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Abstract

For a number field K and a finite abelian group G, we determine the probabilities of
various local completions of a random G-extension of K when extensions are ordered
by conductor. In particular, for a fixed prime ℘ of K, we determine the probability that
℘ splits into r primes in a random G-extension of K that is unramified at ℘. We find
that these probabilities are nicely behaved and mostly independent. This is in analogy
to Chebotarev’s density theorem, which gives the probability that in a fixed extension a
random prime of K splits into r primes in the extension. We also give the asymptotics
for the number of G-extensions with bounded conductor. In fact, we give a class of
extension invariants, including conductor, for which we obtain the same counting and
probabilistic results. In contrast, we prove that neither the analogy with the Chebotarev
probabilities nor the independence of probabilities holds when extensions are ordered
by discriminant.

1. Introduction

Given a finite Galois extension L/Q with Galois group G, and a rational prime p, what is
the probability that p splits completely in L? If we fix L and vary p, the Chebotarev density
theorem tells us what proportion of primes have any given splitting behavior. However, we can
alternatively fix p (and G), and study the probability that p splits a certain way in a random L
with Gal(L/Q)∼=G. We ask whether the probabilities of the unramified splitting types are in
the proportions we expect from the Chebotarev density theorem. We also ask if the probabilities
are independent at different primes p. In fact, we shall ask more refined questions and study the
probabilities of various local Qv-algebras Lv := L⊗Q Qv at a place v of Q. These questions have
recently been asked by Bhargava [Bhab, § 8.2] and have come up naturally in the work counting
extensions of Q with a given Galois group (see [Coh02, CDO02a, Tay84, Wri89], and § 1.2). In
this paper, we answer these refined questions for abelian G. For the rest of this paper, we fix a
finite abelian group G.

We define a G-extension of a field K to be a Galois extension L/K with an isomorphism φ :
G→Gal(L/K). An isomorphism of twoG-extensions L and L′ is given by an isomorphism L→ L′

of K-algebras that respects the G-action on L and L′. Let EG(K) be the set of isomorphism
classes of G-extensions of K. Given a finite set S of places of Q, and a Qv-algebra Tv for each
v ∈ S, we use T to denote the collection of all the choices Tv. We define the probability of T as
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On the probabilities of local behaviors in abelian field extensions

follows:

Pr(T ) = lim
X→∞

#{L ∈ EG(Q) | Lv ∼= Tv for all v ∈ S and f(L)<X}
#{L ∈ EG(Q) | f(L)<X}

, (1)

where f(L) is the finite conductor of L over Q. We can analogously define the probability of one
local algebra Tv, or of a splitting type of a prime.

Given a G-extension L of Q, every Lv is of the form M⊕r, where M is a field extension of Qv

with Galois group H, and H is a subgroup of G of index r. The first twist in this story is that
some algebras M⊕r of the form never occur as Lv. For example, when G= Z/8Z, it is never the
case that L2/Q2 is unramified of degree 8. This means we cannot expect unramified splitting
types to occur in the proportions suggested by the Chebotarev density theorem. Wang [Wan50],
in a correction to the work of Grunwald [Gru33], completely determined which local algebras
occur. The only obstruction is that, for even |G|, some Q2 algebras do not occur as L2 for any
G-extension L. Call these inviable Q2-algebras (and all other M⊕r of the above form viable) and
note that the characterization implicitly depends on G. Once one knows which local algebras
can occur, it is natural to ask how often they occur. We answer that question in the following
theorem.

Theorem 1.1. Let v be a place of Q. Let M and M ′ be field extensions of Qv with Galois
groups H and H ′ that are subgroups of G of index r and r′, respectively. Then, unless v = 2 and
at least one of M⊕r, M ′⊕r

′
is inviable,

Pr(M⊕r)
Pr(M ′⊕r′)

=
|Hom0(H, G)|/f(M)
|Hom0(H ′, G)|/f(M ′)

,

where Hom0(E, G) denotes the set of injective homomorphisms from E to G. The conductor
f(M) is viewed as an element of Q.

We will refer to the density of primes with a given splitting type in a fixed G-extension as
the Chebotarev probability of that splitting type. We compare Theorem 1.1 to the Chebotarev
density theorem in the following corollary.

Corollary 1.2. The probability of a fixed rational prime p (not 2 if |G| is even) splitting
into r primes in a random L ∈ EG(Q), given that p is unramified, is the same as the Chebotarev
probability of a random rational prime p splitting into r primes in a fixed L ∈ EG(Q).

In fact, it follows from Theorem 1.1 that when |G| is even and p= 2 the probabilities of
viable splitting types in a random G-extension occur in the same proportions as they occur in
the Chebotarev density theorem for a fixed extension and random prime. Of course, one contrast
to the Chebotarev probabilities is that, for a fixed p and a random G-extension L, the prime p
will be ramified with positive probability. In this paper, we also determine the independence of
the local probabilities calculated in Theorem 1.1, leading to the following result.

Theorem 1.3. For any finite set S of places of Q and any choice of local Qv-algebras Tv for
v ∈ S, the events Tv are independent.

One may ask whether we obtain the same result if we count the G-extensions in other ways,
for example by replacing the conductor by the discriminant, by an Artin conductor, or by the
product of the ramified primes. In fact, in § 2 we prove a stronger version of Theorem 1.1
which replaces the conductor with any function satisfying a certain fairness hypothesis (defined
in § 2), which is satisfied by the conductor, some Artin conductors, and the product of the
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ramified primes. In § 5 we give examples of some Artin conductors that are fair. The discriminant
is fair only when G has prime exponent. Much work has been done to study the asymptotics of
the number of extensions with bounded discriminant and having Galois closure with a specified
Galois group (see [Coh02, CDO06] for surveys). These asymptotics were determined completely
for abelian Galois groups by Mäki [Mäk85]. Mäki [Mäk93] has also determined the asymptotics
of the number of extensions with fixed abelian Galois group and bounded conductor. In § 3, we
give the asymptotics of the number of G-extensions with bounded conductor (or any fair counting
function) for a finite abelian group G. Our result is a generalization of Mäki’s work [Mäk93], in
that we can replace the conductor by other fair counting functions and that we give the result
over an arbitrary base number field (see § 1.1). We also give the constant in the asymptotic more
explicitly than it appears in [Mäk93].

For degree n extensions having Galois closure with Galois group Sn, it is known that, when
counting by discriminant for n= 2, 3, 4, and 5, local completions Lv show up with probability
proportional to (1/|AutQv Lv|)(1/|Disc Lv|) (see [DH71, Bha05, Bhaa] for the computation of
the probabilities, and [Bhab] for this interpretation). We will see after Corollary 1.7 how to
interpret our probabilities in closer analogy to the results in [DH71, Bha05, Bhaa]. However,
it turns out that counting abelian extensions by discriminant does not lead to such nice local
probabilities. This was observed by Wright [Wri89] in his work on counting abelian extensions
asymptotically by discriminant. Let the discriminant probability be defined as in (1) but with the
conductor replaced by the absolute value of the discriminant. We call two events discriminant
independent if they are independent with the discriminant probability. Wright showed that all
viable Qv-algebras occur with positive discriminant probability, and noted that, when G has
prime exponent, the relative probabilities of local extensions are simple expressions. (Wright
actually works over an arbitrary global field with characteristic not dividing |G|; in § 1.1 of this
paper we describe our work over an arbitrary number field.) When G= Z/4Z, Wright notes that
the ratio of the discriminant probability of Q⊕4

p to the discriminant probability of the unramified
extension of Qp of degree 4 is an apparently very complicated expression. In § 4, we prove the
following propositions in order to show that the discriminant probability analogs of Corollary 1.2
or Theorem 1.3 do not hold.

Proposition 1.4. Let p, q1, and q2 be primes with qi ≡ 1 (mod p2) for i= 1, 2. Then q1

ramifying and q2 ramifying in a random Z/p2Z-extension are not discriminant independent.

The Chebotarev probability that a random prime splits completely in a fixed Z/9Z-extension
is 1/9. However, we have the following.

Proposition 1.5. Let q = 2, 3, 5, 7, 11, or 13. Given that q is unramified, the discriminant
probability that q splits completely in a random Z/9Z-extension is strictly less than 1/9.

For comparison, in the above two cases we have that the (conductor) probabilities are
independent, and the (conductor) probability is 1/9, respectively.

1.1 Other base fields
Of course, we can ask all of the same questions when Q is replaced by an arbitrary number
field K, and we now fix a number field K. However, for arbitrary number fields there is a further
twist in this story. Given G, it is possible that the Kv-algebra Tv and the Kv′-algebra T ′v′ both
occur from global G-extensions, but never occur simultaneously (a forthcoming paper of the
author explores the frequency of such examples). This suggests that we should not expect Tv
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and T ′v′ to be independent events. However, given obstructions of this sort, which were completely
determined in [Wan50] (or see [AT68, ch. 10]), we have the best possible behavior of the local
probabilities. We shall need more precise language to clearly explain this behavior.

