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1. Introduction. Our aim in this paper is to investigate the restrictions placed on the
structure of a finite group if it can be generated by subnormal T-subgroups (a T-group is
a group in which every subnormal subgroup is normal). For notational convenience we
denote by % the class of finite groups that can be generated by subnormal T-subgroups
and by 3if* the subclass of 3{ of those finite groups generated by normal 7-subgroups; and
for the remainder of this paper we will only consider finite groups.

T-groups may be regarded as a generalisation of abelian groups. We know that a
group generated by subnormal abelian subgroups is nilpotent; and a group generated by
normal abelian subgroups has class bounded by the number of abelian normal subgroups
needed to generate it. We will be seeking results analogous to these for groups in % and
3K*.

We begin by considering soluble ^f-groups. One of the basic properties of 7-groups is
that they are supersoluble and we will show that this property nearly carries over to
3if-groups; indeed X-groups of odd order are supersoluble, as are soluble $f*-groups.

THEOREM 2. Suppose that G is a soluble %-group. Then G is metanilpotent, the odd
order Sylow subgroups of G/F(G) are abelian, and O2{G) is a supersoluble group of odd
order. Moreover if G is a 3T*-group, G is supersoluble.

We show that the subnormal structure of a soluble group in !X* is controlled by the
number of normal 7-subgroups needed to generate it. We use the Wielandt length of a
group as a measure of the complexity of its subnormal subgroup structure. Here the
Wielandt subgroup w(G) of a group G is the intersection of the normalisers of all
subnormal subgroups and the Wielandt series is denned by a>](G) = a>(G) and
W,+1(G)/OJ,(G) = <o(GI(x)j(G)); the Wielandt length of G is then the smallest n such that
wn(G) = G. As an easy consequence of Theorem 2 and Theorem 1, which gives an
estimate for the Wielandt length of a supersoluble group in terms of the classes of its
Sylow subgroups, we get the following theorem.

THEOREM 4. Let G be a soluble J{*-group generated by normal T-subgroups
Nt, i = 1 , . . . , n. Then G has Wielandt length at most n +1 and this bound is best possible.

If G is nilpotent we can improve this bound a little. For odd primes p, 7-groups of
p-power order are abelian and so we are considering the product of abelian normal
subgroups. It is easy to produce examples where the class and the Wielandt length are
both just the number of factors and to show that the class and Wielandt length must be at
most the number of factors. Since 7-groups of 2-power order may be nonabelian, the
2-group case is more complicated and is given by the next theorem.

THEOREM 3. Suppose that G is a 2-group such that G = N1... Nn, with each TV, a
normal T-subgroup of G.
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(i) If n = 2 then G has class and Wielandt length at most 3 and this bound is best
possible.

(ii) If n>2 then G has class and Wielandt length at most n and this bound is best
possible.

We then turn to insoluble groups in JK. The layer of a group G is the subgroup
generated by the subnormal single headed perfect 7-subgroups of G and is denoted by
E(G). If G can be generated by subnormal T-subgroups we show that G/E(G) can be
generated by subnormal soluble 7-subgroups. Since E{G) is contained in the Wielandt
subgroup, we can now use the results for soluble groups to give analogues of the
theorems above. In particular if G can be generated by n normal 7-subgroups, G will
have Wielandt length at most n + 2. It seems to be difficult to determine if this bound is
best possible.

Finally we consider possible generalisations of these results. An example due to
Casolo shows that the natural generalisations do not hold.

2. Preliminaries. An account of the basic structure theorems and properties for
T-groups and the Wielandt subgroup can be found in Robinson [12], Lennox and
Stonehewer [9] or Bryce and Cossey [2]; any unreferenced properties of 7-groups or the
Wielandt subgroup may be found in any of these.

Recall that a Dedekind group is one in which every subgroup is normal and a
Hamiltonian group is a nonabelian Dedekind group. A Hamiltonian group is the direct
product of a quaternion group of order 8 and an abelian torsion group with no elements
of order 4 (see [7, Satz 3.7.12]).

We will need the following lemma about irreducible modules for /7-groups.

