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Trends and Cycles, Shocks and Stability

Alas! I knew how it would end: I’ve mixed the cycle with the trend,
And fear that, growing daily skinnier, I have at length become non-linear.
I scarcely now, a pallid ghost, can tell ex-ante from ex-post:
My thoughts are sadly inelastic, my acts incurably stochastic.

D. H. Robertson (1955)

Measures of the level of real activity have two primary characteristics: Over
time, they trend upward, but on occasion they swing noticeably, declin-
ing before eventually recovering and then continuing more or less along
an upward march. These fluctuations are called business cycles, and they
have occupied the attention of economists at least since the early nineteenth
century.

In the United States the “dating” of business cycle peaks and troughs –
and hence of recessions and expansions – is handled by the private National
Bureau of Economic Research (NBER), where a committee within the NBER
study a number of monthly indicators of real activity in order to identify
turning points in the series. Because the NBER wait until such turning points
are clearly discernable, the announcement of these dates typically comes
well after a turning point is reached. The indicators currently used by the
NBER to date business cycles are real personal consumption, total industrial
production, real personal income less (government) transfers, real wholesale
and retail trade sales, and two measures of employment (of late, income and
nonfarm payroll employment have tended to receive the most weight). The
rationale for using a number of indicators reflects the NBER’s definition of
a recession, which is a significant downturn in real activity that is spread
throughout the entire economy and that therefore manifests itself across a
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Figure 2.1 Natural log of real GDP. (Shaded bars denote recessions as defined by the
NBER.)

broad set of aggregate measures of employment, output, and spending.1 For
reference, Figure 2.1 plots the log of real GDP together with the periods the
NBER have identified as recessions (the gray regions).

By contrast, economists often seek a more statistically informed defini-
tion of the business cycle. One important reason is that the NBER dates do
not identify the “recovery” phase of the business cycle, in which activity is
retracing the losses incurred during the recession and has not yet settled
back to a more normal rate of advance. A second reason is that the trend
itself is of independent interest, so we would like to be able to extract and
study that component of real activity as well. And a third reason is that most
time-series modelling requires series to be stationary, which requires some
way of dealing with the nonstationary (“trend”) component.2

Like most topics in economics, there is essentially no consensus about the
nature of business cycles, why they happen, or even how best to measure
them. In this chapter and Chapter 3, we will take a look at some of the more
plausible answers to these questions.

1 Hence, the conventional definition of a recession as two back-to-back quarters of declining
GDP is not used by the NBER. The NBER also use quarterly values of their cyclical indicators
(along with real GDP and real gross domestic income) to identify the quarter of a turning
point; on rare occasions, the month of the turning point won’t fall in the quarter that the
NBER identify as a turning point.

2 See Watson (1986). Note that a trend in this context is just the nonstationary portion – for
example, even though it can’t rise or fall without limit, the unemployment rate can still be
nonstationary and have a “trend” if its long-run mean is different over different periods.
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Figure 2.2 Cyclical component from a Beveridge–Nelson decomposition.

2.1 Measuring Trend and Cycle

For the sake of argument, let’s assume that it makes sense to decompose a
measure of real activity – say the log of real GDP, yt – into a trend component
τt and a cyclical component ct , so that yt = τt + ct . If we assume that the
trend component follows a random walk with drift μ and that in the absence
of any additional shocks cyclical fluctuations would eventually die away and
real activity would return to its (stochastic) trend, then a reasonable estimate
of the trend is given by

τt = lim
n→∞ Etyt+n − nμ ≡ τBN

t . (2.1)

This is the Beveridge–Nelson (1981) trend. Implicitly, it requires yt to be
I(1) (in particular, we don’t want the drift term μ to change). Other than
that, though, a decomposition like this is in principle consistent with various
alternative views regarding the sources of business cycles. To estimate the
Beveridge–Nelson trend, all we need is a forecasting model for yt ; after that,
we can define the cycle as yt − τBN

t . One straightforward way to model yt is
as an ARIMA(p,1,q) process; if we do so, the cycle that we obtain looks like
the solid line in Figure 2.2.3

For some economists, results like those in Figure 2.2 were rather baffling.
Taken at face value, these results imply that the “cycle” is close to nonexistent,

3 The specific model used here is an ARIMA(2,1,2) fit over the period 1947:Q4 to 2007:Q4;
this choice of endpoint means that the estimates are not influenced by the 2007–2009
recession.

https://doi.org/10.1017/9781009465779.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009465779.003


2.1 Measuring Trend and Cycle 21

–8.0

–4.0

0.0

4.0

8.0

1947 1957 1967 1977 1987 1997 2007

UC model

CBO gap

Figure 2.3 Cyclical component from an unobserved components model and CBO’s
output gap estimate.

and that movements in the “trend” account for most of the observed
variation in output; in fact, many of the ordinary fluctuations of the cyclical
component are as large as what occur during NBER-designated recessions.
Moreover, alternative statistical detrending procedures that modelled τt
and ct as unobserved components (using a Kalman filter to back them out)
found estimates of the cyclical component that were similar to the solid
line in Figure 2.3 and so were both larger and more persistent than the
Beveridge–Nelson cycle; such estimates also looked more like the kinds
of output gap measures produced by the Congressional Budget Office (the
dashed line in Figure 2.3) and other policy institutions.4

One reconciliation of these results was provided by Morley, Nelson, and
Zivot (2003). These authors noted that a reasonably general trend–cycle
decomposition could be written as

yt = τt + ct

τt = μ + τt−1 + ηt

φp(L)ct = θq(L)εt , (2.2)

with the cycle explicitly modelled as an ARMA(p, q), and where the time-t
innovations to the trend and cycle were allowed to be correlated. It turns out

4 The Congressional Budget Office, or CBO, currently maintain an estimate of potential
GDP that is intended to measure the level of production that would take place under full-
employment conditions; the deviation of actual output from potential is referred to as an
output gap. (We will look at this approach to measuring trend output in Chapter 4.)
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that what we assume about this correlation is key. Unobserved components
models of the sort used to generate Figure 2.3 typically assumed that the
trend and cycle innovations had no correlation, which reflected the notion
that the trend component was determined by the supply side of the economy
while business cycles were largely the result of shocks to aggregate demand.
But this assumption was not actually tested.

