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DIFFERENTIAL EQUATION FOR 
CLASSICAL-TYPE ORTHOGONAL POLYNOMIALS 

BY 

A. RONVEAUX AND F. MARCELLAN 

ABSTRACT. The second order differential equation of Littlejohn-Shore 
for Laguerre type orthogonal polynomials is generalized in two ways. 
First the positive Dirac mass can be situated at any point and secondly 
the weight can be any classical weight modified by an arbitrary number 
of Dirac distributions. 

1. Introduction. Modification of a given weight p(x) (p > 0, a < x < b) connects 
nontrivially the family of polynomials pn{x), orthogonal with respect to p in (a, b), to 
the new family pn(x) of polynomial orthogonal with respect to the modified weight p 
(in the same interval). 

In the two following situations, the links between pn and pn are particularly simple: 
1. Rational Case, p = 7rp, when n = TT(X) is a rational function (n = N/D) with 

poles and zeros outside the support of p. 
2. S Dirac distribution. 

K 

p = p + ^2 Xk^x ~ Xk^ 

where the positive mass A* is located at Xk, Xk outside or inside the support of p. 

In the first case, the relation between the family pn and pn was given by Christoffel 
[3] when n is a polynomial and the full case TT = N/D is credited to Uvarov [15] 
(see Gautschi) [3]. 

The development of the form 

n+q 

(1) irNpn = ] T hi,npi (n è k) 
i—n—k 

where q and k are the degree respectively of N and D and hiin are constants given by 
the minors of pi(x) in the Christoffel determinant. 

In the second case, relation between pn mdpn was given by Uvarov [15], and Nevai 
[9] in the real case, and by Cachafeiro-Marcellan [1], in a more general situation and 
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reads as: 

K 

(2) Pn = Hnpn + pn ^T(Hkin)/(x - Xk) 
k=\ 

K 

+ Pn-\^2(Gr,n)l(x-Xr) 
r=l 

where the constants Hn, Hk,n and Grn are given explicitly in [1]. In fact these two 
modifications are closely related as shown in the Cachafeiro-Marcellan paper. 

In both cases, the new polynomials pn are semi-classical [4, 8] (the appellation 
"Semi-Classical" was coined for the first time by Hendriksen and van Rossum [4] 
and extended by Maroni [8]) and therefore are solutions of a second order differential 
equation of the Laguerre type [6]. 

(3) âSnP" + (rSn - 0&n)Pn + Knpn = 0, 

where â and f are polynomials defining the new weight p, via the weight differential 
equation: 

(4) (op)' = rp, 

and 0„ and Kn are polynomials in x of fixed degree related to the degree of a and t. 
In the Laguerre differential equation the polynomial coefficient 0„ and Kn are 

difficult to obtain in explicit form except in some very peculiar situations. For instance 
the classical case: 0W = 1, Kn = constant (depending on n) and the super classical case 
[12, 13] ("Super Classical" is used in [12, 13] and refer to polynomials orthogonal 
with respect to a classical weight time rational functions and for which one explicit 
differential equation can be written [12]): p — np, n rational function and where p is 
a classical weight. 

The aim of this paper is to use the Cachafeiro-Marcellan representation in order 
to build explicitly the differential equation satisfied by pn when pn is any classical 
orthogonal polynomial and Xk is located at any point. 

The building algorithm is similar to the algorithm described before [12] and adapted 
from Shohat [14]. 

The basic ingredients are, for each classical orthogonal polynomial pn (Jacobi, 
Laguerre, Hermite) the three relations: 

( 5 ) Xpn = anpn+X + finPn + KnPn-l 

(6) apf
n = alpn+l+(P^xl*n)pn 

(7) °Pn +TPn+ KnPn = 0, 
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where the constants ani/3nilm oc*n,/3*nJYn1 Kn, are given for instance in [10, 11], a — 
GJ,GL,GHI with 

(8) Gj = 1 ~X2,GL =X,CTH = 1, 

and r is defined by: 

(9) T=(ap)'/p, 

where 

(10) pj = (1 -x)a(l +xf,pL=xae-x,pH = e-x\a,P> - 1 ) . 