LEMMA 1. Let p,q be distinct primes, F an algebraically closed field of characteristic q,
P a p-group and U a faithful irreducible GF(q)P-module. Then if X is a noncentral cyclic
subgroup of P, Ux contains at least p nonisomorphic composition factors.

Proof. We proceed by induction on \P\. There is nothing to prove if P is abelian.
Hence suppose the result is true forp-groups of order less than \P\. If possible choose M
to be a maximal subgroup of P containing X with X noncentral in M and consider UM. If
UM is irreducible the result follows by induction, since M is then nonabelian and faithfully
and irreducibly represented on U. Hence we suppose UM is reducible, say UM =
t/j + . . . + Uk. Since M is nonabelian the dimensions of the £/, are greater than 1 and
moreover for some / we have XCM(Uj)/CM(Uj) not central in M/CM(Uj). It then follows
that Ujx has at least p nonisomorphic composition factors. Hence we may suppose that X
is central in every maximal subgroup of P containing it. Thus if y £ CP(X), P = (X,y) and
C = CP(X) = (X, y") is an abelian maximal subgroup of P. We then have Uc = £/, + . . . +
Up, with the Ut all nonisomorphic and one dimensional. Since yp is central in P the Ui(yP)
are all isomorphic and so, if UiX were isomorphic to UjX, we would have Ut isomorphic to
Uj. Thus we have that Ux has p distinct composition factors. This completes the proof. D

LEMMA 2. Let G be supersoluble and suppose that a Sylow p-subgroup of G is
nonabelian, of class n say. Then yn(P) is normal in G and contained in
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Proof. Put N = yn(P)- Since N clearly centralises every chief factor of G we have
N<F(G). Then if Q is the Hall p'-subgroup of F(G), QN/Q is characteristic in the
normal Sylow p-subgroup of G/Q and so QN is normal in G. But then N is the Sylow
p -subgroup of QN and so is normal in G.

If 5 is a subnormal subgroup of G, then S/CS(N) is a p'-group (since P centralises
N) and so, by a lemma of Higman [6], N=UxV where [U, S] = U and [V, S] = 1. It
follows that U < S and hence N normalises S, proving N < w(G). •

We have as an easy consequence of this lemma, that in a supersoluble group the
Wielandt length is bounded by the classes of the Sylow subgroups.

THEOREM 1. Let G be a supersoluble group, let n be the set of primes dividing \GX\
{where G*is the nilpotent residual of G) and a the set of primes dividing \G\ but not \G*\.
Suppose all the Sylow p-subgroups with p e n have class at most n and that the Sylow
p-subgroups with pea have class at most m. Then G has Wielandt length at most
max(m,n + 1).

Proof. Put t = max(m,n + 1). Suppose that the result is not true and t is chosen
minimal such that there is a group G of Wielandt length greater than t. If t > 2, let Z be
the subgroup of G generated by ym(Pp), where Pp is a Sylow p-subgroup of G,p e a, and
Jn{Pq), where Pq is a Sylow ^-subgroup of G, q e n. Then we have Z ̂  w(G) by Lemma
2 and by induction G/Z has Wielandt length at most t-1, giving G of Wielandt length at
most t, a contradiction. Thus we must have f < 2. If t = 1 then G is an abelian cr-group and
so has Wielandt length 1, again a contradiction. Thus we must have t = 2.

It follows that the Sylow p-subgroups of G are abelian, pen, while the Sylow
p-subgroups, pea, are of class at most 2. Consider G'. A Sylow p-subgroup A of G' is
then central in any Sylow p-subgroup of G containing it for pea; the supersolubility of
G then gives A central in G and so A < co(G). For a prime p e n, a Sylow p-subgroup B
of G' has centraliser of p ' index and by an argument similar to that in Lemma 2 we have
6<w(G). It follows that G'^w(G) and hence G has Wielandt length at most 2, a
contradiction. The result now follows. •