To make things concrete, let’s assume that we fit an unobserved com-
ponents model in which the cycle follows an AR(2) process (so p = 2
and q = 0) and where the correlation between ηt and εt (call it ρηε) is
restricted to be zero. (This is the same model that was used to generate the
solid line in Figure 2.3.) In general, when p = 2 and q = 0 in model 2.2, it
is possible to show that yt will follow an ARIMA(2,1,2) process. However,
imposing ρηε = 0 restricts the coefficients in this process in ways that turn
out to be rejected by the data. Specifically, if we allow ρηε to be an estimated
parameter, we find that it is negative (with a value on the order of –0.9), and
that the resulting unobserved components model generates a measure of the
cycle that looks like Figure 2.2.5 Equivalently, if we fit yt using an unrestricted
ARIMA(2,1,2) process and then use it to compute the Beveridge–Nelson
decomposition for yt – as was done to produce the solid line in Figure 2.2 –
we obtain an estimate of the cycle that is identical to what we get from the
unobserved components model with ρηε freely estimated.

Why does any of this matter? Well, if the trend and cycle innovations for
a series like real GDP are strongly negatively correlated, it provides support
for the hypothesis that real shocks are the dominant driving force behind
economic fluctuations. As Morley, Nelson, and Zivot (2003) point out, a
positive real shock – say a technological innovation – will shift up the long-
run path of output in the period that it hits, leaving actual output to catch
up from below. Hence, if real shocks dominate, positive shocks to the trend
will be associated with negative shocks to the cyclical portion of the series,
and vice versa. By contrast, shocks that have a transitory effect on output –
a shift to an expansionary monetary policy stance, say – will only affect the
cyclical component. So if these sorts of shocks were a major driver of output
fluctuations, we would find that the correlation between the trend and cycle
components is close to zero.

Before we reach such a strong conclusion, though, it is useful to consider
some extensions to the original Beveridge–Nelson approach. In order
to apply this particular trend–cycle decomposition, we need to have a

5 It is possible to show that we will be able to estimate ρηε if the ARMA process for ct has
p ≥ q + 2, which is satisfied here (see Morley, Nelson, and Zivot, 2003, pp. 236–237).
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Figure 2.4 Cyclical component from a VAR-based Beveridge–Nelson decomposition.

good forecasting model for output growth (recall Equation 2.1). Moreover,
as Evans and Reichlin (1994) point out, the Beveridge–Nelson cycle is
essentially the forecastable “momentum” of the series, which means that the
share of the observed fluctuations in output that we attribute to the cycle is
closely related to how well we can forecast output growth.

To illustrate this point, note that the Beveridge–Nelson definition of the
trend naturally carries over to a VAR context (instead of using an ARIMA
model to predict a single series, we can use a VAR to predict a group of
series). To keep things parsimonious, then, let’s consider a two-variable VAR
in real GDP and employment (we use employment because it is another
measure of real activity that varies over the business cycle in a way that might
be informative about output). The resulting “cycle” for real GDP is plotted
in Figure 2.4; it’s clearly evident that this measure of the cycle is smoother
and more persistent than the cycle from the univariate model in Figure 2.2
(it also lines up better with the NBER dates), though its amplitude is not
especially large.6

A second extension to the original Beveridge–Nelson procedure focuses
on the trend component itself. Again, the reason that we end up with a cycli-
cal component like the one in Figure 2.2 is that the decomposition attributes

6 Employment is nonfarm payroll employment from the BLS establishment survey. Both
output and employment enter the VAR as log-differences; the VAR has four lags and is
estimated from 1948:Q2 to 2007:Q4.
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such a large portion of the observed movement in output to changes in the
trend. Put differently, because the estimated cyclical component is so small
(and continues to be so even after 2007 – not shown), the univariate decom-
position implies a trend estimate that follows actual GDP extremely closely,
including over most of the 2007–2009 recession and subsequent sluggish
recovery.7 But Kamber, Morley, and Wong (2018) argue that we might view
it as a priori implausible that the Beveridge–Nelson decomposition implies
such large variability in the trend. To give a flavor of their argument, assume
that we use an AR(p) model to forecast output growth �yt ,

�yt = μ +
p∑

i=1
φi�yt−i + εt , (2.3)

and note that the time-t change in the estimated Beveridge–Nelson trend
from a unit εt shock will be equal to 1/(1−φ1 −φ2 −· · ·−φp), as this is the
eventual increase in the level of y relative to the level that would obtain absent
a shock. If we denote this term as ψ , then the ratio of the variance of a trend
shock to the variance of the forecast error ε will equal ψ2. Hence, if the sum
of the AR coefficients is on the order of 0.3 (which isn’t too unreasonable
in US data), then this ratio – which can be thought of as a signal-to-noise
ratio – will be around 2. What that implies, then, is that trend shocks are
considerably more variable than the one-quarter-ahead forecast error for
(log) real GDP.

Beyond the fact that it generates an output gap that looks silly, why might
we view such a high signal-to-noise ratio with suspicion? After all, lag selec-
tion procedures generally suggest that an AR(1) or AR(2) model fits output
growth reasonably well, and “silly” is ultimately in the eye of the beholder.
What Kamber, Morley, and Wong argue, however, is that certain types of
processes for output growth – such as an MA process with a near-unit root –
will not be well captured by a finite-order AR process, while the parame-
ters of richer ARMA-type models can be poorly tied down in finite sam-
ples. They therefore develop a “Beveridge–Nelson filter” that allows one to
impose a low signal-to-noise ratio as a (dogmatic) prior, and also to control

7 Extending the estimation period through 2019:Q4 for the unobserved components
model (2.2) with uncorrelated trend and cycle causes it to break down completely: If the
post-2007 data are included in the sample, the model estimates that output is 5 percent above
trend, on average, for most of the sample period before plunging 5 percent below trend in
the wake of the 2007–2009 recession. Here, the model’s constant average trend growth rate
implies that the trend rises too slowly over much of the sample and too quickly toward the
end of the sample.
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Figure 2.5 Cyclical component from Kamber–Morley–Wong Beveridge–Nelson filter
(with signal-to-noise ratio fixed at 0.05) together with CBO’s output gap estimate.

for possible trend breaks. Figure 2.5 plots the cyclical component obtained
using their baseline filter specification with the signal-to-noise ratio fixed
at 0.05 (a relatively small value).8 The cycle is reasonably well correlated with
the CBO output gap (also plotted in the figure through 2019:Q4), though
some important differences are apparent (namely, the estimated depth of
the 1981–1982 recession and the speeds of recovery from the 1990–1991
and 2007–2009 recessions).

