12.
The new hatched regions drawn on Fig. 12 represent parametric regions in which whirl flutter is now

possible due to the presence of nonlinearities. Though they occupy what was termed the “unstable”
region on the original stability boundary shown in Fig. 5, these new hatched regions cannot strictly be
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Figure 14. Analysis of a torus flow found in the system. Phase space (top), Poincaré section (bottom
left) and frequency analysis (bottom right).

termed “unstable” themselves as the whirl flutter hazard they constitute is caused by the presence of
stable LCOs. Instead, the more accurate term “unsafe” is used.

4.5 Analysis of dynamical behaviours
The incursions into the supposedly stable region of the stability boundary are qualitatively different:
one is an LCO and the other is a torus flow. While the amplitude of the solutions found in this paper
is too large for this qualitative difference to be meaningful, smaller solutions found in similar systems
could benefit from insight that can be gained here into the implications of this difference. Some fur-
ther analysis can be employed to understand the differences between these two dynamical behaviours
with a view to understanding their respective whirl flutter implications. The first method, the use of
a Poincaré section, was introduced in Section 4.3. The second is the use of the Fourier transform,
using MATLAB’s inbuilt fft function, to provide information on the frequency components of the two
behaviours.

4.5.1 LCO analysis
An LCO point is analysed first, shown in Fig. 13. The chosen point is on the O1 overhang in case 2,
at approximately K#

β
= 0.95. The LCO (dashed red), as calculated by AUTO, along with a time sim-

ulation left to run in its near vicinity (blue), are shown in (β1C , β1S, p) space. The simulation follows
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the LCO perfectly, passing around it a number of times. This is reflected in the Poincaré section (bot-
tom left), where only a single repeated blue dot is visible, at the exact intersection point of the LCO
path. The frequency spectrum shows a number of regularly spaced peaks that are consistent with the
use of a nonlinear stiffness profile [32]. These harmonics are directly related to the use of a cubic
polynomial.

4.5.2 Quasi-periodic analysis
By comparison, the time simulation left to run in the vicinity of the LCO shown in Fig. 14 finds the
torus manifold that has emanated from the torus bifurcation shown in the O2 overhang, also in case 2.
The frequency spectrum is essentially broadband white noise with a few peaks superimposed upon it.

The quasi-periodic motion is significantly more complex than the LCO and has a wide range of
constituent frequencies. Compared to the LCO from which a torus flow originates, the torus flow also
has larger amplitude. These two aspects potentially make the quasi-periodic motion more of a whirl
flutter hazard than an LCO.

5.0 Conclusions
This article has demonstrated the use of continuation and bifurcation methods to provide nonlinear
dynamic analysis of whirl flutter. Polynomial stiffness profiles are frequently more representative of
structures over large deflections than the linear profiles that are sometimes used in models in tiltrotor
whirl flutter research.

To investigate the impacts of such nonlinear stiffness on tiltrotor whirl flutter predictions, a well-
established linear rotor-nacelle system model was implemented and adapted to feature the nonlinear
stiffness profile in the rotor blades’ flapping stiffness. The nonlinear stiffness profile used was a cubic
polynomial function with a positive cubic coefficient to provide hardening characteristics. Appropriate
stability analysis methods were described and employed for both the linear and nonlinear models, with
continuation and bifurcation methods (CBM) being used in the latter case. Eigenvalue analysis was used
to establish a baseline stability boundary for the model, representing both the linear model version’s
stability characteristics, and also what the linear analysis “sees” in the nonlinear version of the model.
Bifurcation diagrams were generated for a number of wing torsion stiffness cases for the model.

The results showed that whirl flutter was possible in a parametric region where linear analysis predicts
local stability. That is, stable whirl flutter LCOs were found to exist in this region, giving the possibil-
ity of the system joining them following a sufficient perturbation, such as a gust or loads induced by
manoeuvring. This phenomenon of stable whirl flutter LCOs existing in supposedly stable regions of
the stability boundary was termed “overhang” on account of its appearance on bifurcation diagrams.

The stability boundary was redrawn to take account of the overhang phenomenon, which appended
an extra “unsafe” region to the existing unstable region. Important of note is that the prediction of the
overhanging LCO to be stable is not an indication that encountering it is safe, but rather that this LCO
can attract the system to it if it is perturbed appropriately. Allowing a real-world tiltrotor system to
encounter it should not be thought of as viable. Upon entering the LCO, the large oscillation amplitudes
would likely cause a rapid degradation in the structural properties of the aircraft, most likely leading to
structural failure. Even if this degradation were not to occur immediately, the oscillations would present
a fatigue hazard to aircraft nacelle mounts.

Among the overhanging whirl flutter branches, the torus bifurcations and the quasi-periodic
behaviour that they entail are likely a still greater threat than the LCOs. The larger amplitude and
broadband-frequency motions that they involve are likely to accelerate the degradation of the tiltro-
tor system’s structure, leading either to accelerated fatigue in the best case or expedited catastrophic
structural failure in the worst.

While several of the predicted motions are likely too large to exist for a full cycle, let alone form a
persisting motion, the whirl flutter insights gained – particularly those concerning the type of solution
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(LCO/quasi-periodic) are still of use in systems where smaller amplitude solutions occur. Additionally,
the consideration of structural strengths in modelling would allow motions causing structural failure to
be identified with confidence, rather than by assumption.

Future improvements of the model that could be undertaken include refinements to the aerodynamic
model, and the further development of the rotor blade dynamics to include coupled mode shapes and a
torsional degree of freedom.
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