3. Soluble 3T-groups. We will show in this section that a soluble group G in 3if is
close to being supersoluble. A corollary of our theorem is that a soluble group G in 3if of
odd order will be supersoluble and so the Sylow subgroups of G/F(G) will be abelian.
The Sylow 2 subgroup of G/F(G) for a soluble group G in 3if however is less restricted.
The following examples show that neither the class nor the exponent need be bounded.
Let So be a cyclic group of order 2, and if 5, has been denned set 5,+1 = SowrSj. Then 5, can
be generated by i + 1 subgroups of order 2, Xu..., Xi+1 say. It follows immediately from
[7, Satz 1.15.9] that S, contains a cyclic subgroup of order 2'+1 and so clearly 5, has
exponent 2'+1. Moreover 5, contains a subgroup isomorphic to the wreath product of 50

and a cyclic group of order 2', which has class 2' ([10, Lemma 2.1]) and hence the class of
Sj is at least 2'. Let p be an odd prime and let U be a faithful irreducible GF(p )5,-module.
Since Xj has order 2, U as an A";-module can be written as the direct sum of a trivial
module and a module Vj on which Xj acts nontrivially and homogeneously. We then have
that VJXJ is a normal subgroup of UXj which is subnormal in USj and so VJXJ is subnormal
in Sj. These 2-groups are generated by elements of order two and it seems likely that
elements of order two play an important role. However, given an integer n, we can
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construct soluble groups in % for which the Sylow 2-subgroup cannot be generated by
elements of 2". To see this let p be a prime such that p - 1 is divisible by 2"+1. If A is a
cyclic group of order p and B is a cyclic subgroup of Aut(/4) of order 2"+1 then
/ / = ABWTSQ has J 4 5 as a subnormal T-subgroup. Further if P is a Sylow p-subgroup of H
then P = PoxPi where Pj is centralised by So and so P0S0 is also a subnormal T-subgroup.
It is easy to see that H is generated by AB and PQS0 and that a Sylow 2-subgroup of H
cannot be generated by elements of order at most 2".

THEOREM 2. Suppose that G is a soluble %-group. Then G is metanilpotent, the odd
order Sylow subgroups of G/F(G) are abelian, and O2(G) is a supersoluble group of odd
order. Moreover if G can be generated by normal T-subgroups, G is supersoluble.

Proof. Let Nh i = 1 , . . . ,n, be subnormal 7-subgroups generating G and note that it
will not affect the hypothesis if we assume that the set we take includes all the conjugates
in G of any of its members. Thus we suppose throughout this proof that the set of Nj is a
union of G-conjugacy classes. That G is metanilpotent follows immediately from the fact
that 7-groups are metanilpotent and metanilpotent groups form a Fitting class.

Suppose now that p is an odd prime dividing \G/F(G)\ and that the Sylow
p-subgroup of G/F(G) is nonabelian. We suppose also that G has been chosen minimal
with this property. We must then have for some i,j with i ¥^j that Nt contains an element x
of p-power order and Nj contains an element y of p-power order with [x,y] not in F(G).
It then follows that for some chief factor U/V of G with U contained in F(G) that [x, y] is
not in the centraliser of U/V. By the minimality of G we must have V = 1. Since [x,y]
does not centralise U, neither does x. We then have l¥=[U,x] = [U,x,x]^TV, and so x
acts as a (nontrivial) power automorphism on [U,x]. It follows that f/w is a direct sum of
one dimensional submodules. Let N be the subgroup generated by F(N,) and x and let M
be the subgroup generated by F{Nj) and y. Then M and N are subnormal T-subgroups of
G. Let H be the subgroup by M and N. Since [x,y] is in H so is [17, [x,y]] and then
[U, [x,y], [x,y]] ¥" 1. Again by the minimality of G, we must have H = G. Now, regarding
U as a faithful irreducible GF(q)(G/Cc(U))-modu\e, Lemma 1 tells us that £/£> contains
at least p nonisomorphic composition factors. But we have shown that UM has all its
composition factors of dimension 1 and so U(x) has all its composition factors absolutely
irreducible. Since p is an odd prime and [U,x] contains all the nontrivial composition
factors, [U, x] has at least two nonisomorphic composition factors. This contradiction
shows that [x, y] e F(G) and so the Sylow p-subgroup of G/F(G) is abelian.