We have now reached the point where we’ve been able to coax a respectable
business cycle out of the Beveridge–Nelson decomposition, though to do
so we have needed to venture uncomfortably close to the realm of vulgar
curve fitting.9 Why is this accomplishment worth celebrating? Well, from
either a time series or an economic perspective, this definition of the trend
(or long-run mean) is extremely intuitive and compelling – so much so that
it’s not easy to come up with other sensible definitions. In economic terms,
the concept seems very close to an equilibrium notion – in other words, the
value that a variable would return to once any adjustment mechanisms

8 Kamber, Morley, and Wong (2018) propose an automatic selection procedure, which in this
case yields a signal-to-noise ratio of 0.24; using this value instead yields results that are very
similar to those shown in Figure 2.5.

9 That job is better left to the Hodrick–Prescott filter, which we discuss in Section 2.2.
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or other frictions have fully played through (and taking into account
any persistent effects on the equilibrium itself). Empirically, the method
dovetails well with the standard techniques and approaches of time-series
analysis, while using a stochastic trend to model the persistent movement
in an economic aggregate seems much more defensible than any sort of
deterministic alternative. On the other hand, in order to obtain a time-
series gap measure that roughly resembles the CBO’s output gap, we have
needed to drastically reduce the variability of the trend component. That
fact raises two questions: First, are statistical detrending procedures like the
ones just considered actually useful; and second, why should we view the
CBO measure as an appropriate benchmark?

Taking the second question first, the magnitude and persistence of the
CBO gap lines up well with another important cyclical indicator, the unem-
ployment rate, and that fact alone is a strong argument in its favor.10 Regard-
ing the broader usefulness of statistical detrending procedures, the answer
is “it depends.” Many time series approaches to trend–cycle decomposition,
especially the univariate ones, do seem to allow the trend to respond too
much to persistent movements in the actual series (we’ll see some other
examples soon).11 Ultimately, though, which approach you prefer will prob-
ably depend strongly on your priors. Those who believe that the productive
capacity of the economy is an important determinant of actual output and is
itself subject to large quarter-to-quarter fluctuations (say because of produc-
tivity, efficiency, or utilization shocks) will be comfortable with the idea that
the trend is highly variable and the cycle relatively small. By contrast, those
who think that full-employment output evolves more slowly (say because
it is determined by things like growth in the labor force and other addi-
tions to existing productive capacity) and that business cycles largely reflect
demand-driven departures from full employment will be less likely to accept
a procedure that places all of the action in the trend.

If we do continue to confine ourselves to purely statistical methods for
measuring the business cycle, there is one other approach to isolating the
trend and cyclical components of a time series that is worth thinking about.
The fact that we refer to the idea of a business cycle calls to mind something
that has a more or less regular periodicity. While we wouldn’t want to

10 An exception is the 2007–2009 recession, where the peak-to-trough drop in the output gap
implied by the CBO measure seems somewhat less pronounced than the corresponding
rise in the unemployment rate when compared with what happened in previous recessions.

11 That said, some sort of statistical detrending procedure is often used one way or another
in more-structural approaches to measuring the economy’s supply side.
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take this idea literally – earlier writers on business cycles referred to them
as “recurrent but not periodic” – from 1945 to 2019 the NBER’s dating
implies that postwar US business cycles have ranged from six quarters to
twelve years in duration, with most lasting less than ten years.12 As a way
of measuring the business cycle, therefore, we can apply a particular type of
statistical filter (known as a bandpass filter) that takes a series and extracts
the portion of its fluctuations that is attributable to cycles with periodicities
that fall in this range.13 The reason we might want to do something like this
is that macroeconomic aggregates typically manifest relatively small spectral
peaks at business-cycle frequencies; using a suitable filter can throw these
cyclical movements into sharper relief. (In an important sense, this is why
we seek to detrend a series in the first place.)

For this particular application therefore, we want a filter that “passes
through” cycles with periods longer than (say) two years and shorter than
(say) twelve years. The problem of how to approximate such a filter as a
weighted moving average with a finite number of terms has been worked
out by several authors – including Baxter and King (1999) and Christiano
and Fitzgerald (2003) – under different approximation criteria. Figure 2.6
plots the results obtained by applying the Baxter–King bandpass filter to log
real GDP (times 100) and the unemployment rate, using a window width
of 81 quarters – so ten years on either side – and cutoffs equal to two and
twelve years.14 A clear contemporaneous correlation between the series is
apparent (the correlation coefficient is –0.91), reflecting the tendency of
these series to move closely together (but in opposite directions) over the
business cycle.15

12 The quote comes from Burns and Mitchell (1946). In their definition of a business cycle,
Burns and Mitchell identified the duration of a business cycle as “more than one year to
ten or twelve years,” but prior to the Great Depression, Mitchell (1927) had used “three to
about six or seven years.” For the postwar United States (and at the time of this writing), if
we define cycles on a trough-to-trough basis, their duration ranges from 2.3 to 10.8 years;
on a peak-to-peak basis, the range is 1.5 to 12.2 years.

13 We know from time-series analysis that we can express a variable as the weighted sum of
periodic (cosine and sine) functions with different frequencies (or, equivalently, periods) –
very intuitively, the idea is similar to a Taylor expansion, which uses a weighted sum of
polynomials to approximate a function.

14 A filter like this is a two-sided moving average. Using a wider window increases the filter’s
ability to pass through only the desired frequencies but means that more data are lost from
the beginning and end of the sample. One way to deal with this problem is to “pad” the
sample with additional observations in the form of forecasts and backcasts from a time-
series model; in the figures, the filter is applied to the series starting in 1959:Q1 and ending
in 2007:Q4, so only actual data are used.

15 This phenomenon is related to an empirical regularity called Okun’s law, which we will
return to in Chapter 5.
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Figure 2.6 Filtered log real GDP (times 100) and unemployment rate obtained from
the Baxter–King bandpass filter with cutoffs equal to two and twelve years (window
width is 81 quarters).