The local Kv-algebras coming from L have structure that we have so far ignored; namely, they
have a G-action coming from the global G-action. Given a field F , a G-structured F -algebra is
an étale F -algebra L of degree |G| with an inclusion G ↪→AutF (L) of G into the F -algebra
automorphisms of L, such that G acts transitively on the idempotents of L. An isomorphism of
two G-structured F -algebras L and L′ is an F -algebra isomorphism L→L′ such that the induced
map AutF (L)→AutF (L′) restricts to the identity on G. If we have a G-extension L of K, for
each place v of K, then we have a G-structured Kv-algebra Lv = L⊗K Kv, where G acts on the
left factor. Given a subgroup H of G, and an H-extension M of Kv, we can form the induced
G-structured Kv-algebra IndGH M via the usual construction of an induced representation, which
will have a natural structure of an étale Kv-algebra. All G-structured Kv-algebras coming from
G-extensions L of K are of the form IndGH M . So we can ask an even more refined question, at
all places, about the probability of a certain G-structured Kv-algebra. We let f(L) be the norm
from K to Q of the conductor of L/K (or of the conductor of L/Kv, viewed as an ideal of K).
Let S be a finite set of places of K, and let Σ denote a choice Σv of G-structured Kv-algebra
for each v ∈ S, which we refer to as a (local) specification. We can then define probabilities as
in (1), replacing EG(Q) with EG(K).

If there exists a G-extension L/K such that Lv ∼= Σv for all v ∈ S, then we call Σ viable and
otherwise we call it inviable. The question of which specifications are viable has been completely
answered (see [AT68, ch. 10]). There is a set S0 of places of K (depending on G, all dividing 2,
and empty if |G| is odd) and a finite list Σ(1), . . . , Σ(`) of local specifications on S0 such that a
local specification Σ on S is viable if and only if either S0 6⊂ S or Σ restricts to some Σ(i) on S0.
(We give S0 explicitly in § 2.) In other words, whether a specification on S is viable depends only
on its specifications at places in S0, and if a specification does not include specifications at all
places in S0 then it is viable.

Now we will build a model for the expected probabilities of local specifications. Let
Ω =

∏
v place of K{isometry classes of G-structured Kv-algebras}. For a local specification Σ,

let Σ̃ = {x ∈ Ω | xv ∼= Σv for all v ∈ S}. Let A=
⋃`
i=1 Σ̃(i), where Σ(i) are as in the above

paragraph in the condition for a local specification to be viable. So, for a specification Σ on S,
we have that Σ̃ ∩A is non-empty if and only if Σ is viable, and in fact Σ̃ ∩A is the union of Σ̃′

for all local specifications Σ′ on S ∪ S0 that are viable and restrict to Σ on S.

The Σ̃v generate an algebra of subsets of Ω. We can define a finitely additive probability
measure P on this algebra by specifying that:

(i) P (Σ̃v)
P (Σ̃′v)

=
1/f(Σv)
1/f(Σ′v)

for all G-structured Kv-algebras Σv and Σ′v;

(ii) Σ̃v1 , . . . , Σ̃vs at pairwise distinct places v1, . . . , vs, respectively, are independent.

We might at first hope that P is a model for the probabilities of local specifications in the
space of G-extensions. However, once we know that some specifications never occur, including
combinations of occurring specifications, the best we can hope for is the following, which we
prove in § 2.
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Theorem 1.6. For a local specification Σ on a finite set of places S,

Pr(Σ) = P (Σ̃|A).

Corollary 1.7. If S is a finite set of places of K either containing S0 or disjoint from S0,
and Σ and Σ′ are viable local specifications on S then

Pr(Σ)
Pr(Σ′)

=
∏
v∈S(1/f(Σv))∏
v∈S(1/f(Σ′v))

.

All G-structured algebras have |G| automorphisms (Proposition 2.7), and so, for v not in S0,
we can also say that the probability of Σv is proportional to 1/(|Aut(Σv)|f(Σv)).

Corollary 1.8. The probability of a fixed prime ℘ of K (not in S0) splitting into r primes
in a random L ∈ EG(K), given that ℘ is unramified, is the same as the Chebotarev probability
of a random prime ℘ of K splitting into r primes in a fixed L ∈ EG(K).

Corollary 1.9. If S1, . . . , St are pairwise disjoint finite sets of places of K, and each Si either
contains S0 or is disjoint from S0, then local specifications Σ(i) on Si are independent.

Theorem 1.6 says that the probabilities of local specifications of random G-extensions are
exactly as in a model with simple and independent local probabilities, but restricted to a subspace
corresponding to the viable specifications on S0. As when K = Q, we prove Theorem 1.6 and
its corollaries as a special case of analogous results (see Theorem 2.1) for more general ways of
counting extensions than by conductor.

1.2 History of the problem and previous work
The results mentioned above of Davenport and Heilbronn [DH71] and Bhargava [Bha05, Bhaa]
are a major motivation of this work. These results show that the local behaviors of random
degree n extensions of Q, whose Galois closure has Galois group Sn, have nice discriminant
probabilities and are discriminant independent, when n= 3, 4, or 5. The work of Datskovsky
and Wright [DW86] generalizes that of Davenport and Heilbronn (the case n= 3) to an arbitrary
base field.

Taylor [Tay84] proves the result of our Corollary 1.8 in the special case that G= Z/nZ, and
assuming that if 2g | n then K contains the 2gth roots of unity (in which case S0 is empty).
Taylor attributes the question of the distribution of splitting types of a given prime in random
G-extensions to Fröhlich, who was motivated by the work of Davenport and Heilbronn [DH71].
Wright [Wri89] proves an analog of Corollary 1.7 for discriminant probability in the case that
G= (Z/pZ)b for p prime and |S|= 1, and for these G the discriminant is a fixed power of the
conductor, and thus discriminant probability is the same as conductor probability. Wright [Wri89]
suggests that his methods for counting abelian extensions by discriminant could be combined
with the methods of Taylor to count abelian extensions by conductor. In this paper, we follow
this suggestion and incorporate methods of both Wright and Taylor along with some new ideas.
We implicitly count abelian extensions by conductor (and give this result in § 3), but are focused
on the probabilities of local behaviors.

In the work of counting extensions whose Galois closure has some fixed Galois group, it has
been often suggested that it is natural to also count such extensions with fixed local behavior (for
example, in the work of Cohen et al. [CDO06] for the group D4, the heuristics of Malle [Mal04,
Remark 1.2] for general groups, and in the general surveys [Coh02, CDO02a]). Some authors
have also considered these questions when one replaces field extensions with polynomials, and
counts with a natural density on the polynomials (see [DD93, DD98, DD00, van88]).
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Theorems 1.1, 1.3, and 1.6 and their corollaries are all new (except in the special cases
mentioned above), but the proofs use many techniques that come from the work of Taylor and
Wright. Some new techniques are required to calculate the probabilities exactly in the case of non-
cyclic G and for more general ways of counting extensions. An important new ingredient is the
consideration of the probabilities of G-structured Kv-algebras (and not just Kv-algebras), which
not only allows us to give more refined probabilities but allows us to state Theorem 1.6. One
of the central contributions of this paper is the formulation of Theorem 1.6, which makes precise
the idea that the probabilities are as well-behaved as possible in light of the non-occurrence of
certain local extensions (see [Wan50, AT68]). For abelian groups G, we study for the first time
the probabilities when more than one local behavior is specified and the independence of these
local probabilities. Our results are for all base number fields K, all finite abelian groups G, and
for many ways of counting extensions (see the definition of fair in § 2) including by conductor.

1.3 Outline of the paper
In § 2, we define counting functions and fairness, and prove our main theorems. The proof of
our main theorems involves making a Dirichlet series generating function for the extensions
we are counting, relating it to L-functions whose analytic behavior is known, using standard
Tauberian theorems to deduce asymptotic counting results, and using fairness to express the
desired probabilities in a simple form. In § 3, we give the asymptotic number of G-extensions
with a given invariant (such as conductor) bounded. We give an explicit Euler product for
the constant in this asymptotic result. In § 4, we prove that, when counting by discriminant, the
local probabilities do not have the same nice behavior as in the conductor case. In § 5, we give
some examples of fair Artin conductors. In § 6, we discuss the further questions that this work
motivates.

2. Statement and proof of the main theorem

In this section, we prove a generalization of Theorems 1.1 and 1.6 for more general ways
of counting G-extensions than by conductor. First, in § 2.1, we will define the acceptable ways of
counting G-extensions. Then, in § 2.2, we state Theorem 2.1 (our generalization of Theorems 1.1
and 1.6) and deduce several corollaries. In § 2.3, we relate G-structured algebras to Galois
representations. In § 2.4, we define a generating function counting G-extensions satisfying a local
specification Σ and express this generating function as a sum of Euler products. In § 2.5, we state
three lemmas about the analytic behavior of these Euler products, and then use the standard
Tauberian analysis to determine the asymptotic behavior of the coefficient sums of the generating
function from the rightmost poles. From this asymptotic behavior we deduce Theorem 2.1. In
§ 2.6, we prove the three lemmas stated in § 2.5. The method in § 2.4 is very similar to that of
Wright [Wri89] and some of the methods in § 2.6 are motivated by those of Taylor [Tay84].

2.1 Counting functions and fairness
We fix a finite abelian group G and a number field K. Let n= |G|. Let cG :G→ Z>0 be a function
such that (i) cG(g) = 0 if and only if g = 1 and (ii) if e is relatively prime to the order of g ∈G,
then cG(ge) = cG(g). For all places v dividing n or infinite, let

cv : {isometry classes of G-structured Kv-algebras}→ Z>0

be an arbitrary function. From these functions cG and the cv, we define

c : {isometry classes of G-structured Kv-algebras}→ Z>0
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by

c(Σv) =


cG(yv) if v - n∞, where Σv = IndGH M, and M/Kv a field extension,

and yv is any generator of tame inertia in Gal(M/Kv)⊂G;
cv(Σv) if v | n∞.

We then define an invariant C of G-extensions by the product C(L) =
∏
v Nv

c(Lv) over places
of K, where Nv is NK/Qv at finite places and by convention 1 at infinite places. We call such
a C, determined by components cG and the cv, a counting function. Let m= ming∈G\{1} cG(g)
and let M = c−1

G (m). Let Gr = {x ∈G | xr = 1}.