Note that the proof above also show that if U/V is a chief factor of G on which G
acts as a 2'-group, then U/V is cyclic. Now set M = O\G). We have 02{N,) < M and
hence if H is the subgroup generated by the O2(A',), H<M. Since our generating
subnormal 7-subgroups contain all the conjugates of the Nt we have H is normal in G.
But then G/H is generated by subnormal 2-subgroups NjH/H and so is a 2-group. It
follows that H = M; that is O2(G) can be generated by subnormal T-subgroups which are
2'-groups and hence is a 2'-group. It then follows immediately that O2(G) is a
supersoluble group of odd order.

Finally suppose that G is generated by normal 7-subgroups Nj, 1 = 1,. . . ,«, and that
G is not supersoluble. Suppose that G has been chosen minimal with this property. We
have F(G)/$(F(G)) must contain a noncyclic chief factor and so $(F(G)) = 1. Since
F(G) is then a direct product of minimal normal subgroups of G we must have by the
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minimality of G that F(G) is the unique minimal normal subgroup of G. Since A7,- is
normal in G we have F(G)^ A/,-, i = 1,... ,n. This means that A7- must act on F(G) as a
subgroup of the group of power automorphisms of F(G) and hence G itself must act on
F(G) as a group of power automorphisms. It now follows easily from [9, Proposition
6.4.8] that F(G) must be cyclic. This contradiction completes the proof. •

4. Soluble 3if*-groups. We begin by considering nilpotent 3?*-groups; clearly it will
be enough to consider p-groups. If G is a p-group which is the product of n normal
T-subgroups, then if p is an odd prime G is the product of n abelian normal subgroups
and so by [5, Theorem 10.3.2] G has class at most n. We show below that the Sylow
p-subgroups of GL{n + l ,p) give examples for which the class and Wielandt length are
precisely n. If p = 2, some of the factors may be Hamiltonian groups and so we have ([5,
Theorem 10.3.2]) G has class at most 2n\ it is easy to see that this can be reduced to n + 1.
We show that in most cases the bound can be reduced to n.

THEOREM 3. Suppose that G is a 2-group such that G = Ni... Nn, with each A7,- a
normal T-subgroup of G.

(i) If n=2 then G has class and Wielandt length at most 3 and this bound is best
possible.

(ii) If n>2 then G has class and Wielandt length at most n and this bound is best
possible.

Proof. Since A7,- is a 2-group in which every subgroup is normal it is either abelian or
the direct product of a quaternion group with an elementary abelian group ([5, Theorem
12.5.4]). It follows that A^ is a normal subgroup of G of order at most 2 and hence is a
central subgroup of G. It then follows that N[... N^is central in G and so by [5, Theorem
10.3.2] G/(N[ ...N^) has class at most n, giving G of class at most n + 1.

If n = 2, the generalised quaternion group H of order 16 can be written as the product
of a normal quaternion subgroup and a cyclic normal subgroup and the dihedral group D
of order 8 can be written as the product of two elementary abelian normal subgroups of
order 4. Thus G = H x D can be written as the normal product of two normal
7-subgroups. Since G has class 3 and Wielandt length 3, the bound in (i) is best possible.

For n > 2, to show that G has class n it will be enough to show that every
commutator of weight n + 1 with each entry from some A7, is trivial. Observe that NJ£(Nj)
has order at most 4 and hence any commutator of weight at least 3 with an entry from A7,-
will be contained in ^(A7). Suppose c = [a,, . . . ,an+1] is a commutator with each entry
from some A7,-; then at least 2 entries of c come from the same A7,, ak and a€ say, with
k<£. If €<n + \, then [d , , . . . , i i H ]eJVi and so [au... ,ae] e A7/ and is therefore
central in G. But then [au... ,a(+x] = 1 and c = 1. Hence suppose € = n + l. Since
n + 1 > 4, [flj, . . . , an] is central in A7,, giving c = 1. This shows that G has class at most n
and hence G can have Wielandt length at most n. To see that this bound is best possible,
we take the Sylow 2-subgroups of GL{n + 1,2). •

THEOREM 4. Let G be a soluble X* group generated by normal T-subgroups A7,,
i = 1 , . . . , n. Then G has Wielandt length at most n + 1 and this bound is best possible.

