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Lie Powers and Pseudo-Idempotents

Marianne Johnson and Ralph Stöhr

Abstract. We give a new factorisation of the classical Dynkin operator, an element of the integral group

ring of the symmetric group that facilitates projections of tensor powers onto Lie powers. As an appli-

cation we show that the iterated Lie power L2(Ln) is a module direct summand of the Lie power L2n

whenever the characteristic of the ground field does not divide n. An explicit projection of the latter

onto the former is exhibited in this case.

1 Lie Powers and the Dynkin Operator

Let K be a commutative ring with one, V a free K-module, and let T = T(V ) denote

the tensor algebra on V . Thus T =
⊕

n≥0 Tn, where

Tn = V ⊗ · · · ⊗V
︸ ︷︷ ︸

n

is the n-th tensor power of V . By defining the Lie bracket [u, v] = u ⊗ v − v ⊗ u

for all u, v ∈ T, the tensor algebra is turned into a Lie algebra. It is well known that

the Lie subalgebra generated by V in T is the free Lie alebra L = L(V ) on V . We let

Ln = L ∩ Tn denote the degree n homogeneous component of L, also known as the

n-th Lie power of V . The natural action of GL(V ) on V extends to the whole of T,

turning T, L and their respective homogeneous components into GL(V )-modules. As

such the Tn and the Ln are referred to as the tensor and Lie representations of GL(V ),

respectively. One of the main problems in the theory of Lie powers is to determine

the GL(V )-module structure of Ln. When working over a field of characteristic zero,

this problem is comparatively well-understood. However, if the characteristic of the

ground field is prime, things become much more difficult (see [2] for a survey of

results and further references), and very little is known about integral Lie representa-

tions.

For each n, the symmetric group Sn acts on the tensor power Tn by the Polya

action, that is, by place permutations:

(v1 ⊗ · · · ⊗ vn)σ = v1σ−1 ⊗ · · · ⊗ vnσ−1 , (v1, . . . , vn ∈ V, σ ∈ Sn).

Note that the GL(V )- and the Sn-actions on Tn centralize one another. We call an

element Ψ in the integral group ring ZSn a pseudo-idempotent if Ψ
2

= mΨ for

some integer m, and we refer to m as the coefficient of the pseudo-idempotent. The

usefulness of a pseudo-idempotent lies in the obvious but important fact that if we

are working over a field K in which the integer m is invertible, then Ψ can be replaced
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by the genuine idempotent 1
m
Ψ ∈ KSn, which gives rise to a projection of Tn onto

its GL(V )-submodule TnΨ. Hence TnΨ is a direct summand of the tensor power Tn

as a GL(V )-module. A prominent example of a pseudo-idempotent is the Dynkin

operator,

Ωn = (1 − (1, 2))(1 − (1, 2, 3)) · · · (1 − (1, 2, . . . , n)).

It is well known (see, e.g., [4, Section 5.9]) that

(1.1) Ω
2
n = nΩn.

Moreover, since the n-th Lie power Ln is spanned by the left-normed Lie products

[v1, v2, . . . , vn] with vi ∈ V , and (as is well known and easily verified),

[v1, v2, . . . , vn] = (v1 ⊗ v2 ⊗ · · · ⊗ vn)Ωn,(1.2)

we have

Ln = TnΩn.(1.3)

Together with (1.1), (1.3) implies that, over a field K in which n is invertible, the Lie

power Ln is a module direct summand of the tensor power Tn. This is precisely the

reason why the representation theory of Lie powers becomes, by a magnitude, harder

if the degree is divisible by the characteristic.

Using the Dynkin operator one can easily construct pseudo-idempotents for iter-

ated Lie powers of the form Ln1
(Ln2

(· · · (Lnk
) · · · )), that is Ωn1,...,nk

∈ ZSn1···nk
such

that Tn1···nk
Ωn1,...,nk

= Ln1
(Ln2

(· · · (Lnk
) · · · )) with

Ω
2
n1,...,nk

= n1nn1

2 · · · n
n1n2···nk−1

k Ωn1,...,nk
.