A counting function is fair if, for all r, we have that M ∩Gr generates Gr. The norms to Q
of the conductor and of the product of ramified primes of an extension are both fair counting
functions with m= 1 and M =G \ {1}. The discriminant is a counting function, but it is not
fair unless G has prime exponent. For example, when G= Z/p2Z, for the discriminant we have
M = pZ/p2Z. In § 5, we give some examples of fair Artin conductors.

2.2 Statement of the main theorem and corollaries

We define the C-probability, PrC , by replacing f with C in (1). (Note that C(L)<X implies
that L is unramified at all primes larger than nX, and so there are only finitely many such
extensions.) As in the definition of P in the introduction, we define PC on the algebra of
subsets of Ω =

∏
v place of K{isometry classes of G-structured Kv-algebras} generated by the Σ̃v

by specifying:

(i)
PC(Σ̃v)
PC(Σ̃′v)

=
Nv−c(Σv)/m

Nv−c(Σ′v)/m

for all G-structured algebras Σv and Σ′v; and

(ii) Σ̃v1 , . . . , Σ̃vs at pairwise distinct places v1, . . . , vs are C-independent.

Let ηi = ζ2i + ζ−1
2i , where ζ2i is a primitive 2ith root of unity. Let s be maximal such that

ηs ∈K. If 2s+1 does not divide the exponent of G, then let S0 = ∅. Otherwise, let S0 be the set
of primes ℘ of K dividing 2 such that none of −1, 2 + ηs, and −2− ηs are squares in K℘. Recall
that there is a list Σ(1), . . . , Σ(`) of local specifications on S0 such that a local specification Σ
on S is viable if and only if either S0 6⊂ S or Σ restricts to some Σ(i) on S0 (see [AT68, ch. 10]).
We have defined A=

⋃`
i=1 Σ̃(i). If S0 is empty, then all local specifications are viable and A is

the total space Ω. In this section, we prove the following theorem, of which Theorems 1.1 and 1.6
are special cases.

Theorem 2.1. For a local specification Σ on a finite set of places S and a fair counting
function C,

PrC(Σ) = PC(Σ̃|A).

Now, we will prove several corollaries of Theorem 2.1. Corollaries 1.2, 1.7, 1.8, and 1.9 from
the introduction are just the following corollaries when C is the norm to Q of the conductor.
Theorem 1.3 follows from Corollary 1.9.
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Corollary 2.2. If S is a finite set of places of K either containing S0 or disjoint from S0,
and Σ and Σ′ are viable local specifications on S then

PrC(Σ)
PrC(Σ′)

=
∏
v∈S

Nv−c(Σv)/m

Nv−c(Σ′v)/m
.

Proof. If S is disjoint from S0, then since A only includes specifications on S0, we have that Σ̃
and Σ̃′ are each PC-independent from A in Ω. Thus PrC(Σ) = PC(Σ̃|A) = PC(Σ̃), and similarly
for Σ′. If S ⊃ S0, then since Σ is viable, Σ̃⊂A. Thus, PrC(Σ) = PC(Σ̃|A) = PC(Σ̃)/PC(A), and
similarly for Σ′. 2

Corollary 2.3. The C-probability of a fixed prime ℘ of K (not in S0) splitting into r primes
in a random L ∈ EG(K), given that ℘ is unramified, is the same as the Chebotarev probability
of a random prime ℘ of K splitting into r primes in a fixed L ∈ EG(K).

Proof. The number of Σ℘ that give ℘ unramified and splitting into r primes is the number of
order |G|/r elements of |G|. (This can be seen, for example, from Lemma 2.6.) Thus

PrC(℘ splits unramified into r primes)
PrC(℘ splits unramified into r′ primes)

=
number of order |G|/r elements of |G|
number of order |G|/r′ elements of |G|

,

which agrees with the Chebotarev probabilities. 2

Corollary 2.4. Let S1, . . . , St be pairwise disjoint finite sets of places of K, and suppose
each Si either contains S0 or is disjoint from S0. (For example, if |S0| is 0 or 1, then this is
always the case.) Then local specifications Σ(i) on Si are C-independent.

Proof. If S0 is empty, then A= Ω, and this corollary is clear. Otherwise, first suppose some Si,
say S1, contains S0. If Σ(1) is inviable, then PrC(Σ(1)) = 0 and otherwise we have PrC(Σ(1)) =
PC(Σ̃(1))/PC(A). For i 6= 1 we have PrC(Σ(i)) = PC(Σ̃(i)), as in the proof of Corollary 2.2. Let Σ
be the local specification that is the union of the Σ(i). If Σ(1) is inviable then PrC(Σ) = 0,
otherwise

PrC(Σ) = PC(Σ̃)/PC(A) =
∏
i PC(Σ̃(i))
PC(A)

=
∏
i

PrC(Σ(i)).

If, on the other hand, no Si contains S0, then we have PrC(Σ(i)) = PC(Σ̃(i)) for all i and Σ̃
is C-independent from A. Thus PrC(Σ) = PC(Σ̃) =

∏
i PrC(Σ̃(i)) =

∏
i PrC(Σ(i)). 2

Notation 2.5. We let n= |G| and write G∼= Z/n1 × · · · × Z/nk. For the rest of § 2 we use
additive notation for G. For all positive integers m, we choose compatible primitive mth roots
of unity ζm such that if m′|m, then ζm′ = ζ

m/m′
m . Let J be the group of idèles of K. For a map χ

from J , we denote by χv the restriction of χ to K×v . Let ov be the ring of integers of Kv. Let JS
be the group of idèles which have components in o×v for all places v 6∈ S. In this paper, when we
write a map from the idèles, idèle class group, or K×v to a finite group (e.g., χ : J →G), it will
always mean a continuous homomorphism (for the discrete topology on the range).

2.3 G-structured algebras and Galois representations
Recall that G is a finite abelian group. The following two results are fairly standard, but we
include them here for completeness.
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Lemma 2.6. For a field F , there is a one-to-one correspondence{
isomorphism classes of
G-structured F -algebras

}
←→

{
continuous homomorphisms
GF →G

}
where GF is the Galois group of a separable closure of F over F . In this correspondence,
G-extensions correspond to surjective homomorphisms.

Proof. Given a G-structured K-algebra L with G⊂AutK(L), we consider the stabilizer Stab⊂G
of one of the fields L0 that is a direct summand of L. We have a morphism Stab→Gal(L0/K).
Since G is transitive on the idempotents of L and abelian, this is an injection. Since G is transitive
on the idempotents, we see that all the fields that are direct summands of L are isomorphic,
and thus |Stab|= [L0 :K]. Therefore, Stab→Gal(L0/K) is an isomorphism. Its inverse gives
GK →Gal(L0/K)→ Stab⊂G.

Given a continuous homomorphism χ :GK →G, we have an im(χ)-extension L0 of K
corresponding to the kernel of χ via Galois theory. We let L= IndGim(χ) L0. It is straightforward
to check that these two constructions are inverse to each other. 2

Proposition 2.7. A G-structured algebra has exactly |G|-automorphisms.

Proof. Consider a G-structured F -algebra L. Let F̄ be the separable closure of F . There are
|G| non-zero morphisms φi : L→ F̄ . Let S|G| be the permutations of these φi. We have G⊂
AutF (L)⊂ S|G|. An automorphism of L as a G-structured F -algebra is an element σ ∈AutF (L)
such that σ centralizes G. Clearly all elements of G will satisfy this condition since G is abelian.
Since G acts transitively on the idempotents of L, G acts transitively in S|G|. Thus we can
relabel the φi by elements of G, and G will act by multiplication on the labels. So if σ ∈ S|G|
centralizes G, then σ is translation by an element of G, and these are just the automorphisms
that come from G. 2

By class field theory, the maps χ :GK →G are in one-to-one correspondence with the maps
χ : J/K×→G. Given the correspondence of Lemma 2.6, we can also apply C to the characters
χ : J/K×→G. We now view a generator of tame inertia yv as an element of K×v , and define
c(χv) to be cG(χv(yv)) for v finite and not dividing n. For v infinite or dividing n, let Lv be the
G-structured étale Kv-algebra corresponding to the character χv, and define c(χv) to be cv(Lv).
We say that

C(χ) =
∏

v place of K

Nvc(χv).

Just as Σ denotes local specifications of G-structured Kv-algebras at the places v ∈ S, we let φ
denote a collection of choices φv :K×v →G for all v ∈ S. We say that φ corresponds to Σ if each φv
corresponds to Σv via Lemma 2.6.

2.4 Generating functions and Euler products
For now, we will assume that C is an arbitrary counting function, and, in Lemma 2.17, we
will first see how fairness plays a role in our analysis. Also, for now we will consider one local
specification Σ (not necessarily viable) on a finite set S of places of K such that S contains all
infinite places, places dividing n, and so that the finite places of S generate the class group of K.
In particular, if oS is the ring of S-integers of K (elements of K with non-negative valuation at
all places not in S), then oS has class number 1.
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We define the generating functions

NC,G(s, Σ) =
∑

G-extensions L/K
∀v∈S Lv

∼=Σv

1
C(L)s

and NC,G(s, φ) =
∑

χ:J/K×→G
∀v∈S χv=φv
χ surjective

1
C(χ)s

.

By Lemma 2.6, for φ corresponding to Σ we have NC,G(s, Σ) =NC,G(s, φ). It will be easier
to work without the restriction that our characters are surjective, so we define the following
generating function:

FC,G(s, φ) =
∑

χ:J/K×→G
∀v∈S χv=φv

1
C(χ)s

.