One problem with an approach like this one is that it is probably too
dogmatic regarding the periodicity of “the” business cycle. If we invoke the
Burns and Mitchell definition (or use more recent NBER dates) to set the
filter cutoffs, we are already buying into that definition of a cyclical con-
traction or expansion and forcing our filtered series to conform to it. As a
check of this definition as it pertains to the comovement of real GDP and
the unemployment rate, we can use the cross-spectrum to estimate pairwise
coherences for these variables.16 Figure 2.7 plots the coherence between log-
differenced real GDP and the change in the unemployment rate over the
1959 to 2019 period; the x-axis of the chart is given as fractions of π , so
the leftmost hill between 0.07 and 0.23 implies a large pairwise coherence at
periods between 2.1 and 7.2 years, with a steep dropoff at around 9 years.17

That’s somewhat shorter than the average business cycle duration implied by
the NBER dates (and used in the bandpass filter) – and the range is narrower
as well – though given the imprecision surrounding estimates of the cross-
spectrum, especially at lower frequencies, the correspondence isn’t too bad.

16 The coherence between two variables tells us how much of the variation in a series at a
particular frequency can be explained by another series.

17 The period (in quarters) is given by 2/f , where f is the fraction of π given on the x-axis.
(To compute the periods cited in the text, I used values of f expressed to more decimal
places than are reported here.)
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Figure 2.7 Estimated coherence between real GDP growth and the change in the
unemployment rate. Values along the x-axis are fractions of π ; vertical lines are at 0.07
and 0.23.

Another, related issue that arises with statistical filters can be seen from
Figure 2.8, which plots the actual unemployment rate against its “low-pass”
or “trend” component (that is, the component that reflects cycles with peri-
ods greater than twelve years). There is a distinct dip in the trend series over
the first part of the 1960s as the reduction in the actual unemployment rate is
interpreted by the filter as being too persistent to be a cyclical phenomenon
(an interpretation that is difficult to square with the history of this period).
Likewise, at the end of the sample the low-pass component is pulled up by
the large and persistent rise in the unemployment rate that resulted from the
2007–2009 recession.

This last result highlights a deeper question, which is whether it is entirely
sensible to treat cyclical and trend movements as largely separate phenom-
ena. Even if we think that cyclical fluctuations are mostly demand-driven
(as opposed to being the result of supply-side shocks), it is still the case that
the demand and supply sides are likely to be linked over periods longer than
a business cycle but shorter than the “long run” – for instance, as an invest-
ment boom translates into an increase in the economy’s productive capacity,
or as a prolonged slump causes workers to be persistently “scarred” as their
skills atrophy and their connection to the labor force weakens. Conversely,
we can imagine that certain types of supply-side disturbances (an oil price
shock, say) could contribute to a recession by reducing aggregate demand.
With only a dozen postwar business cycles at our disposal, each of which
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Figure 2.8 Unemployment rate and estimated trend from lowpass filter (cutoff is
twelve years).

had its own specific features and causes, it is probably too much to expect
that we can pin down the characteristics of “the” business cycle well enough
to calibrate the parameters of a bandpass filter, or to use any purely statistical
procedure to cleanly separate trends and cycles.18

2.2 Digression: “Why You Should Never Use the
Hodrick–Prescott Filter”

An alternative method for detrending a time series that was popularized
by Hodrick and Prescott (1997) involves fitting a smooth trend component
through the series.19 Specifically, for a series yt Hodrick and Prescott sug-
gested setting the trend component τt to minimize the following criterion,

min

{ T∑
t=1

(
yt − τt

)2 + λ

T∑
t=1

(�τt − �τt−1)
2

}
. (2.4)

18 Related issues have been discussed in the literature. For example, Murray (2003) shows that
in a model like (2.2), a bandpass filter does not fully exclude the trend component from the
measured cycle and so can overstate or understate the importance of cyclical dynamics at
the assumed business-cycle frequencies. Murray argues that this problem arises whenever
a nonstationary trend is present; however, the appendix to Trimbur and McElroy (2022)
shows that the actual issue is that a stochastic trend contains frequency components that
extend into the intermediate, “cyclical” portions of the spectrum and that are therefore
passed through by a bandpass filter.

19 Hodrick and Prescott had initially proposed their method in a 1981 working paper.
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Figure 2.9 Cyclical component from Hodrick–Prescott filter with λ =1,600 (black line)
and freely estimated λ =0.255 (gray line).

If we assume that yt is in logarithms, then Equation (2.4) expresses a trade-
off between keeping the trend as close as possible to the actual series while
also keeping the growth rate of the trend smooth. The parameter λ governs
this trade-off: When λ is zero, then the trend will be equal to yt itself so as
to minimize the first part of the criterion; as λ becomes very large, then the
goal is to have the growth rate of the trend be nearly constant (in the limit
where λ → ∞, �τt becomes a constant and the trend is a straight line).
In most applications (and following Hodrick and Prescott’s suggestion), λ is
set equal to 1,600 in quarterly data; Figure 2.9 shows the resulting cyclical
component when the filter is applied to 100 times the log of real GDP from
1947:Q1 to 2007:Q4.

It turns out that an exact closed-form solution to the minimization prob-
lem (2.4) can be computed for a specified λ; the solution is a matrix equation
that implies that τt will be a linear function of all of the values of y. How-
ever, as Hodrick and Prescott pointed out, an alternative way to compute τt
involves fitting a Kalman smoother to the following state-space representa-
tion,

yt = τt + ct

τt = 2τt−1 − τt−2 + νt , (2.5)

where ct denotes the cyclical component, ct and νt are mutually uncorre-
lated white noise, and λ equals to the ratio of their variances, λ = σ 2

c /σ 2
ν .
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As Hamilton (2018) demonstrates, either method will yield the same value
of τt so long as the same value of λ is used and a diffuse prior is used for the
initial state in the Kalman smoother.20

From this description, we can intuitively discern two potential problems
with the Hodrick–Prescott filter.21 First, the fact that a high degree of
smoothing (a large value of λ) will cause the trend to be nearly linear hints
that we could easily run into trouble, as linearly detrending a random walk
is a recipe for generating spurious dynamics. (As Hamilton also demon-
strates, the Hodrick–Prescott filter does in fact induce spurious dynamics
even for the smaller values of λ that are typically used, with additional
distortions introduced at the end of the sample.) More importantly, we
might be suspicious that an estimation procedure that assumes the cyclical
component is white noise (recall the state-space representation given by the
system 2.5) would yield cycles that look like those in Figure 2.9, which are
relatively smooth and persistent. The reason is that we are imposing a value
of λ that is wildly at odds with what we obtain from freely estimating it; for
example, fitting the system (2.5) by maximum likelihood yields σ 2

c = 0.125
and σ 2

ν = 0.491. That implies a value of λ equal to 0.255 (not 1,600), a
trend component that is essentially identical to the series itself, and the
nonexistent cyclical component shown in Figure 2.9.