In order to simplify the constants appearing in (2), we prefer to work with Monic 
classical orthogonal polynomials pn, in which case the "hat" constants are given, or 
related, to the previous ones by the obvious relation: 

(H) &n= h0n=Pn ^ n = 1 n<*n-\ 

(12) ÔJ = T7 + G"(H - 1/2) = (a*n)/(an)J*n = fiX - l*n. 

In the following however, in order to simplify the notations, pn (without hat) will 
denote Monic classical orthogonal polynomials, and the constants in relations (5) and 
(6), for these Monic polynomials will be rewrite using (11) and (12). 

2. Algorithm. By multiplication by 

K 

k=\ 

relation (2) becomes: 

(13) 7Tpn =q\Pn+q2Pn-\ 

where q\ = q\(x,ri) and q2 = q2(x,ri) are polynomials in x which can be computed 
explicitly for each K. We reach here the starting point of the three steps algorithm 
described in [13], with a shift of indices. The second step is therefore identical: 
derivation of relation (13) with respect to x, multiplication by G and use of the relation 
(5), (11) and (12) to eliminate pn+\. 

The result is written in the following form: 

(14) Gix'pn + lXGp'n = q3pn + <?4^n-l 

https://doi.org/10.4153/CMB-1989-058-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-058-5


1989] CLASSICAL-TYPE ORTHOGONAL POLYNOMIALS 407 

where the polynomial q^ and q4 are (See [13]): 

(15) q3 = (iq\ + qx[{x - (3n)a*Jan +/3* + xln] + qia*n_Jan-i 

(16) q4 = (Tqf
2 ~ qilnOtn-i +42(/?*_i + ^ - i l -

The final step constructs, by summation as in [12], the differential equation satisfied 
by pn starting with relation (13). 

The quantity q\pn satisfies the differential relation obtained by multiplication of 
relation (7) by q\\ 

(17) o(q\Pn)" + r(qipny - 2(Jq\p'n - rq\pn - (jq"xpn + q\Knpn = 0 

and a similar relation holds for q2Pn-\> 
By summation of these two relations, elimination of pn, pn-\ by inversion of the 

system (13) and (14), and uses of relation (6) and (5), we obtain the differential 
equation satisfied by pn: 

( 18) °Knpn)" + TA(Trpn)' + 7raHp'n + Gpn = 0 

where 

(19) A = qiq4-q2q3 = ®« 

and H = H(x,n), and G — G(x,n) are polynomials in x which can be computed 
explicitly from (17), (13) and (14). 

3. Classical-type orthogonal polynomials. As an example, let us construct in 
detail the differential equation satisfied by polynomials pn orthogonal with respect to a 
weight p which is a classical weight modified by one S Dirac distribution (Koornwinder 
[5] considered also a similar situation but at the level of the 4th order differential 
equation) a t i = c , c G R 

(20) p = p + XS(x - c) 

The Laguerre-type [7] polynomials for instance belong to this class: 

(21) p = e~x + (l//?)£(jt),c = 0 

Relation (2) becomes in this case: 

(22) pn = pn +pnhn(x ~ C)~l +pn-\gn(x ~ c)~l 
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with [1,2] 

hn = Hhn = -\pn(c)Pn-\(c){dl_{ + \\p'n{à)pn-\(c) - pn(c)pf
n_{(c)]}~1 

gn = Ghn = \pn(c)pn(c){dl_x + \[p'n(c)pn-i(c) ~ Pni^p'^c)]}'1 

and 

(23) d\ = / |pn(^)]2p(ac)dr. 

The Basic polynomials q\ and qi defined before (eq 13) by: 

nPn = q\Pn + qiPn-\ (*" = X ~ c) 

become 

q\ — x — c + hn 

(24) q2 = g„. 

Polynomials (73 and (74 defined in section 2 become: 

(73 = o- + qx\J3* +xl*n + (x - /?«)«*/«,,] + q2a*_l/an-i 

(25) (74 = -q\ct*nl nan~\ I otn + <72(/3*_i + ^ - i l -

In the differential equation (18), the polynomials / / and G can be now explicitly 
computed from relation (17) and from the solution of the system (13) and (14), 
(// = _A' = - 0 ^ ) . 