For a subgroup H of G, we define C|H , a counting function for H. For χv : J/K×→H, we let
c|H(χv) = c(J/K×

χv→H ⊂G). We have that

FC,G(s, φ) =
∑

H subgroup of G

NC|H ,H(s, φ).

We can use Möbius inversion (as in Wright’s work [Wri89, § 2]) to write

NC,G(s, φ) =
∑

H subgroup of G

µ(H, G)FC|H ,H(s, φ),

where µ(H, G) is a constant and µ(G, G) = 1. (This is just solving an upper triangular system
of linear equations.) Thus, by studying the FC,G we can recover information about the NC,G.

A character χ : J →G is determined by a collection of χv :K×v →G for all places v of K, but
not all χ factor through J/K×. However, we can use the following lemma.

Lemma 2.8. If oS has class number 1, then the natural map JS/o
×
S → J/K× is an isomorphism.

Proof. Since JS ∩K× = o×S , the map is injective. Let x ∈ J . Then, since oS has class number 1,
we can find an element of K with specified valuation at all places outside S. In particular, we
can find a y ∈K× such that yx ∈ JS . 2

We can then rewrite

FC,G(s, φ) =
∑

χ:JS/o
×
S→G

∀v∈S χv=φv

1
C(χ)s

.

We shall study characters on JS , and then check their behavior on the finitely generated
group o×S to see if they factor through JS/o

×
S . Let A=

∏k
i=1 o

×
S /o

ni
S . Given a χ : JS →G, with

projection χi : JS → Z/ni (or the same from K×v or o×v ), and an ε= (ε1, . . . , εk) ∈ A, we define
χ̇(ε) =

∏k
i=1 ζ

χi(εi)
ni , where we evaluate χi(εi) using the natural map o×S → JS (or to K×v or o×v ).

Note that the map χ has its image in G, the map χi has its image in Z/ni, and the map χ̇ has
its image in the complex roots of unity. We define the twists

FC,G(s, ε, φ) =
∑

χ:JS→G
∀v∈S χv=φv

χ̇(ε)
C(χ)s

,

which we use with the following corollary of Lemma 2.8 (motivated by [Wri89, Equation (3.2)]).
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Corollary 2.9. We have

FC,G(s, φ) =
1
|A|

∑
ε∈A

FC,G(s, ε, φ).

Proof. We rearrange the sum to obtain∑
ε∈A

FC,G(s, ε, φ) =
∑

χ:JS→G
∀v∈S χv=φv

1
C(χ)s

∑
ε1∈o×S /o

n1
S

ζχ1(ε1)
n1

· · ·
∑

εk∈o×S /o
nk
S

ζχk(εk)
nk

.

We note that ζχi(εi)
ni is a complex valued character on the finite group o×S /o

ni
S and thus the sum∑

εi∈o×S /o
ni
S
ζ
χi(εi)
ni is |o×S /o

ni
S | if χi is trivial on o×S and 0 otherwise. 2

The FC,G(s, ε, φ) are convenient to work with because they have Euler products (as in [Wri89,
Equation (3.4)])

FC,G(s, ε, φ) =
∏
v 6∈S

( ∑
χv :o×v→G

χ̇v(ε)
Nvc(χv)s

)∏
v∈S

φ̇v(ε)
Nvc(φv)s

.

In this paper, all products over v 6∈ S are products over the places of K not in S.

2.5 Proof of main Theorem 2.1

We will now see how Theorem 2.1 will follow from three lemmas, all of which will be proven
in § 2.6. Recall that m= ming∈G\{1} cG(g) and M = c−1

G (m). We will prove the following lemma
by relating FC,G(s, ε, φ) to L-functions whose analytic behavior we already know.

Lemma 2.10. For any counting function C, the product FC,G(s, ε, φ) absolutely converges in
Re(s)> 1/m and has a meromorphic continuation to Re(s) > 1/m, analytic away from s= 1/m.
The pole of FC,G(s, 1, φ) at s= 1/m is of order∑

g∈M

1
[K(ζrg) :K]

,

where rg is the order of g in G.

Thus we also obtain a meromorphic continuation to Re(s) > 1/m for FC,G(s, φ) and
NC,G(s, φ). Lemma 2.10 will allow us to use a Tauberian theorem (see [Nar83, Corollary, p. 121])
to find the probabilities PrC . In the application of the Tauberian theorem, we will need to know
which terms of FC,G(s, φ) contribute to the main pole, and the following lemma will tell us just
that.

Lemma 2.11. For a counting function C, there is a subgroup E(C) of A such that if ε ∈ E(C)
then FC,G(s, ε, φ) has a pole of the same order at s= 1/m as FC,G(s, 1, φ), and if ε 6∈ E(C) then
FC,G(s, ε, φ) has a pole of smaller order (possibly equal to zero) than that of FC,G(s, 1, φ).

The following lemma will allow us to simplify the probabilities we obtain into a reasonable
form for fair counting functions.

Lemma 2.12. If C is fair, v 6∈ S, and χv : o×v →G, then for all e ∈ E(C), we have χv(e) = 0.

Using these lemmas, we can prove Theorem 2.1.
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Proof of Theorem 2.1. Assume C is fair. We have the Euler product

FC,G(s, ε, φ) =
∏
v 6∈S

( ∑
χv :o×v→G

χ̇v(ε)
Nvc(χv)s

)∏
v∈S

φ̇v(ε)
Nvc(χv)s

.

If e ∈ E(C), and ε ∈ A, Lemma 2.12 implies that

FC,G(s, eε, φ) = FC,G(s, ε, φ)
∏
v∈S

φ̇v(e). (2)

Thus,

FC,G(s, φ) =
1
|A|

∑
ε∈A

FC,G(s, ε, φ)

=
1
|A|

∑
ε∈A/E(C)

∑
e∈E(C)

FC,G(s, ε, φ)
∏
v∈S

φ̇v(e)

=
1
|A|

∑
ε∈A/E(C)

FC,G(s, ε, φ)
∑

e∈E(C)

∏
v∈S

φ̇v(e), (3)

where A/E(C) denotes a set of coset representatives for the quotient of A by E(C).
For g and h meromorphic functions on Re(s) > 1/m, analytic away from s= 1/m, we use

g ∼m h to denote that g − h has a pole at 1/m of lesser order than the pole of g (or that at
(1/m) the function g − h has no pole and g has a pole).

Case I: If
∏
v∈S φ̇v is not the trivial character on E(C), we have∑

e∈E(C)

∏
v∈S

φ̇v(e) = 0

and thus FC,G(s, φ) = 0. This means that there are no χ : J/K×→G that for all v ∈ S have
χv = φv, and thus φ is associated to an inviable Σ.

Case II: If
∏
v∈S φ̇v is the trivial character on E(C). Then,

FC,G(s, φ) =
|E(C)|
|A|

∑
ε∈A/E(C)

FC,G(s, ε, φ) by (3)

∼m
|E(C)|
|A|

FC,G(s, 1, φ) by Lemma 2.11.

In particular, FC,G(s, φ) has a pole of order
∑

g∈M (1/[K(ζrg) :K]) (from Lemma 2.10) at
s= 1/m.

Now we can analyze the pole at 1/m of NC,G(s, φ). Recall that we can write

NC,G(s, φ) =
∑

H subgroup of G

µ(H, G)FC|H ,H(s, φ).

By Lemma 2.10, we know that, for H a proper subgroup of G, the maximum order of a pole of
any FC|H ,H(s, ε, φ) and thus of any FC|H ,H(s, φ) is

∑
g∈M ∩H(1/[K(ζrg) :K]). For fair C, this is

smaller than the order of the pole of FC,G(s, φ), and thus

NC,G(s, φ)∼m FC,G(s, φ)∼m
|E(C)|
|A|

FC,G(s, 1, φ).
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In particular, NC,G(s, φ) has a pole at s= 1/m and thus is not identically zero. So there are
surjective χ : J/K×→G that for all v ∈ S have χv = φv. So, φ is associated to a viable Σ.

If we write

then

TC,G(s) =
∏
v 6∈S

( ∑
χv :o×v→G

1
Nvc(χv)s

)
,

NC,G(s, φ) ∼m
|E(C)|
|A|

TC,G(s)
∏
v∈S

1
Nvc(φv)s

.

Note that TC,G(s) does not depend on φ and has a pole at 1/m. Let w be the order of the pole
of NC,G(s, φ) (or TC,G(s)) at 1/m. Let Σ be associated to φ. Let

NC,G(Σ, X) = #{L ∈ EG(K) | Lv ∼= Σv for all v ∈ S and C(L)<X}.

Then, for viable Σ, using a Tauberian theorem (as in [Nar83, Corollary, p. 121]), we obtain a
positive finite limit

lim
X→∞

NC,G(Σ, X)
X1/m(log X)w−1

= lim
s→1/m

[
NC,G(s, Σ)

(
s− 1

m

)w] m

Γ(w)
,

where Γ is the Gamma function. Summing over the finitely many Σ on S, we have that

lim
X→∞

#{L ∈ EG(K)|C(L)<X}
X1/m(log X)p−1

is a positive finite constant. Thus for viable Σ on S, we have PrC(Σ)> 0.
It follows that for a fair counting function C and Σ and Σ′ viable local specifications on S,

we have
PrC(Σ)
PrC(Σ′)

= lim
X→∞

NC,G(Σ1, X)
NC,G(Σ2, X)

=
∏
v∈S(1/Nvc(Σv)/m)∏
v∈S(1/Nvc(Σ′v)/m)

.