Hamilton (2018) also proposes a different way to isolate the cyclical com-
ponent of a nonstationary time series that does not share the various prob-
lems associated with the Hodrick–Prescott filter (the method bears a passing
relationship to the Beveridge–Nelson decomposition). Whatever one thinks
about Hamilton’s suggested alternative, though, one thing is clear: Anyone
who shows you empirical results that use the Hodrick–Prescott filter is basi-
cally just wasting your time.

2.3 Shocks and Their Propagation

If we are willing to accept that business cycles represent large and persis-
tent swings in real activity relative to a reasonably smooth trend, a natural
next question is how to think about them – and especially recessions – in
economic terms. In particular, we would like to be able to explain why it is
that most business cycles tend to exhibit three “phases” or states, with sharp
contractions in real activity (recessions) followed first by a period of rapid

20 Note that we can normalize σ 2
ν to be unity and set σ 2

c = λ.
21 These are discussed formally and in broader terms by Hamilton (2018); unsurprisingly,

Hodrick (2020) strongly disagrees with Hamilton’s conclusions.
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recovery and then by a return to a period of more moderate growth (the
expansion state that the US economy typically finds itself in).

Since the 1930s, the dominant paradigm for thinking about macroeco-
nomic fluctuations is one where erratic shocks or “impulses” feed through
a stable propagation mechanism with a determinate (single) equilibrium.22

The idea is that we can model the macroeconomy as a system of dynamic
equations; this system (the propagation mechanism) summarizes how macro
aggregates are related to each other, and is ultimately related to the assumed
behavioral responses, technological constraints, and policy reaction func-
tions that link together groups of agents in the economy. Shocks or impulses
that arise from outside the system give rise to dynamic responses as the sys-
tem is first moved away from equilibrium and then returns to it. (Of course,
a continuous stream of these shocks will ensure that the system is never
actually in equilibrium – or at least won’t be in equilibrium for very long.)

In order to explain business cycles in these terms, though, we essentially
have to argue that recessions reflect large negative shocks while recoveries
represent the dynamic path that the economy follows as the effects of a reces-
sionary shock play out. This view certainly has its adherents; Temin (1989),
for example, even goes so far as to explain the Great Depression in these
terms.23 And more generally, this is how many real business cycle (RBC) and
new-Keynesian models “explain” downturns. In the former, shocks to pro-
ductivity or other real-side variables drive fluctuations in activity; the propa-
gation mechanism reflects market-clearing responses to these real shocks.24

New-Keynesian models assume a slightly different propagation mechanism
(market clearing under the assumption of nominal rigidities), but estimated
versions of these models typically rely on shocks to household discount

22 This conception was developed by Frisch (1933) in an extremely influential paper. Frisch
interpreted business cycles as resulting from repeated random shocks hitting a propagation
mechanism that itself generated damped cycles, and claimed that a simple calibrated model
could give rise to cycles with periods roughly equal to those observed at the time. However,
as Zambelli (2007) points out, Frisch’s solution is incomplete and there actually aren’t any
cycles in his model (the system simply returns monotonically toward its equilibrium state).
Zambelli speculates that the development of macroeconomic theory might have taken a
somewhat different course had this fact been known by Frisch’s contemporaries.

23 Temin explicitly eschews the explanation that the Great Depression reflected some sort
of inherent instability in the economy. Instead, he argues that a very large shock – the
First World War – changed elements of the world economic order in such a way that
maintaining the prewar policy regime (the gold standard) required overly deflationary
fiscal and monetary policies that were maintained for too long.

24 One reason why RBC modellers favor the univariate Beveridge–Nelson characterization
of the business cycle is that it leaves very little cycle to actually be explained through this
mechanism.
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factors, investment-specific technological change, or wedges between the
central bank’s policy rate and the interest rate that enters spending decisions
in order to generate large cyclical swings. (None of these shocks is observed;
rather, they are inferred from the model’s inability to fit the data.)

One reason to be skeptical of the “big negative shock” interpretation of
recessions is that it seems to require that these shocks would all be one-sided;
that is, we do not tend to see large positive exogenous shocks that sharply
push up real activity – like a “negative recession” – when the economy is in its
typical expansionary state. (Of course, it isn’t impossible that the distribution
of shocks to the economy has a long left tail, but then we would want to
be able to explain or model the source of this skewness.) Another reason
to be skeptical of this way of looking at recessions is that it assumes the
propagation mechanism itself doesn’t change as a result of the shock. The
amplitude of most recessions and speed with which they occur suggest that
they might involve something more than just the economy’s typical continu-
ous response to a shock; instead, recessions seem closer to a regime change,
in which something happens to induce a discontinuous or nonlinear shift
into a separate recession state. In other words, the propagation dynamics
that result in a recession seem to be fundamentally different to those that
prevail under ordinary circumstances.25

We can get a hint that something like this might be going on by consid-
ering a statistical model that explicitly permits such a regime change to take
place. In 1989, Hamilton proposed describing the dynamics of a measure of
real activity (say real GDP growth, �yt) with a Markov switching model:

φp(L)�yt = μ(st) + εt

μ(st) = μ0 + μ1st , (2.6)

where st is an indicator variable that equals zero or one. The idea is that
the economy transitions between two regimes; in either regime, �yt follows
an AR process, but the unconditional mean of the process is allowed to be
different across regimes. The transition between regimes is then assumed to
be governed by a Markov process with fixed transition probabilities,

Pr[st = 1 | st = 1] = p; Pr[st = 0 | st = 0] = q. (2.7)

25 Note that a trend–cycle decomposition that is based on a model like Equation (2.2)
implicitly assumes that cycles are symmetric since a single ARMA process is used to model
the cyclical component.
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Hamilton originally wanted to use this approach to model a trend break
in real GDP growth (specifically, the post-1970s productivity slowdown).
However, when he fit the model to US real GDP, he obtained estimated
probabilities for being in one of the states that looked very similar to the
NBER recession bars shown in Figure 2.1. Hamilton realized that the model
was capturing a switch into a recession state, with a reduction in mean GDP
growth that goes away after the economy returns to a nonrecession state. In
other words, recessions appeared to involve a discrete change in the process
for output growth, which in this simple model is the propagation mechanism
for shocks.26