Indeed, write Tn1···nk
= Tn1

(Tn2
(· · · (Tnk

) · · · )), and define Ωn1,...,nk
inductively by

setting

Ωn1,...,nk
= (Ωn2,...,nk

⊗ · · · ⊗ Ωn2,...,nk
)

︸ ︷︷ ︸
n1

Ωn1

with the obvious convention that Ωn1
acts on Tn1

(U ) with U = Tn2···nk
. It is not

hard to verify that this gives pseudo-idempotents with the required properties (full

details for Ω2,n are given in Section 2.2). However, when working over a field of

characteristic p, these pseudo-idempotents can only be used to show that the iterated

Lie power is a module direct summand of the corresponding tensor power if p does

not divide n1n2 · · · nk.

In this note we give a new factorisation of the Dynkin operator in which all ele-

ments of Sn involved are involutions.

Theorem 1.1 For k ≥ 2, let

αk = (1, k)(2, k − 1) · · ·
([

k
2

]
, k −

[
k
2

]
+ 1

)
.

Then Ωn = (1 − α2)(1 + α3) · · · (1 + (−1)n−1αn) for all n ≥ 2.
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As an application we derive a pseudo-idempotent Γ2n ∈ ZS2n for the iterated Lie

power L2(Ln) such that

(1.4) Γ
2
2n = (−1)n−12n2

Γ2n and T2nΓ2n = L2(Ln),

but with the important additional property that

(1.5) Ω2nΓ2n ∈ 2ZS2n.

The advantage here is that the restriction of the operator Γ2n on T2n to the submodule

L2n = T2nΩ2n is divisible by 2. It follows that the map

(1.6) [v1, . . . , v2n] 7→ 1
2
(v1 ⊗ · · · ⊗ v2n)Ω2nΓ2n

extends to a well-defined GL(V )-module homomorphism L2n → L2(Ln) such that

the restriction to the submodule L2(Ln) = T2nΓ2n amounts to multiplication by

(−1)n−1n2. This yields the following result.

Theorem 1.2 If K is a field in which n is invertible, then L2(Ln) is a direct summand

of L2n as a GL(V )-module.

Theorem 1.2 is a special case of a much more general result by Bryant and Scho-

cker [2], see also Erdmann and Schocker [3] and Bryant [1]. The advantage of our

approach (apart from being an illustration of the usefulness of Theorem 1.1) is that

our projection L2n → L2(Ln) is completely explicit, see (2.7). We believe it would be

rather difficult to try to extract an explicit projection from [2]. Of course, the most

interesting instance of Theorem 1.2 is when K is a field of characteristic 2, since in

this case the result cannot be proved using the pseudo-idempotent Ω2,n. Finally, we

hope that Theorem 1.1will find further applications in the future.

2 Proofs

2.1 Proof of Theorem 1.1

Let ρk = (1, 2, . . . , k) denote the standard k-cycle. The key observation for the proof

of Theorem 1.1 is that

(2.1) ρk = αk−1αk

for all k ≥ 2 with the convention that α1 = 1. Since αk is an involution, one has

(2.2) (1 + (−1) jαk)αk = (−1) j(1 + (−1) jαk).

With (2.1) and (2.2) at our disposal it remains to carry out a straightforward induc-

tion. If n = 2, we have that ρ2 = α2, and the theorem holds trivially. For n > 2 we

have Ωn = Ωn−1(1 − ρn) and by induction we have

Ωn = (1 − α2) · · · (1 + (−1)n−2αn−1)(1 − ρn).

Now by (2.1) and (2.2) we have that

(1 + (−1)n−2αn−1)(1 − ρn) = (1 + (−1)n−2αn−1)(1 − αn−1αn)

= (1 + (−1)n−2αn−1)(1 + (−1)n−1αn),

as required. This completes the proof of Theorem 1.1.
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2.2 Proof of Theorem 1.2

We need to construct a pseudo-idempotent Γ2n satisfying (1.4) and (1.5). We intro-

duce yet another involution by setting

β2n = (1, n + 1)(2, n + 2) · · · (k, n + k) · · · (n, 2n) ∈ S2n.