We have required that S is sufficiently large to contain certain places depending on G and K and
from our requirements it follows that S0 ⊂ S. Thus, since Σ and Σ′ are viable, we have Σ̃, Σ̃′ ⊂A
and

PC(Σ̃|A) =
PC(Σ̃)
PC(A)

.

We then conclude that
PrC(Σ)
PrC(Σ′)

=
PC(Σ̃)
PC(Σ̃′)

=
PC(Σ̃|A)
PC(Σ̃′|A)

.

This proves Theorem 2.1 in the case when S is sufficiently large.
Consider a local specification Σ′ on S′ ⊂ S. Then, we see that

PrC(Σ′) =
∑

viable Σ on S,
restricting to Σ′ on S′

PrC(Σ) =
∑

viable Σ on S,
restricting to Σ′ on S′

PC(Σ̃)
PC(A)

=
PC(Σ̃′ ∩A)
PC(A)

,

which proves Theorem 2.1. 2

2.6 Analytic continuation of FC,G(s, ε, φ)
In this section we prove Lemmas 2.10, 2.11, and 2.12, the content of which we now remind the
reader.
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For any counting function C, the product FC,G(s, ε, φ) absolutely converges in Re(s)> 1/m
and has a meromorphic continuation to Re(s) > 1/m, analytic away from s= 1/m. The pole of
FC,G(s, 1, φ) at s= 1/m is of order ∑

g∈M

1
[K(ζrg) :K]

,

where rg is the order of g in G.

For a counting function C, there is a subgroup E(C) of A such that if ε ∈ E(C) then
FC,G(s, ε, φ) has a pole of the same order at s= 1/m as FC,G(s, 1, φ), and if ε 6∈ E(C)
then FC,G(s, ε, φ) has a pole of lesser (possibly zero) order than FC,G(s, 1, φ).

If C is fair, v 6∈ S, and χv : o×v →G, then, for all e ∈ E(C), we have χv(e) = 0.

We see easily that FC,G(s, ε, φ) (as well as all other products we consider in this subsection)
converges absolutely and uniformly on Re(s)> 1/m. So, we will investigate the behavior at 1/m
by manipulating the Euler product for FC,G(s, ε, φ) until it resembles a product of L-functions.
This strategy was motivated by the work of Taylor [Tay84, § 3], who related FC,G(s, ε, φ) to
L-functions for C the conductor and G cyclic, although we face additional challenges both from
general C and G not necessarily cyclic.

We use the following lemma to interchange sums and products, which is possible because
we are only looking for behavior at 1/m and so higher-order terms will not contribute. For g
and h analytic functions on Re(s)> 1/m, we use g ≈m h to denote that g/h has an analytic
continuation to Re(s) > 1/m.

Lemma 2.13. Let m and M be positive reals. Let K be a number field and, for each place v
of K, let Pv(x) = 1 +

∑M
i=1 bv,ix

αv,i , where m 6 αv,i and bv,i ∈ C with |bv,i| 6M . Then for some
large Y we have ∏

v

Pv(Nv−s)≈m
∏
v

Nv>Y

M∏
i=1

(1 + bv,iNv
−αv,is)

(where the products over v are over all finite places v of K satisfying the condition).

Proof. We can bound the absolute value of each factor of
∏
v Pv(Nv

−s) by 1 +M2Nv−ms

and each factor of
∏
v

∏M
i=1(1 + bv,iNv

−αv,is) by (1 +MNv−ms)M , and thus both products
converge absolutely on Re(s)> 1/m. For sufficiently large v, the function

∏M
i=1(1 + bv,iNv

−αv,is)
has absolute value at least 1/2 everywhere on Re(s) > 1/m. For those v,∣∣∣∣∣ Pv(Nv−s)∏M

i=1(1 + bv,iNv−αv,is)

∣∣∣∣∣ 6 1 +
2MMMNv−2ms

|
∏M
i=1 (1 + bv,iNv−αv,is)|

6 1 + 2M+1MMNv−2ms.

Thus we conclude the lemma. 2

Now, we set our notation for the rest of the proof of Lemmas 2.10, 2.11, and 2.12.

Notation 2.14. A division of G is a set of all the invertible multiples of some element x ∈G,
in other words {y | y = ex and x= fy for some e, f ∈ Z}. Let Div(G) be the set of non-identity
divisions of G. For an element g ∈G, let rg be its order and for d ∈Div(G), let rd be the order
of any element of d. Recall that any map from o×v to a finite group of order relatively prime to v
factors through (ov/v)×.
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We now make a specific choice, for all places v - |G|, of a generator yv of the tame inertia
group of Kv (which is isomorphic to (ov/v)×). Our choice is that yv ≡ ζNv−1 (mod v), where
ζNv−1 is the primitive (Nv − 1)th root of unity we fixed just before § 2.3.

Since c(χv) only depends on the division of χv(yv), for a division d we can write c(d) to
denote c(χv) for any χv that sends yv to an element of d.

We now rearrange FC,G(s, ε, φ) as follows:

FG(s, ε, φ) ≈m
∏
v 6∈S

( ∑
χv :o×v→G

χ̇v(ε)
Nvc(χv)s

)

=
∏
v 6∈S

(
1 +

∑
d∈Div(G)

∑
g∈d

∑
χv :o×v→G
χv(yv)=g

χ̇v(ε)
Nvc(d)s

)
.

The sum over χv : o×v →G such that χv(yv) = g has at most one term, but we keep the summation
sign for notational convenience. So we have

FG(s, ε, φ) ≈m
∏
v 6∈S
Nv>Y

∏
d∈Div(G)

∏
g∈d

(
1 +

∑
χv :o×v→G
χv(yv)=g

χ̇v(ε)
Nvc(d)s

)
by Lemma 2.13

=
∏

d∈Div(G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

∑
χv :o×v→G
χv(yv)=g

χ̇v(ε)
)
.

Only v with Nv ≡ 1 (mod rd) have χ : o×v →G such that χv(yv) ∈ d.
Now we prove the following lemmas in order to evaluate the term χ̇v(ε) in the above. Our

strategy to evaluate χ̇v(ε) is motivated by the work of Taylor [Tay84], who calculated the order
of χ̇v(ε) for G cyclic. For non-cyclic G, we need to take advantage of our choice of yv.

Lemma 2.15. We have

ζNv−1 =
Frobv(y

1/(Nv−1)
v )

y
1/(Nv−1)
v

,

where the Frobenius is in the Galois group of the maximal unramified extension of Kv.

Proof. Note that Kv contains the (Nv − 1)th roots of unity and so

Frobv(y
1/(Nv−1)
v )

y
1/(Nv−1)
v

does not depend on the choice of root of yv. We know that both ζNv−1 and

Frobv(y
1/(Nv−1)
v )

y
1/(Nv−1)
v

are (Nv − 1)th roots of unity, and that those roots of unity inject into (ov/v)×. Thus we can
prove the lemma modulo v. There we have

Frobv(y
1/(Nv−1)
v )

y
1/(Nv−1)
v

≡ y(Nv−1)/(Nv−1)
v ≡ yv ≡ ζNv−1,

where the last equality is by choice of yv. 2
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Lemma 2.16. Let v - n∞ and χv(yv) = g. Suppose the projections of g to the Z/niZ are

niki/`i ∈ Z/niZ, where `i | ni and (ki, `i) = 1. Let εg be notation for
∏k
i=1 ε

ki/`i
i , and let wv

be a prime of K(ζrg) over v. Then

χ̇v(ε) =
k∏
i=1

Frobwv(εki/`i
i )

ε
ki/`i
i

=
Frobwv(εg)

εg
,

where the Frobenius is in the Galois group of the maximal extension of K(ζrg) unramified
outside S.

Proof. Note that `i | rg. Since χv factors through (ov/v)× and yv has order Nv − 1 in (ov/v)×, we
also have that rg |Nv − 1. In (ov/v)×, write εi = ybiv so that in Kv we have εiui = ybiv , where ui
is a unit congruent to 1 modulo v. We have that

˙χvi(εi) = ζ
χvi(εi)
ni = ζ

biχvi(yv)
ni = ζnikibi/`i

ni
= ζkibi

`i
= ζ

(Nv−1)kibi/`i
Nv−1 .

From Lemma 2.15, we have

ζNv−1 =
Frobv(y

1/(Nv−1)
v )

y
1/(Nv−1)
v

,

where the Frobenius is in the Galois group of the maximal unramified extension of Kv. Thus

˙χvi(εi) =
(

Frobv(y
1/(Nv−1)
v )

y
1/(Nv−1)
v

)(Nv−1)kibi/`i

=
Frobv(y

kibi/`i
v )

y
kibi/`i
v

=
Frobv(ε

ki/`i
i ) Frobv(u

ki/`i
i )

ε
ki/`i
i u

ki/`i
i

,

where the Frobenius is still in the Galois group of the maximal unramified extension of Kv.
Since ui is a unit congruent to 1 modulo v and `i |Nv − 1, we have that all the `ith roots of ui
are in Kv =K(ζr)w and that Frobv(u

ki/`i
i ) = u

ki/`i
i . Note that Kv =K(ζrg)wv since rg|Nv − 1,

and thus we can replace Frobv with the Frobenius of wv in K(ζrg)wv . We thus have

˙χvi(εi) =
Frobwv(εki/`i

i )

ε
ki/`i
i

.