We can get a flavor of Hamilton’s results with a slightly different model
that – like the NBER – uses several measures of real activity in order to
pin down cyclical turning points.27 Roughly, the idea is to model the
behavior of the NBER’s main cyclical indicators (nonfarm payrolls, real
manufacturing and trade sales, industrial production, and real personal
income less transfers, all of which are available monthly) as being driven
by a common factor whose mean growth rate changes when the economy
enters a recession state. Figure 2.10 plots the estimated probability that the
economy was in a recession at a specified date; these probabilities line up
tolerably well with the NBER’s dating. The model’s transition probabilities
imply that we should expect the economy to be in a recession 10 percent of
the time, with the average duration of a recession equal to 7.3 months and the
average duration of an expansion equal to 67 months. For reference, the
NBER’s dating implies that the US economy has spent 13 percent of the time
in a recession over the 1959–2019 period, with a mean recession duration
of just under a year and a mean expansion duration of seventy-eight
months.28

26 An old piece of folk wisdom among macroeconomic forecasters holds that the best way to
forecast real activity over the next couple of years is to determine whether a recession is in
the offing. If a recession does seem likely, then you should project a downturn roughly
in line with average postwar experience; otherwise, assume growth will continue at its
current average pace. Hamilton’s switching model shows why this approach tended to work
reasonably well in practice (so long as you were good at calling a recession).

27 The model is described in chapter 10 of Kim and Nelson (1999) and is fit over the period
January 1959 to December 2019.

28 The model’s estimated transition probabilities are p = 0.985 and q = 0.863, where state zero
is defined to be the recession state (these are the posterior medians). With a Markov
process, the average fraction of time that the economy spends in a given state equals
x/(2 − p − q), with x = 1 − p for a recession and x = 1 − q for an expansion; once
a given state is entered, its expected duration in months is given by 1/(1 − y), with y = q
for a recession and y = p for an expansion.
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Figure 2.10 Recession probabilities implied by Markov switching model.

Taken literally, the assumption that contractions and expansions evolve
according to a Markov process implies that duration dependence is not a fea-
ture of the business cycle: No matter how long an expansion has lasted, the
probability of entering a recession is always the same (and vice versa). There
have been a host of studies that attempt to explicitly test whether duration
dependence characterizes recessions or expansions; in general, the results
are inconclusive. That probably shouldn’t be too surprising: Once again,
we only have a dozen data points (postwar recessions) that we can look at,
and the proximate causes of these recessions include such disparate events
as financial crises, oil shocks, pandemics, and deliberately contractionary
monetary policy. It seems unlikely then that duration dependence would be
a structural feature of the business cycle, and while it is certainly possible that
imbalances could build up over long expansions that would make a recession
more likely, or that policy responses might become more aggressive in a
prolonged slump, these kinds of mechanisms are better studied on their own
rather than as “average” properties of cyclical fluctuations.

Empirical models like these capture one sort of asymmetry in the business
cycle by allowing real activity to have different underlying dynamics in and
out of recessions: In Hamilton’s model and its variants, a recession reflects
an intercept shift, so a recovery represents the restoration of a normal rate of
trend growth. However, we might instead prefer a description of the busi-
ness cycle that permits the expansion phase of the business cycle to have
two distinct pieces: a relatively rapid recovery of activity that occurs once a
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recession ends; and a slower, trend rate of advance that takes hold after the
recovery is complete (and that represents the economy’s usual expansion
state).29 Following section 5.6 of Kim and Nelson (1999), we can describe
such a model as follows:

yt = τt + xt

φp(L)xt = γ st + εt

τt = μt−1 + τt−1 + ηt

μt = μt−1 + νt , (2.8)

where yt is the logarithm of real GDP; εt , ηt , and νt are uncorrelated inno-
vations; and st is a one–zero indicator that follows a Markov process.

This model is similar to the unobserved components model (Equation
2.2) that was used earlier to implement a trend–cycle decomposition, but
with two notable differences. First, the rate of trend growth μt is allowed to
vary (it is modelled as a driftless random walk rather than as a constant).
Second, the cyclical component is modelled as an AR process together with
a shift term that follows a Markov process. In addition, if we assume that
σε = 0, then the level of real activity that prevails during the expansion
phase will be more like a “normal” or “ceiling” level, rather than a statistical
trend for which fluctuations on either side of the trend net out to zero over
long enough periods. (We will return to this notion when we discuss the
productive potential of an economy in Chapter 4.) Estimates of the cyclical
component xt from this model are shown in Figure 2.11. The model reveals
some evidence of asymmetry; the results also indicate that output remained
below trend throughout the entire 1970s, which could reflect the model’s
difficulty in disentangling the post-1965 slowdown in trend output growth
from the relatively large and frequent recessions seen over this period. The
relatively slow recoveries that followed the 1990–1991 and 2001 recessions
are also captured by the model; similarly, output appears to take somewhat
longer to recover from the 2007–2009 recession compared with the equally
deep Volcker recessions of 1980–1982, even though the model’s estimate of
trend output (not shown) slows noticeably in the wake of the financial crisis.

The various Markov switching models that we have been looking at rep-
resent simple statistical characterizations, not deep structural models of the

29 This three-phase characterization of the business cycle is known as the “plucking” model
of recessions (after Milton Friedman) or the “Joe Palooka” model (after Alan Blinder); as
originally described, it tried to capture the idea that deeper recessions tended to be followed
by correspondingly stronger recoveries.
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Figure 2.11 Deviations of log real GDP from trend implied by a “plucking” model of
recessions.

business cycle. For example, including the pandemic period causes a model
like the one used for Figure 2.10 to completely break down: Because the
pandemic recession was so deep and rapid compared to previous recessions,
the model doesn’t identify any prior periods as belonging to a recession
state. (Hamilton’s original model broke down much earlier – around the
late 1980s – likely reflecting both a change in the amplitude of business
cycles and slower trend growth.) It is also very likely that the dynamics of a
recovery are themselves determined by the nature of the shock that causes
a recession – for example, the financial crisis almost certainly affected the
economy in a way that made the recovery from the 2007–2009 recession
more protracted.30 All that said, switching models like these do strongly
suggest that a recession is something more than just the simple propagation
of an especially large shock, and instead involves a discontinuous shift in
household and firm behavior following a shock. If so, then the idea that
business cycles can be modelled as market-clearing equilibrium phenomena
seems even harder to entertain.