4. Laguerre-type differential equation. The constants in (5), (6), (7) for the 
Laguerre polynomials (a = 0) are: 

a„ = - ( n + l ) , pn = 2n+\, ln = -n 
(26) o£ = / i + l , p*n = -(n+l\ 7J = +1 

^ / i = « , 

The two basic relations for MONIC Laguerre polynomials can be written as: 

(27) Ln(x) = [x- {In - l)]Ln-i(x) -{n- l)2L„_2(x) 

(28) xL'n_{(x) = (x- n)Ln-X(x) - Ln(x). 

Relation (22) becomes: 

(x - c)pn = (x - c + hn)Ln(x) + gnLn-\(x) 
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with 

(29) hn = -XUnMK* - DU2 + Ac" V £ - i + l\ + (2n - <;)/„/„_! I}" 1 

gn = Xl2
n{[(n - l)!]2 + \c-l[nl2

n-i + l\ + (2/i - ^ / « - i } - 1 

using for short /„ = Ln(c). 
The first step polynomials q\ and q2 are: 

(30) <?i = x-c + hni q2 = gn 

and the second step polynomials q^ and (74: 

(31) q3 = (n + l)x + (wAw - «c - #„), q4 = (/i2 + g jx + /i(wAn - c« - gn). 

The polynomial A = q\q4 — q2q3 — 0^ becomes: 

(32) A = (n2 + ^ )x 2 + [2/i(«/iw - nc - g„) + gn(hn - c - l)]x + («An - nc - gnf. 

The G polynomial is easily computed: 

(33) G = (x- c){(n2 + gn)x
2 + [n(nhn - nc - g„) - (n2 + gn + ngn)]x 

+ (« + g/iXrtA/i - WC - gn)} 

- x[gnx + 2n2/ïw + gnhn - (In + l)gn] + n(x - c)A 

The differential equation satisfied by pn = Ln reads now: 

(34) x(x - c)AL^ + [(2x + (1 - *)(* - c))A - jt(* - c)A']L'n + [(\-x)A + G]Ln = 0. 

REMARKS 1. The Littlejohn-Shore differential equation can easily be recovered with 
c = 0,\=l/R and 

(35) ln = i-lTnl, l'n = L„(0) = (-l)n+ln\n. 

The constants hn and gn reduce to (eq 23) 

(36) 

and A and G to: 

(37) 

G=x 

hn = ~ 
r 
i+R n+R 

2(n+R+\) 2 «2# 
A = « — x — —TX 

n + R (n + R)2 

n2(n + R + \) 2 

n + R 
7 (n + 2)n2 

n + 
n + R 

n2R 
x + r 

(n+R)2 

+ n + A. 

https://doi.org/10.4153/CMB-1989-058-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-058-5


410 A. RONVEAUX AND F. MARCELLAN [December 

After division by n2x2 the differential equation becomes: 

(38) [(* + /?+ \){n + R)x2 - Rx][L"n + (n + R+ \){n + R){x - x2) + R(x - 2)}L'n 

+ [(n + R)(n + R+\)x-n(n+l+ 2R)]Ln = 0. 

This equation coincides with the Littlejohn-Shore one written in the following way: 

(39) [(R2 + R + \n)x
2 - Rx]L"n + [-(R2 +R + \n)x

2 + (R2 + 2R + Xn)x - 2R]L'n 

+ [(2RXn + 22A„ - nn)x - Xn]Ln = 0 

with the notation [5] 

(40) Xn = (2R + 2)n + n(n- 1) 

\in = (3/?2 + 45/? + 42)̂ 2 + 18«(n - 1) - n(n - \){n - 2) 

2. If we multiply the equation (34) by x — c(c ^ 0) we obtain: 

dMJ'n + [f A - â A ^ + KnLn = 0 

with 

(41) â = x(x- c)2, f=(x- c)2(l - JC) + 2x(x - c) 

which is the Laguerre equation (3) with the explicit polynomials â and f in (4). 
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