Since the `ith roots of εi are in the maximal extension of K(ζrg) unramified outside S, we can
interpret the Frobenius as the Frobenius of wv in the Galois group of the maximal extension of
K(ζrg) unramified outside S in the statement of the lemma. Note that K(ζrg) contains the `ith
roots of unity and so Frobv(ε

ki/`i
i )/εki/`i

i does not depend on the choice of root of εi. 2

Using Lemma 2.16 and its definitions of εg, wv, and Frob, we have

FC,G(s, ε, φ) ≈m
∏

d∈Div(G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

∑
χv :o×v→G
χv(yv)=g

χ̇v(ε)
)

=
∏

d∈Div(G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

Frobwv(εg)
εg

)
.

We now partition Div(G) into Div0(ε, G), the divisions whose elements g have εg ∈K(ζrg),
and Div+(ε, G), the divisions whose elements g have εg 6∈K(ζrg). Let t(r) := [K(ζr) :K]. We
factor the last product above into two factors A(s) and B(s), defined below.
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We have

A(s) :=
∏

d∈Div0(ε,G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

Frobwv(εg)
εg

)

=
∏

d∈Div0(ε,G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

)

=
∏

d∈Div0(ε,G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
w|v

(
1 +

1
Nvc(d)s

)φ(rd)/t(rd)

,

where the last product is over the primes w of K(ζrd) over v. Note that φ(rd)/t(rd) is an integer.
By the standard argument about only degree one primes contributing to the pole, we have∏

v 6∈S
Nv≡1 (mod rd)

Nv>Y

∏
w|v

(
1 +

1
Nvc(d)s

)
≈m ζK(ζrd

)(c(d)s).

Thus

A(s)≈m
∏

d∈Div0(ε,G)

ζK(ζrd
)(c(d)s)φ(rd)/t(rd).

We define

B(s) :=
∏

d∈Div+(ε,G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

(
1 +

1
Nvc(d)s

Frobwv(εg)
εg

)
.

Let N be the least common multiple of the ni, and note that, since rd |N , we have that
t(rd) | t(N). We now have

B(s)t(N) =
∏

d∈Div+(ε,G)

∏
v 6∈S

Nv≡1 (mod rd)
Nv>Y

∏
g∈d

∏
w|v

(
1 +

1
Nvc(d)s

Frobw(εg)
εg

)t(N)/t(rd)

,

where the last product is over the primes w of K(ζrd) over v. For d ∈Div+(ε, G) we have that
K(ζrd , ε

g)/K(ζrd) is abelian and non-trivial. Thus there is a non-trivial Hecke character θεg for
K(ζrd) such that Frobw(εg)/εg is θεg(w). Again by standard arguments we have∏

v 6∈S
Nv≡1 (mod rd)

Nv>Y

∏
w|v

(
1 +

Frobw(εg)
εg

1
Nvc(d)s

)
≈m L(c(d)s, θεg)

and thus we can write

B(s)t(N) = g(s)
∏

d∈Div+(ε,G)

∏
g∈d

L(c(d)s, θεg)t(N)/t(rd),
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where g(s) is analytic in Re(s) > 1/m. We know that L(c(d)s, θεg) not only has an analytic
continuation to Re(s) > 1/m but is also non-zero in that region. We can check that g(s) is also
non-zero in Re(s) > 1/m. Thus B(s) has an analytic continuation to Re(s) > 1/m.

Thus, we conclude that

FC,G(s, ε, φ)≈m
∏

d∈Div0(ε,G)

ζK(ζrd
)(c(d)s)φ(r)/t(rd).

So, FC,G(s, ε, φ) has a meromorphic continuation to Re(s) > 1/m analytic away from s= 1/m.
The pole of FC,G(s, ε, φ) at 1/m is of order∑

d∈Div0(ε,G)
c(d)=m

φ(rd)
t(rd)

=
∑

d∈Div0(ε,G)∩M

φ(rd)
t(rd)

=
∑

d∈Div0(ε,G)∩M

∑
g∈d

1
t(rg)

=
∑

g∈G(ε)∩M

1
t(rg)

,

where G(ε) is the set of g ∈G such that εg ∈K(ζrg). Note that G(1) =G. This proves
Lemma 2.10. The maximal order pole among terms FC,G(s, ε, φ) is in FC,G(s, 1, φ), and any
other FC,G(s, ε, φ) has that same order pole if and only if M⊂G(ε). Let E(C) be the elements
ε ∈ A such that M⊂G(ε). It is easy to see that E(C) is a subgroup, and this proves Lemma 2.11.
Lemma 2.12 will follow from the next result.

Lemma 2.17. For a fair counting function C, and ε ∈ E(C), we have εj
1/r ∈K(ζr) for all r | nj .

Proof. Fix a j with 1 6 j 6 k and an r dividing nj . Let g be the element of G with jth projection
nj/r and all other projections 0. Since g is of order r and C is fair, we can write

∑`
s=1 gs = g,

where gs are elements of M and all gs have order dividing r. Write gs = (gs,1, . . . , gs,k) according
to our chosen factorization of G. We can write gs,i = nihs,i/`s,i with (hs,i, `s,i) = 1. Since gs is of
order dividing r, we must have `s,i|r. Thus by definition of E(C) we have

εgs =
k∏
i=1

ε
hs,i/`s,i

i ∈K(ζr).

We then see that ∏̀
s=1

k∏
i=1

ε
hs,i/`s,i

i ∈K(ζr).

By the choice of the gs, we have that
∑`

s=1 nihs,i/`s,i (as a sum in Z/ni) is nj/r if i= j and 0
otherwise. Equivalently,

∑`
s=1(hs,i/`s,i) (as a sum in Q/Z) is 1/r if i= j and 0 otherwise. Thus,

we conclude that
∏`
s=1

∏k
i=1 ε

hs,i/ds,i

i is εj1/r times an element of K×, and thus εj1/r ∈K(ζr). 2

Suppose C is fair, v 6∈ S, and we have a χ : o×v →G of order r, with projection to Z/niZ of
order `i. Then Nv ≡ 1 (mod r), and thus for all i we have Kv =Kv(ζ`i). So, for all ε ∈ E(C), we
have εj1/`j ∈K(ζ`j ), which implies that εj1/`j ∈Kv(ζ`j ) =Kv, and thus εj is an `jth power in o×v
for all j. We conclude that χ̇v(ε) = 0, which proves Lemma 2.12.

Remark 2.18. By definition, E(C) depends on our choice of C. However, given that C is fair,
by Lemma 2.17, we see that for ε ∈ E(C) we have εg ∈K(ζrg) for all g ∈G. If ε ∈ A is such that
εg ∈K(ζrg) for all g ∈G, then ε ∈ E(C). Thus if C is fair, we see that E(C) is the subgroup of ε
such that εg ∈K(ζrg) for all g ∈G, and thus does not depend on C.
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3. Counting by conductor

In the proof of Theorem 2.1 in § 2.5, we have implicitly found the asymptotics of

NC,G(X) := #{L ∈ EG(K)|C(L)<X},

for any fair counting function C. We state those asymptotics here. Recall the definition of S0

from § 2 as follows. Let ηi = ζ2i + ζ−1
2i , where ζ2i is a primitive 2ith root of unity. Let sK be

maximal such that ηsK ∈K. If 2sK+1 does not divide the exponent of G, then let S0(K) = ∅.
Otherwise, let S0(K) be the set of primes ℘ of K dividing 2 such that none of −1, 2 + ηsK , and
−2− ηsK are squares in K℘.

Theorem 3.1. For a fair counting function C, we have

lim
X→∞

NC,G(X)
XmC (log X)wK,C−1

=
Sp(K, G)

m
wK,C−1
C (wK,C − 1)!|G||S0(K)|∏

i |o
×
K/o

ni
K |

×
∏

v 6∈S0(K)
v finite

(( ∑
χv :o×v→G

1
Nvc(χv)/mC

)(
1− 1

Nv

)wK,C
)

·
( ∑

Σ viable local
specification of G-structured

algebras on S0(K)

∏
v∈S0(K)

1
Nvc(Σv)/mC

(
1− 1

Nv

)wK,C
)∏
v|∞

( ∑
GKv→G

1
)
,

where G= Z/n1Z× · · · × Z/nkZ, mC = ming∈G\{0} cG(g), M = c−1
G (m), rg is the order of g ∈G,

ζj are the jth roots of unity,

wK,C =
∑
g∈M

1
[K(ζrg) :K]

,

hG,K is the number of i such that 2sK+1|ni,

Sp(K, G) =

{
2hG,K if none of −1, 2 + ηs, and −2− ηs are squares in K,

1 otherwise,

oK is the ring of integers in K, GF is the absolute Galois group of F , ov is the ring of integers
of Kv, and all products are over places of K.

We can also specialize to the case that the counting function is f, the norm of the conductor
to Q. In this case mf = 1 and M =G \ {0} and so the expression in Theorem 3.1 simplifies
slightly.

Proof. This result follows from the analysis of Section 2.5. We simplify the constant that one
obtains using that analysis by applying

lim
s→1/m

[
ζK(sm)

(
s− 1

m

)]
=

1
m

and the following two lemmas.

Lemma 3.2. For fair C, we have |E(C)|= Sp(K, G).
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Proof. We know from Lemma 2.17 that ε ∈ E(C) implies that for all `i | ni we have ε1/`ii ∈K(ζ`i).
If v 6∈ S, and (Nv − 1, ni) = `i, then εi is an nith power in Kv if and only if it is an `ith
power in Kv. Since `i |Nv − 1, we have Kv(ζ`i) =Kv, and thus ε1/ni

i ∈Kv. By [AT68, ch. 10,
Theorem 1], it follows that either (i) εi is an nith power in K or (ii) εi ∈ bni/2

0 Kni , where
b0 = 2 + ηsK = (1 + ζ2sK )2. Also, the second case only occurs when none of −1, 2 + ηsK , and
−2− ηsK are squares in K and when 2sK+1 | ni.