30 That observation hints that Lucas’s (1977) hypothesis that “business cycles are all alike”
might be wrong in an important sense, and – in the case of the slow recovery that followed
the financial crisis – further suggests that the response of fiscal and monetary policy might
be an important determinant of how a recovery plays out.
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Figure 2.12 Seasonally adjusted and unadjusted log real GDP.

2.4 What Seasonal Cycles Suggest about Business Cycles

It seems that certain events (or combinations of events) are able to tip the
economy into a recession state, while others aren’t. What other evidence can
we bring to bear regarding what’s needed to induce an economic downturn?

One suggestive clue is given by Figure 2.12, which plots the logarithm
of seasonally adjusted and not seasonally adjusted real GDP. Every year,
the United States enters into a deep downturn in the first quarter, followed
by a gradual recovery over the remainder of the year. These swings largely
reflect consumption patterns associated with the winter holidays, and they
are extremely large: On average, the peak-to-trough decline implied by the
seasonal cycle (about 4 percent for the period shown) is as large as the entire
decline in output that occurred during the 2007–2009 recession.31

The magnitude of seasonal cycles implies that the realization of a large
shock is not by itself sufficient to push the economy into a recession state.
The reason, of course, that seasonal swings don’t result in actual recessions
is that they are largely predictable; they represent anticipated shocks that,
while very large, don’t cause households and firms to significantly revise

31 As a technical aside, not seasonally adjusted GDP doesn’t actually exist: Published GDP is
produced using seasonally adjusted source data, while not seasonally adjusted GDP is put
together separately by replacing these source data with their seasonally unadjusted coun-
terparts. However, the effects of seasonality are similarly pronounced in other seasonally
unadjusted measures of real activity.
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their assessment of the current and prospective state of the economy, and
that can also be planned for well in advance.32 In this sense, then, the econ-
omy appears to be conditionally stable in the face of certain types of distur-
bances; namely, those that are not too far out of line with past experience
and current anticipations. But whether it is stable more broadly – that is,
whether there are natural corrective forces that lead the economy to recover
in the wake of any shock – remains an open question.33

2.5 Recessions and Stability

As an empirical fact, the US economy has recovered from every postwar
recession (though some recoveries have been noticeably slower than others).
It’s far from clear, however, why this would be. In periods where demand
is depressed because output is low, and output is low because demand is, it
seems as though the economy could easily get “stuck” in a low-activity
state. And in theoretical terms, the fact that microtheorists have been
unable to come up with a mechanism that would tend to push a model
economy toward its (Walrasian) equilibrium also – and correctly – suggests
that macroeconomists would have trouble coming up with a convincing
theoretical description of what causes the economy to recover following a
recession, let alone what would bring it back to a state of full employment.

In early Keynesian analysis, there were various “traps” the economy could
find itself in, and no tendency for the economy to right itself absent active
policy intervention.34 This reflected Keynes’s vision of the nature of the busi-
ness cycle, in which a demand multiplier magnified the effects of swings in
business investment and investment was assumed to be largely determined
by the sentiment of businesspeople (and so largely exogenous). One of the
earliest attempts to demonstrate that there would be self-correcting tenden-
cies came from Pigou (1943), and was the centerpiece of Patinkin’s (1965)
analysis; the mechanism these authors had in mind was one where the disin-
flationary effects of a slump would cause real money balances (or real wealth
more generally) to increase, thereby stimulating consumption.35

32 This is not a new observation: Burns and Mitchell (1946, chapter 3) used it as a justification
for seasonally adjusting economic aggregates before trying to analyze the business cycle.

33 Seasonal cycles have been used to try to gain other insights into the nature of the business
cycle, though not completely convincingly; see Miron and Beaulieu (1996) and the book-
length treatment by Miron (1996) for two somewhat dated contributions.

34 Keynes did allow that depreciation of the capital stock and liquidation of inventories would,
under normal conditions, help to stimulate a recovery (Keynes 1936, pp. 317–318).

35 If these references seem old, it’s because they are – stability is as neglected a topic in macro
as it is in micro.
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From an empirical and theoretical standpoint, the “Pigou–Patinkin” effect
is unlikely to be an effective way to end a recession (or stabilize the econ-
omy). Empirically, wealth effects on consumption are too weak; and in the
case of real balances, most of the money in the economy is generated by
bank lending (and so is likely to move with real activity). Given those two
facts, the decline in prices needed to appreciably boost consumption would
be so large as to cause widespread bankruptcies among producers if labor
costs were unchanged (thus reducing wealth), and would also put many
households in distress if wages declined too and households had any sort
of previously contracted debt obligations.36

Moreover, from the standpoint of general equilibrium theory Patinkin’s
“solution” to the stability problem turns out to be deficient. As Grandmont
(1983) has shown, the real balance effect might be too weak even in theory
to stabilize the economy. What is then needed is for agents’ expectations
regarding future prices and interest rates to respond in the “right” way (for
some agents, not at all) to current prices – a condition that is highly implau-
sible. Grandmont concludes that in a monetary economy, “… full price flex-
ibility may not lead to market clearing after all … [because] there may not
exist a set of prices and interest rates that would equate Walrasian demands
and supplies.”