Then, for any permutation σ of {1, 2, . . . , n}, the conjugate β2nσβ2n will act on the

set {n + 1, n + 2, . . . , 2n} in the same way as σ acts on {1, 2, . . . , n}, that is, if

1 ≤ k ≤ n, then (n + k)β2nσβ2n = n + kσ. Hence, using (1.2), the Lie product

[[v1, . . . , vn], [vn+1, . . . , v2n]] ∈ L2(Ln) may be conveniently written as

[
[v1, . . . , vn], [vn+1, . . . , v2n]

]
= (v1 ⊗ · · · ⊗ v2n)Ωn(β2nΩnβ2n)(1 − β2n).

In fact, the element Ωn(β2nΩnβ2n)(1 − β2n) ∈ ZS2n coincides with the element Ω2,n

that was mentioned in Section 1. Hence we have

(2.3) T2nΩn(β2nΩnβ2n)(1 − β2n) = L2(Ln),

and that Ωn(β2nΩnβ2n)(1 − β2n) is a pseudo-idempotent with coefficient 2n2. The

latter follows immediately on noting that Ωn commutes with β2nΩnβ2n (as they in-

volve mutually disjoint permutations), that β2n commutes with Ωn(β2nΩnβ2n), and

recalling that both Ωn and 1− β2n are pseudo-idempotents with coefficients n and 2,

respectively:

(Ωn(β2nΩnβ2n)(1 − β2n))2
= (Ωn(β2nΩnβ2n))2(1 − β2n)2

= Ω
2
n(β2nΩ

2
nβ2n)(1 − β2n)2(2.4)

= 2n2
Ωn(β2nΩnβ2n)(1 − β2n)

Hence, up to sign, the element Ωn(β2nΩnβ2n)(1 − β2n) satisfies the conditions (1.4).

However, it does not satisfy (1.5). In order to achieve this we require another twist.

Set

Γ2n = αnΩn(β2nΩnβ2n)(1 − β2n).

Since αn acts as an automorphism on T2n, we see that (2.3) gives that T2nΓ2n =

L2(Ln). Moreover, Theorem 1.1 together with (2.2) yields

(2.5) Ωnαn = (−1)n−1
Ωn.

This is actually well known, see [5, Section 1.3, Lemma 1.7]. Using (2.5) and the fact

that αn commutes with β2nΩnβ2n (since the permutations involved in the latter are

disjoint with αn), as well as (2.4), we obtain, writing temporarily β instead of β2n to
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save space,

Γ
2

2n = αnΩn(βΩnβ)(1 − β)αnΩn(βΩnβ)(1 − β)

= αn(Ωn(βΩnβ)αn − ΩnβΩnαn)Ωn(βΩnβ)(1 − β)

= αn(Ωnαn(βΩnβ) − Ωn(βΩnαnβ)β)Ωn(βΩnβ)(1 − β)

= (−1)n−1αn(Ωn(βΩnβ) − Ωn(βΩnβ)β)Ωn(βΩnβ)(1 − β)

= (−1)n−1αn(Ωn(βΩnβ)(1 − β))2

= (−1)n−12n2αnΩn(βΩnβ)(1 − β)

= (−1)n−12n2
Γ2n.

Hence Γ2n satisfies the two conditions in (1.4). Finally, note that α2nαn = αnβ2n. Us-

ing this, Theorem 1.1, and once more the facts that β2n commutes with Ωn(β2nΩnβ2n)

and that 1 − β2n is a pseudo-idempotent with coefficient 2, we get (again writing β

instead of β2n for short)

Ω2nΓ2n = Ω2n−1(1 − α2n)αnΩn(βΩnβ)(1 − β)

= Ω2n−1αn(1 − β)Ωn(βΩnβ)(1 − β)(2.6)

= Ω2n−1αnΩn(βΩnβ)(1 − β)2

= 2Ω2n−1αnΩn(βΩnβ)(1 − β) ∈ 2ZS2n.

Hence the pseudo-idempotent Γ2n satisfies (1.5), and this completes the proof of

Theorem 1.2.

We conclude by exhibiting our projection of L2n onto L2(Ln) explicitly, assuming

that we now work over a field of characteristic not dividing n. In view of (1.6) and

(2.6), the projection is given by the map

(2.7) [v1, . . . , v2n] 7→ 1
n2 (v1 ⊗ · · · ⊗ v2n)Ω2n−1αnΩn(β2nΩnβ2n)(1 − β2n),

where v1, . . . , v2n ∈ V .
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