Next, we will see that any ε such that εi = b
ni/2
0 and 2sK+1 | ni for some i ∈ I and εj = 1 for

all j 6∈ I is in E(C). First note that b0 is a unit at all places not dividing 2, and so it will be in o×S
as long as S contains 2 (which we have required when |G| is even). We can reduce to the case
that I = {i}. Then we need to conclude that bni/2

0 ∈K(ζ`i)
`i for all `i | ni. We can easily reduce

to the case that ni is a power of 2 (e.g., by choosing the ni to be prime powers originally). We
know that bni/2

0 ∈Kni/2. If `i = ni, then K(ζ`i) contains ζ2sK (because 2sK | ni) and thus bni/2
0 is

an `ith power in K(ζ`i).
We see that E(C) is trivial when any of −1, 2 + ηsK , and −2− ηsK are squares in K.

Otherwise, E(C) contains exactly the ε that have εi = 1 where 2sK+1 - ni and that have εi = 1
or bni/2

0 at all other i. From [AT68, ch. 10, Theorem 1] we know that bni/2
0 is not an nith power

in K when none of −1, 2 + ηsK , and −2− ηsK are squares in K and 2sK+1 | ni. This proves the
lemma. 2

The next lemma follows from the fact that a local specification of G-structured algebras
on S containing S0(K) is viable if and only if its restriction to S0 is viable (see [AT68, ch. 10,
Theorem 5]). Also recall Lemma 2.6, which gives the correspondence between G-structured
algebras and Galois representations.

Lemma 3.3. For S containing S0(K),∑
Σ viable local

specification of G-structured
algebras on S

∏
v∈S

1
Nvc(Σv)/mC

=
∏

v∈S\S0

(
|G|

∑
χv :o×v→G

1
Nvc(χv)/mC

) ∑
Σ viable local

specification of G-structured
algebras on S0(K)

∏
v∈S0(K)

1
Nvc(Σv)/mC

.

This completes the proof of Theorem 3.1. 2

4. Discriminant probabilities

For this section, we work with the base field K = Q. We show that when one replaces the
conductor by the discriminant when defining probabilities in (1) (to define what we call discrim-
inant probabilities), we do not in general have analogs of the nice behavior of Corollary 1.2 and
Theorem 1.3. When G has prime exponent, the discriminant is a fixed power of the conductor,
and so we do have analogs of Corollary 1.2 and Theorem 1.3. However, in the simplest case when
G does not have prime exponent, that is G= Z/p2Z for p prime, we find examples of dependence
of local behaviors at different places (Proposition 4.1), and examples where we do not have
the Chebotarev probabilities for unramified splitting behavior (Proposition 4.4). As discussed in
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the introduction, Wright [Wri89] observed that for G= Z/4Z the ratios of probabilities of local
behaviors are apparently very complicated. Our propositions give concrete evidence for the
suggestion of Wright that the discriminant probabilities are not well-behaved. We calculate
the probabilities for the propositions below in a similar fashion to our work in § 2.

Proposition 4.1. Let p, q1, and q2 be primes with qi ≡ 1 (mod p2) for i= 1, 2. If G= Z/p2Z,
then q1 ramifying and q2 ramifying in a random G-extension are not discriminant independent.

Proof. From Lemma 2.8 with S empty, we have J/Q× ∼=
∏
p Z×p × R/{±1}, where the product

is over finite places of Q. We also have the following.

Lemma 4.2. The natural map

Hom
(∏

p

Z×p × R/{±1}, G
)
→Hom

(∏
p

Z×p , G
)
,

sending χ 7→ χ(−, 1), is an isomorphism.

We work as in § 2, but now we let Φ be a set of isomorphism classes of G-structured
algebras at each place of S instead of just considering a single G-structured algebra. For the
following computations, we let G be either Z/p2Z or pZ/p2Z, and let D on Z/p2Z be given
by D(L) = |DiscQ L|, and D on pZ/p2Z be given by D|pZ/p2Z(L) = |DiscQ L|p. In both cases,
m= p(p− 1). Let S be a finite set of finite places and let Φ specify that a character is unramified
at all places in S. We consider

FD,G(s, Φ) :=
∑

χ:J/Q×→G
∀v∈S χv∈Φv

1
D(χ)s

=
∏
`6∈S

( ∑
χ`:Z×` →G

1
D(χ`)s

)
,

where the product is over finite rational primes `. We can express FD,G(s, Φ) as this Euler
product by Lemma 4.2, which allows us to count characters from J/Q× by counting characters
from

∏
` Z×` . We know that D only depends on the restriction of local characters to Z×` . We

see that FD,G(s, Φ) only differs by finitely many factors from the FD,G(s, 1, φ) of § 2 (for any
choice of φ), and that FD,G(s, Φ)/FD,G(s, 1, φ) is entire. We conclude from Lemma 2.10 that
FD,G(s, Φ) has a pole at 1/p(p− 1) of order 1, but otherwise can be analytically continued
to Re(s) > 1/p(p− 1). As at the end of § 2, we can use a Tauberian theorem to calculate the
coefficient sums

FD,G(Φ, X) = #{χ : J/Q×→G | χv ∈ Φv for all v ∈ S and D(χ)<X}.

If we let Φ(qi) specify that a character is unramified at qi, let Φ(q1,q2) specify that a character
is unramified at q1 and q2, and let Φ(0) make no specification at all, we find that

lim
X→∞

FD,G(Φ(qi), X)
FD,G(Φ(0), X)

=
1∑

χ:Z×qi
→G(1/D(χ)s)

,

lim
X→∞

FD,G(Φ(q1,q2), X)
FD,G(Φ(0), X)

=
1

(
∑

χ:Z×q1→G
(1/D(χ)s))(

∑
χ:Z×q2→G

(1/D(χ)s))
,

and

lim
X→∞

FD|pZ/p2Z,pZ/p2Z(Φ(0), X)

FD,Z/p2Z(Φ(0), X)
= lim

s→1/(p(p−1))

FD|pZ/p2Z,pZ/p2Z(s, Φ(0))

FD,Z/p2Z(s, Φ(0))
6= 0, 1.
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We can define D-probabilities of local specifications for random characters J/Q×→ Z/p2Z as
in (1), essentially replacing the set of surjective characters J/Q×→G by the set of all characters
J/Q×→G. Then the above tells us that q1 ramifying and q2 ramifying are D-independent events
for random characters to Z/p2Z. We see that q1 ramifying and q2 ramifying are D-independent
events for random characters with image in pZ/p2Z. Also, the probability that a random character
to Z/p2Z has image in pZ/p2Z is not 0 or 1. Since we have qi ≡ 1 (mod p2), there are more maps
from Z×qi to Z/p2Z than to pZ/p2Z. Thus the probabilities of qi ramifying in a random character
to Z/p2Z and in a random character with image in pZ/p2Z are different. We have the following
simple fact from probability theory.

Lemma 4.3. Let A be an event with positive probability not equal to 1. If E1 and E2 are
independent, independent given A, and for i= 1, 2 we have that the Pr(Ei|A) 6= Pr(Ei), then E1

and E2 are not independent given not-A.

So we can conclude that the probabilities of q1 and q2 ramifying in a random surjective
character to Z/p2Z, or equivalently in a Z/p2Z-extension of Q, are not independent. 2

Proposition 4.4. Let q = 2, 3, 5, 7, 11, or 13. Given that q is unramified, the discriminant
probability that q splits completely in a Z/9Z-extension is less than 1/9.

Proof. From Wright [Wri89, Theorem I.4], we know that q is unramified with non-zero
discriminant probability in a random Z/9Z-extension, and thus is makes sense to formulate
the proposition. First, we let G= Z/p2Z for an arbitrary odd prime p. We let S = {q} for some
prime q, and define φ on S with φq the trivial character. We will use the isomorphisms

Hom(J/Q×, G)∼= Hom
(∏

`

Z×` , G
)
∼= Hom

((∏
`6=q

Z×` ×Q×q
)/
〈q〉, G

)
.

As in § 2.4, for ε ∈ A= 〈q〉/〈qp2〉 we define

FD,G(s, φ) :=
∑

χ:J/Q×→G
∀v∈S,χv=φv

1
D(χ)s

and F ′D,G(s, ε, φ) :=
∑

χ:
∏

`6=q Z
×
` ×Q

×
q →G

∀v∈S,χv=φv

ζ
χ(ε)
p2

D(χ)s
,

and have FD,G(s, φ) = (1/|A|)
∑

ε∈A F
′
D,G(s, ε, φ). Therefore, we have the usual Euler product

F ′D,G(s, ε, φ) =
∏
`6=q

∑
χ`:Z×l →G

ζ
χ`(ε)
p2

D(χ`)s
,

which has no factor at q because φq is the trivial character. We see that F ′D,G(s, ε, φ) only differs
from FD,G(s, ε, φ′) (for any choice of φ′ on S′ 3 q) of § 2 by a finite number of factors. We also see
that F ′D,G(s, ε, φ)/FD,G(s, ε, φ′) is entire and non-zero at 1/p(p− 1), and thus we conclude from
Lemma 2.10 that F ′D,G(s, ε, φ) can be analytically continued to Re(s) > 1/p(p− 1) except for a
possible pole of order at most one at 1/p(p− 1). From Lemma 2.11 we have that F ′D,G(s, ε, φ)
has a pole at 1/p(p− 1) exactly when ε1/p ∈Q(ζp), i.e. when ε ∈ 〈qp〉.
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For ` 6= q and p - i,

∑
χ`:Z×` →G

ζ
χ`(qpi)
p2

D(χ`)s

=



1, ` 6≡ 1 (mod p);
1 + (p− 1)`−(p2−p)s, `≡ 1 (mod p) and ` 6≡ 1 (mod p2);
1 + (p− 1)`−(p2−p)s − p`−(p2−1)s, `≡ 1 or p (mod p2) and q not a pth

power in Q`;
1 + (p− 1)`−(p2−p)s + (p2 − p)`−(p2−1)s, `≡ 1 or p (mod p2) and q a pth

power in Q`.