We can get a flavor of this argument with the following simple exam-
ple.37 Consider an exchange economy with two periods and with individual
endowments et , consumption ct , prices pt , and initial money holdings m. A
consumer therefore faces the following intertemporal budget constraint:

p1c1 + p2c2 ≤ p1e1 + p2e2 + m, (2.9)

which is given as the line going through the points α β γ in Figure 2.13;
the consumer’s preferences are given by a utility function u(c1, c2). Now
assume that consumers expect future prices to be higher than current prices
such that the price ratio p2/p1 exceeds the marginal rate of substitution at
the endowment point α, as shown in panel A. If all consumers have these
expectations, there will be pervasive excess demand in the market – every-
one will want to consume more than their initial endowment e1. Likewise, if
we assume that consumers expect future prices to decline, a situation like the
one in panel B can arise, where there is pervasive excess supply. Let’s focus
on the excess supply case. If p1 declines in response to the excess supply,

36 See Kalecki (1944).
37 This discussion is taken from section 1.4 of Grandmont (1983).
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Figure 2.13 An example where the real-balance effect is too weak and price flexibility
fails to deliver market clearing.

it will shift out line β γ ; what happens to α β depends on how consumers’
expectations of p2 change in response. For example, if the decline in the price
level is assumed to be permanent, then the relative price p2/p1 is unchanged
and so α β shifts out in a parallel fashion. In this case, the real balance effect
can be too weak to equilibrate the market.38

The preceding example makes it clear that price flexibility does not guar-
antee market clearing or a return to full employment. The following example
and discussion, which is taken from Bénassy (1982, chapter 10), demon-
strates how the presence of intertemporal decisionmaking can cause other
sorts of problems. Consider the simplest possible setup: one firm, one con-
sumer, and two periods. The consumer’s utility function is given by

U(c1, c2, m2) = (α − δ) ln c1 + (α + δ) ln c2 + βm2 (2.10)

(putting the consumer’s terminal money holding in their utility function is
a trick to ensure the existence of a well-defined price level, and assuming
δ > 0 implies that the consumer wants to save in period 1). Production q
is related to labor l by q = F(l), and labor in both periods is in fixed supply
and equal to l. The firm can store any unsold output in inventory, and remits
all profits to the consumer. Finally, there is a fixed money stock m.

38 This is immediately apparent for homothetic preferences; more generally, if the marginal
rate of substitution along the vertical line at e1 is bounded below by a positive value ε, then
if p2/p1 < ε, no Walrasian equilibrium can exist for any value of the current price system
p1.
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Full employment in this economy implies that the firm produces q = F(l)
in both periods; the Walrasian price and real wage are also the same in both
periods and given by

p∗ = αm
βq

and w∗/p∗ = F′(l). (2.11)

However, even if the prevailing price and real wage are both equal to these
values, it is very unlikely that a full-employment equilibrium will result. The
reason is that demand in the two periods is

c1 =
(

1 − δ

α

)
q and c2 =

(
1 + δ

α

)
q, (2.12)

which implies that the firm will need to produce q in period 1 and store
(δ/α)q in inventories in (correct) anticipation that higher demand will
materialize in period 2. Put differently, the firm will need to respond to
a level of demand in period 1 that is less than its output by purposely
accumulating inventories to meet higher demand next period, which is the
same as saying that the firm must forecast that demand will exceed the full-
employment level of output in the second period despite its having fallen
short in the first period. Since the firm receives no signal from the future
to tell it that demand will be higher next period, it is more likely to just cut
production next period under the assumption that demand in period 2 will
be similar to demand in period 1. And all this occurs despite prices and
wages being at their “correct” intertemporal (Walrasian) values.

There is actually a strong case to be made that sticky wages or prices are
largely irrelevant to business cycles. (As we will see in Chapter 6, though,
sticky prices probably are needed to explain certain features of the inflation
process.) In particular, there are other reasons that don’t involve price
maladjustment that can explain why workers and firms might be off their
Walrasian supply and demand curves and why markets might fail to clear.39

Similarly, the lack of any proof of stability even for the idealized Walrasian
system suggests that an economy might not immediately return to full
employment even when the shocks that pushed it into a recession have

39 Examples include pervasive uncertainty; imperfect information and incomplete markets;
the presence of nonallocative prices or institutions that favor quantity adjustments over
price adjustments (see Bewley, 1999 for some evidence from the labor market); and
the price system’s broader inability to coordinate the actions of workers, producers, and
consumers over nontrivial lengths of time.
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abated (at least, no one has ever come up with a convincing description of
how this would happen, or why it’s bound to occur in a market economy).

We might at least expect that the eventual adjustment of wages and prices
in a new-Keynesian model would move economic activity back to its normal
level. That also turns out to be not quite right. In many versions of these
models, the monetary authority determines the economy’s inflation rate and
output gap through its choice of policy targets; the policy feedback rule
then serves as a regulating mechanism to bring the economy toward these
targets (assuming the nominal policy rate does not have to fall below zero
to do so). In empirical implementations (such as Smets and Wouters, 2007),
this process is helped along because recessions are “explained” in terms of
fancifully labelled residuals that are themselves assumed to be stationary;
hence, over history much of what brings the model out of a recession simply
involves having these “structural” shocks die out or reverse themselves.

The slow recovery from the 2007–2009 recession, which contrasted with
the rapid recoveries seen after previous deep recessions, renewed interest
in microfounded optimizing models involving multiple equilibria. In these
models, the economy can find itself stuck in a (locally stable) low-activity
equilibrium that can only be exited through a policy intervention (such as
a fiscal stimulus that pushes the economy back to a high-activity equilib-
rium) or an exogenous shift in expectations. Although models of this sort
are intriguing, the specific mechanisms that are used tend to be either too
contrived to take seriously or generate counterfactual predictions. For exam-
ple, early work in this vein by Diamond (1982) assumes that production
and consumption can be modelled as a search equilibrium, which doesn’t
seem like the best way to capture the insight that these activities invariably
involve separate parties and so can be difficult to coordinate. Later work by
Farmer (2010) uses a model with labor-market search to derive “Keynesian”
conclusions about slumps; however, the model also predicts countercyclical
real wages (p. 41) and – if the monetary authority respects the Taylor princi-
ple – an upward-sloping relation between wage growth and unemployment
(p. 162).40

40 Farmer does provide an interesting extension in the form of a “beliefs function” whereby
self-fulfilling expectations influence aggregate demand through their effect on the value of
capital and hence household wealth. (The model needs a wealth-based channel because it
relies on a permanent-income framework.) While the notion that the public’s beliefs can
influence the level of activity probably has some truth to it, Farmer’s conclusion that the
Federal Reserve should target stock prices is harder to take seriously.
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So what does cause a recession to end, and is an exit from a recession
inevitable? The short answer is that nobody really knows. At best, we
might plausibly argue that longer-run expectations about income and
demand might help to anchor spending and production and contribute to
a revival of “animal spirits” among consumers and producers; in addition,
policy stimulus (especially when earlier policy actions were themselves a
contributor to the recession) likely plays some role in fostering a recovery
as well. But anyone who had read the General Theory could have probably
told you that much.
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