Proof. We note first that, by Theorem 2, G is supersoluble. Moreover, a Sylow
p-subgroup of G is generated by n Dedekind normal subgroups. Thus if p is an odd
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prime, a Sylow p-subgroup of G has class at most n ([5, Theorem 10.3.2]). A Sylow
2-subgroup P is a product of normal subgroups Pt where Pt is a Sylow 2-subgroup of Nt.
Since Pt is a 7-group, Theorem 3 gives us that P has class at most n +1. That G has
Wielandt length at most n + 1 is now an immediate corollary of Theorem 1.

To see that this bound is best possible, we construct a group of Wielandt length n
which can be generated by n — 1 normal T-subgroups. The construction is based on the
analysis of the Sylow p-subgroups of GL(n,p) given in section 3.16 of [7]. We will use the
notation of that section, so that the construction given here needs to be read in
conjunction with that section. We observe that if p is an odd prime the Sylow p-subgroup
G of GL(n,p) has class n - 1 ([7, Satz 3.16.3]) and can be generated by the elements
E + ejj-i of order p, j = 2 , . . . , n ([7, Satz 3.16.2 and Satz 3.16.4]). Since the Wielandt
subgroup must centralise any element of order p in a p-group, it follows that the Wielandt
series of G coincides with the upper central series of G and thus G has Wielandt length
n - 1. We now consider the abelian normal subgroups At ([7, satz 3.16.6]). It is easy to
check that E + e;</_! eAj-i and so G is certainly generated by the n — 1 normal abelian
subgroups Aj. Note that An_i is generated by the elements E + eni for / = 1,... ,n — 1.
Now define a map 6 on G by

0(E + 2ajkejk) = E + HaJkeJk - Y.ankenk.

It is easy to check that 6 is an automorphism of G of order 2 and that each At is invariant
under the action of 0. Moreover 6 inverts every element ofAn-1 and [Ah 0]-^An-1. Thus
A,-i(#) is a T-group and it follows that H - G(6) is the product of the n -1 normal
7-subgroups Au... ,An_2>An-i(9). To determine the Wielandt length of H, we note that
for i <n - 1 we have &(G) = y^G) < (ot{H) by Lemma 2. Since a>t(H) H G < w,(G) =
Ci(G) we have o),-(//) (~)G = £,(G) for i < n - 1. If «,(#) is not contained in G for some
i<n — 1, we would have some conjugate of 0 contained in' &>,(//) and hence v4n_!
contained in w,(#)ri G = £,(G), a contradiction. Thus wn_2(//) = G'. Since / / /G '
contains both central and noncentral p-chief factors, it is not a T-group and so
wn-X{H) ¥> H. Thus H has Wielandt length precisely n, as required. •

5. Insoluble ^-groups. We will say that a group is single headed if it has a unique
maximal normal subgroup. A component of a group G is a subnormal single headed
perfect subgroup and the layer of G, denoted by E(G), is the subgroup of G generated by
all the components of G. (For the basic properties of components and E(G), see [1,
section 31] or [8, section 10.13].)

Suppose that G is generated by subnormal T-subgroups Nh i = 1 , . . . , n. Clearly any
component of Nt is a component of G and so E(Nj) < E(G) for i — 1,...,«. On the other
hand suppose that C is a component of G that is not a component of any TV,-. By [1, 31.4]
we have that C commutes with each TV,. But then C would be central in G, a
contradiction. Thus E(G) is generated by the £(N;), i = 1 , . . . ,n. We also have that a
component of G is normal in G, since it is normalised by any TV, that contains it and
centralised by the others. Thus any insoluble chief factor of G is simple. Since moreover
Ni/E(Nj) is soluble by [3], G/E(G) is generated by the subnormal soluble T-subgroups
NjE(G)/E(G) and so is soluble and has the structure given by Theorem 2.

Note also that it is an immediate consequence of [1, 31.4] that E(G) £ w(G) for any
finite group G and hence by Theorem 4 if G is generated by normal 7-subgroups Nh
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/ = 1, . . . ,n, G has Wielandt length at most n + 2. Whether this bound is best possible or
not seems to be a difficult question. We have only been able to find the best possible
bound in one very special case, namely when G = MN, with M, N normal T-subgroups
with M/E(M) and N/E(N) both of odd order. We record it here to indicate the
difficulties involved.