Also, ∑
χ`:Z×` →G

1
D(χ`)s

=


1, ` 6≡ 1 (mod p);
1 + (p− 1)`−(p2−p)s, `≡ 1 (mod p) and ` 6≡ 1 (mod p2);
1 + (p− 1)`−(p2−p)s + (p2 − p)`−(p2−1)s, `≡ 1 or p (mod p2).

To find the discriminant probability that a random character to Z/p2Z splits completely at q,
given that it is unramified at q, we compare FD,G(s, φ) to FD,G(s, Φ(q)) (from the proof of
Proposition 4.1), which counts all characters to Z/p2Z, unramified at q. We have

FD,G(s, Φ(q)) =
∏
`6=q

( ∑
χ`:Z×` →G

1
D(χ`)s

)
.

Both FD,G(s, φ) and FD,G(s, Φ(q)) can be meromorphically continued to Re(s) > 1/p(p− 1),
analytic away from 1/p(p− 1) and with a pole of order 1 at 1/p(p− 1). Thus we can use a
Tauberian theorem, as at the end of § 2, to find that the discriminant probability of a random
character χ : J/Q×→ Z/p2Z being trivial at q, given that it is unramified, is

s = lim
s→1/(p(p−1))

(1/|A|)
∑

ε∈A F
′
D,G(s, ε, φ)

FD,G(s, Φ(q))

=
1
p2

(
1 + (p− 1)

∏
`≡1 or p (mod p2)

q not a pth power in Q`
`6=q

(1 + (p− 1)`−1 − p`−(p+1)/p)
(1 + (p− 1)`−1 + (p2 − p)`−(p+1)/p)

)
.

Remark 4.5. Note that s > 1/p2 because we know that both F ′D,G(s, qpi, φ) and FD,G(s, Φ(q))
do have a pole at 1/p(p− 1). Thus we cannot ‘resolve’ this proposition by simply considering all
characters χ : J/Q×→ Z/p2Z instead of just Z/p2Z-extensions.

We have shown that the discriminant probability of q splitting completely in a random
character χ : J/Q×→ pZ/p2Z, given that it is unramified at q, is 1/p, because D|pZ/p2Z is fair
and so we can use Corollary 1.2. By the method in the proof of Proposition 4.1, we can calculate
that the discriminant probability that a random character χ : J/Q×→ Z/p2Z, unramified at q,
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has image in pZ/p2Z is

r =
∏
`6=q

∑
χ:Z×` →pZ/p2Z

(1/D(χ)1/(p2−p))∑
χ:Z×` →Z/p2Z

(1/D(χ)1/(p2−p))
=

∏
`≡1 or p (mod p2)

`6=q

(1 + (p− 1)`−1)
(1 + (p− 1)`−1 + (p2 − p)`−(p+1)/p)

.

Thus if s1 is the probability that a random surjective character to Z/p2Z is trivial at q, given
that it is unramified at q, we have

s1 =
s− (r/p)

1− r
and thus s1 > 1/p2 if and only if (p2s− 1/(p− 1)r)> 1. In other words, s1 > 1 if and only if the
product∏
`≡1 or p (mod p2)

q 6∈Qp
`

`6=q

(1 + (p− 1)`−1 − p`−(p+1)/p)
(1 + (p− 1)`−1)

∏
`≡1 or p (mod p2)

q∈Qp
`

`6=q

(1 + (p− 1)`−1 + (p2 − p)`−(p+1)/p)
(1 + (p− 1)`−1)

is greater than 1. We can calculate truncations of the above product in PARI/GP [PAR06]
for p= 3, q = 2, 3, 5, 7, 11, 13, and ` 6N , where N = 105 (except for when q = 3 where we use
N = 108). We can estimate that the remainder, the product of the terms with l > N , is at most∏

`>N

(1 + (p2 − p)`−(p+1)/p)) 6
∏
`>N

(1 + `−(p+1)/p)p
2−p

6

(
1 +

∑
n>N

n−(p+1)/p

)p2−p
6 (1 + pN−1/p)p

2−p,

where the sum is over integers n. We can then prove that s1 6 0.97 in all of these cases. In
conclusion, the probability that a random Z/9Z-extension of Q splits completely at q, given that
it is unramified at q, is less than 1/9 for q = 2, 3, 5, 7, 11, or 13. 2

5. Fair Artin conductors

For any faithful finite-dimensional complex representation R of G and G-extension L, we have
the Artin conductor CR(L), which is a counting function (as defined in the beginning of § 2).
If R is not faithful, then the Artin conductor is not a counting function because it will have
cRG(g) = 0 for non-trivial g. We have seen that for fair counting functions the probabilities of
local behaviors are nice, but in § 4 we saw that for an example of an unfair counting function
the probabilities are not so well-behaved. In this section, we give two simple examples of Artin
conductors which give fair counting functions.

For a general definition of Artin conductors, see [Neu99, ch. VII.11]. The discriminant is given
by the Artin conductor of the regular representation. Since we are only concerned with G abelian,
any representation R breaks up as a sum of one-dimensional representations, each of which is
determined by the kernel of the action of G on that one-dimensional representation. Suppose R
is given by kernels H1, . . . , Hs. Then for g ∈G, we have cRG(g) = s−#{i|g ∈Hi}. This can serve
as a definition of the Artin conductor at all tame places, which is all that concerns fairness.
In other words, for a character χ :K×v →G for v - |G|, we have cR(χ) = cRG(χ(yv)), where yv is
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a generator of tame inertia. Recall that mR is the minimum value, other than 0, taken by cRG,
and M = MR = (cRG)−1(m). The counting function is fair if M ∩ {g ∈G | gr = 1} generates the
subgroup {g ∈G | gr = 1} for all r.

We write G=
∏
i Z/niZ, and let fi :G→ Z/niZ ↪→ C∗ be the projection of G to a factor

composed with an injection to C∗. Then
⊕

i fi gives a fair Artin conductor. Since the
representation is faithful, the Artin conductor of

⊕
i fi is a counting function. Also, the elements

of M are exactly the elements of G that are in all but one ker fi, and these are the elements with
non-zero coordinates in exactly one factor of G. These elements of M generate G in every
exponent, and thus the Artin conductor is fair.

Also,
⊗

i fi ⊕
⊕

i fi has a fair Artin conductor. We have
⋂
i ker fi = {1} and ker(

⊗
i fi) ∩⋂

i6=j ker fi = {1}, and so the elements of M are exactly the elements of G that are in all but two
of the ker fi and ker(

⊗
i fi). The elements of G with non-zero coordinates in exactly one factor

are in M, and they generate G in every exponent, and thus in this case the Artin conductor is
fair. We can apply these two examples of fair Artin conductors to other factorizations of G into
cyclic groups to obtain more examples of fair Artin conductors.

6. Further questions

One may ask whether counting abelian extensions by conductor or by discriminant is more
natural. In this paper, we have seen that the probabilities of local behaviors are very nice when
counting by conductor and not so well behaved when counting by discriminant. While in both
cases we can obtain asymptotic counting results for the total number of extensions (see § 3
and [Wri89]), in the case of conductor we can express the constant in the asymptotic count
as an Euler product (see Theorem 3.1). No Euler product is known for the constant counting
abelian extensions by discriminant for a general group G and base field K. So it seems for abelian
groups G, counting by conductor gives more natural answers.

The other main examples where this global asymptotic counting and computation of local
probabilities can be done are for degree n extensions with Galois closure with group Sn for
n= 3, 4, 5 (see [DH71, Bha05, Bhaa]). In these cases the counting is done by discriminant, and
in fact it is not clear what we might mean by conductor in these cases. Perhaps one should
define the conductor to be the greatest common divisor of all Artin conductors. In [BW08] the
present author and Bhargava count these S3 extensions another way; equivalently, we count
Galois degree six extensions with Galois group S3 by their discriminant. In this case, we obtain
an asymptotic for the overall count with an Euler product constant and nice local behaviors
(simple ratios of probabilities at a given place, and independence at any finite set of places).
In [BW08] it is remarked that one can obtain all these nice behaviors for a range of counting
functions.

For quartic extensions of Q having Galois closure with Galois group D4 the overall asymptotic
counting by discriminant has been completed (see [CDO02b]), but the constant has not been
found to have a simple form, and no results for local probabilities analogous to those in this
paper have been found. We wonder if counting these D4 extensions another way would yield nicer
results. In particular, see [Woo08, § 5] for a specific counting function one might investigate.

Ellenberg and Venkatesh [EV05, § 4.2] suggest that we can try to count extensions of global
fields by general counting functions (our terminology). The larger question that is motivated
by this paper is which of these counting functions are better than others. For which counting
functions can we obtain an asymptotic total count? For which counting functions is the constant
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in the asymptotic total count an Euler product? And for which counting functions are the
local probabilities simple and independent at finite sets of places? These questions are exactly
in line with the questions of Bhargava in [Bhab, § 8.2], except he asks these questions
mainly for counting by discriminant and here we emphasize that the answers will depend on
the choice of counting function.
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