We now suppose that G = MN with M,N normal 7-subgroups of G and M/E(M)
and N/E(N) both of odd order. We will show that G has Wielandt length at most 3. If G
is soluble, then G has Wielandt length at most 3 by Theorem 4 and so we may suppose
that G is insoluble. Moreover if Mt~)N = l, we have G = M X N, giving G/E(G) has
Wielandt length at most 2 and hence G has Wielandt length at most 3. Thus we may also
suppose that MflJV^l. The main step in the proof will be to establish the following
result.

Let P/E(G) be a Sylow p-subgroup of G,p a prime. If p is odd and G/E(G) has
noncentral p chief factors, (P/E(G))' s «(G)/£(G).

We begin by assuming that G is a group of minimal order satisfying the hypotheses
above such that (P/£(G))' is not contained in w(G)/E(G). Thus we can find
z = [x,y] <£ o)(G), with x e Gp fl M, y e Gp Pi N, with Gp a Sylow p-subgroup of G. We
can then choose 5 minimal subnormal in G such that Sz ¥= S. We now show that the
structure of S is very restricted.

First we note if U were a nontrivial normal subgroup of G contained in 5 the quotient
group G/U would satisfy the hypotheses given and hence we would have (S/U)zU = S/U
and so S* = S, a contradiction. Since a component of 5 would be a component of G and
hence normal in G, we have 5 soluble, giving 5 s S(G), the soluble radical of G.
Moreover any subnormal subgroup of M D N is then normal in M and in N and hence in
G, so that we have S (~)(M C\N) = 1. Next we observe that S is single headed. For if
S = TU, with T, U normal subgroups of 5, then Tz = T and Uz = U by the minimality of 5
and hence Sz = S, a contradiction. Thus S/S' is a cyclic g-group for some prime q.
Further, SE(G)/E(G) is supersoluble by Theorem 2 and S fl£(G) = 5 n £(£(G))<
£(S(G)) and so S is supersoluble. It then follows that S' is a nilpotent q'-group.

Next suppose that G contains a nonabelian minimal normal subgroup U say. Then in
G/U we have (US/liyu - US/U. But since 5 is a subnormal soluble subgroup of SU it is
contained in the soluble radical of SU and then since the soluble radical of SU clearly
cannot have order larger than S we must have 5 is the soluble radical of SU. Thus S is
characteristic in SU and so Sc = 5, giving G cannot contain a nonabelian minimal normal
subgroup. Suppose then that G contains a minimal normal subgroup U of q' order.
Again we have (SU)Z = SU. Then we have S = O"\SU) and S is characteristic in SU. It
follows that if U is a minimal normal subgroup of G, U is a g-group. This in turn gives
5' = 1. For if not, S' is a nontrivial subnormal q '-subgroup of G and so Oq(G) ¥= 1, and G
would have a minimal normal ^'-subgroup, a contradiction. Hence S is a cyclic g-group.

Now suppose that q *p. Let V = f (£(G)) (note that V * 1). Then SE(G)/E{G) is a
subnormal ^-subgroup of G/E(G), while (GPE(G)/E(G))' is a normal p-subgroup of
G/E(G) and so these two subgroups commute. We have Sz ^ SE(G) n S(G) = SV and
so if s generates S we have r = sv with v e V. Thus z centralises SVIV. If C is a
component of G with C ^ M (~\N, then we have from above that both x and y act as
power automorphisms on £(C) and hence z centralises £(C). If C is a component of G not
contained in M, then [M, C] = 1 and y acts as a power automorphism of £(C), giving z

https://doi.org/10.1017/S0017089500031645 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031645


370 JOHN COSSEY

centralises £(C). Similarly if C is not contained in N z centralises £(C). Thus z centralises
V. But then z centralises SV and so any subgroup of SV, in particular 5, a contradiction.
Thus we must have q = p. Note also that the argument gives 5 not contained in V.

We also must have that distinct cyclic minimal normal subgroups are nonisomorphic
as G-modules. For if X and Y are distinct cyclic minimal normal subgroups of G,
isomorphic as G-modules, and S is generated by s, we would have sz = sax - spy, with
a,p integers and x e.X, y eY. Thus s"'13 = yx~\ If a # / 3 , then ( J ° " ? ) is a nontrivial
normal subgroup of G, a contradiction. If a = /3 then x=y and X = Y, also a
contradiction. If then follows from the fact that G acts on M D N as a group of power
automorphisms that M ON contains a unique minimal normal subgroup of G.

Note that so far we have not needed any restriction on the prime p or on the p chief
factors. For the remainder of the proof the hypotheses will be necessary.

Since at least one of M/E(M), N/E(N) must contain noncentral p chief factors, we
assume that M/E(M) does. We then have M/E(M) contains only noncentral p chief
factors. Put K = S(M)S(N) and suppose that S is not contained in K. Then all chief
factors in S(G)/K are central (since [5(G),W]<5(G)nM = 5(M)<K and similarly
[S(G), N] < K). Since GINK is a quotient of M/S(M) and thus contains no central p chief
factors we have S(G) < NK. But then S(G)/K is a soluble normal subgroup of NK/K
which has no normal soluble subgroups, being isomorphic to N/(N (~)K) = N/S(N). It
follows that S(G) ^ K and so S{G) = K. Moreover since K is supersoluble we have that a
Sylow p-subgroup L of K is normal and hence L = XY where X = L(~\MP, Y = LC\Np,
and Mp, Np are Sylow p-subgroups of M, N respectively. But now X is an abelian normal
subgroup of the 7-group M and hence M acts on X as a group of power automorphisms.
Thus x acts on A' as a power automorphism and then z = [x,y] centralises X since power
automorphisms are central in the automorphism group of A' (this is an immediate
consequence of [12, 13.4.3(ii)]). Similarly z centralises Y and hence L = XY. But S < L
and so Sz = S, a contradiction.

To see that G has Wielandt length at most 3, observe that G/w(G) is supersoluble
and that by the result just proved the Sylow subgroups of (G/<D(G))X are abelian. Since
G/(o(G) is of odd order, the Sylow subgroups of G/o>(G) are of class at most two and so,
by Theorem 1, G/CJ(G) has Wielandt length at most 2 and the result follows.

6. Remarks and examples. It is natural to ask if Theorem 4 can be extended and in
particular if the Wielandt length of a group G which is the product of normal subgroups
N, M has its Wielandt length bounded in terms of the Wielandt lengths of N and M. The
construction below, due to C. Casolo, shows this is not true. The construction gives for
each positive integer n a group of Wielandt length at least n which can be written as the
product of two normal subgroups of Wielandt length 2. This leaves only the case where G
is the product of a normal 7-subgroup and another normal subgroup, of Wielandt length
n say. In this case I expect that a soluble G will have Wielandt length at most n +1, but
have been unable to prove it.

Let N be the direct product of two cyclic groups of order 2" and let H = Sym(3) act
on N as group of automorphisms (we can take the first of the representations in Example
1, page 505, Curtis and Reiner [4] of H on 1 x Z and factor out the subgroup (Z x if for
example). Let t be the automorphism of N which inverts every element, so that t
commutes with H and (H, t) = Hx (t), with (?) of order 2. Let G be the semidirect
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product of N and H X (t). If a is an element of H of order 2, then H and K = H'{at) are
normal subgroups of H X (t) both isomorphic to Sym(3). In HN the subnormal subgroups
are the subgroups of N,NH' and NH. It is then clear that N < w(NH) (in fact it is not
difficult to check that N = co(NH)) and so NH/CJ(NH) is a quotient of H and so is a
7-group. Since NH is not a 7-group we have NH of Wielandt length 2. Similarly we have
NK of Wielandt length 2. If G has Wielandt length w, any subnormal normal subgroup of
G has Wielandt length at most w. If y e N has order 2 the subgroup (y, f) is subnormal in
G and dihedral of order 2"+1. But then (y,t) has Wielandt length n by [11, Corollary 4].
Thus w >n.
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