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Numerous formulae have been given which exhibit the asymptotic behaviour as t -
solutions of

oo of

where F(t) is essentially positive and \a'tF(t)dt = oo. Several of these results have been
unified by a theorem of F. V. Atkinson [1]. It is the purpose of this paper to establish results,
analogous to the theorem of Atkinson, for the third order equation

x"'+F(t)x =

and for the fourth order equation

(1)

(2)

However, rather than assume that F(t) is essentially positive, we shall instead assume that
F(t) is essentially of one sign. We assume that F has a decomposition for either / = 1 or / = 2,

(-l)l+1F(t)=f(t)+m(t), (3)

where/(f) is a " smooth " part of F(t) and m{t) is a " small " part. It is assumed throughout
that/(/) and m[t) are continuous on a ray [a, oo) with/(/) > 0 and continuously differentiable.
The analysis is similar to that used in [4] for a two term nth order equation with sufficiently
smooth coefficients.

It is convenient to express (1) and (2) in the vector forms

and

where S, M, T, and N are, respectively

S' = MS

T' = NT

(4)

(5)
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THEOREM 1. Let

(6)
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and suppose that the following conditions hold:

r°/-2/3|m|dt<oo,
Ja

I 00,

and

\h'\dt<oo with fc(°o)2^27.4-1/3.
Ja

(7)

(8)

(9)

Then there is a fundamental matrix S(t) of (4) and a t0 such that, as t-nx>,

71/3(0 o o

o l o

o o /

where, for i = 1,2, 3,

S(t)

-A^f)) 0 0

0 exp(-A2(0) 0

0 0 exp(-A3(O)J

L, (10)

A,(r) -I
/ i x , fi2, n 3 are the cube roots of(— 1)', and L = {l^} is the 3 x 3 matrix given by ltJ= 1, l2j- =
A/oo)-/i(oo)/3, and l3J = Xj(co)l2jforj = 1, 2, 3.

Proof. We first transform (4) by defining Z = QS, where Q is the diagonal matrix
e = d i a g [ / 1 / 3 , l , / - 1 / 3 ] . Then

=f1/3(A+B+C)Z, (11)
where

A =

7i(oo)/3 1 0 '

0 0 1

L(-l)' 0 -*(a>)/3

1/3 0 0

0 0 0

0 0 -1 /3 .

and

C =

Ai(0/3 0 0

0 0 0

' 0 - ^
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If J? / 1 / 3 dt < oo, it follows from (6), (8), and (9) that J? | / ' / /1 dt < oo; hence log / has a
limit at oo. Thus / has a positive lower bound, contrary to J°°/1/3 dt < oo. Let k(i) =
j'af

1/3dT, and denote the inverse of k by g. The change of variable W(s) = Z(g(s)) in (11)
yields for W,

(12)W'(s) = [A+B(s) + C(s)] W{s),

where B(s) = B(g(s)) and C(s) = C(g(s)). By conditions (7) and (8),

ao.

By condition (9), B(s) ->0 as s ->• oo and Jj? | B'(s) | ds = Ja°° | B'(i) \ dt < oo. Hence, if the
characteristic roots of A are distinct and the real parts of the roots of A+B(s) are well-behaved,
we may apply the asymptotic theorem due to Levinson [3, Chap. 3, Theorem 8.1]. A calcu-
lation shows that the roots X(s) of A+B(s) satisfy the equation

2 / 9 - ( - l ) ' = 0. (13)

(14)

By recalling that, if w # 0 satisfies the equation

»v3 = -<?/2±V<72/4+/>3/27,

then z = w-pfiw satisfies the equation z3+pz+q = 0 (cf. [2, p. 112]), the roots of (13) may be
written (for / = 1 use the — sign in (14) and for / = 2 use the + sign), for i = 1, 2, 3,

where
Us) = /*,[(! + {1 -4%(*))6/39}1'2)/2]1/3,

(15)

(16)

and nu fi2, and /z3 are the cube roots of (-1)' . For 4h(g(s))6 > 39 in (16), the exponent 1/2
denotes the root in the upper half plane and the exponent 1/3 denotes the first quadrant root.
Thus the characteristic roots of A are distinct and a short calculation shows that the columns
of L are characteristic vectors of A. From (13) and A(oo)2 ^ 27.4"1/3, it follows that the
roots X,(s) (s sufficiently large and ^ oo) must occur in one of the following combinations:
(i) one negative root and a pair of complex conjugate roots with positive real part, (ii) one
positive root and a pair of complex conjugate roots with negative real part, or (iii) three
distinct real roots. In either case, we have, for each i,j, that either Re[l,(s)-lj(s)] = 0 or
Re[̂ j(j)—Xj(s)]->a. nonzero constant as i-»oo; thus the theorem of Levinson applies.
There is then a number s0 and a fundamental matrix W of (12) such that, as s -* oo,

W(s)

exp - 0

0

0

exp(-!>>*)

o

0

exp
(-!>'*).
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Since W(k(t)) = Q(t)S(t) and (for t0 = g(s0))

/•*(<) ft
X£u)du=\

Jso Jto

the above asymptotic behaviour for W yields (10) for S.
For the perturbed Euler equation

Theorem 1 is applicable if J°°12 \ /; | dt < oo and K2 # 4/27. Also applicable to perturbations
of the Euler equation is the result that, if m{t) - 0 and \f \ (f/1/3)' | dt < oo.with //1 /3 tending
as / -» oo to a positive limit L, L6 =t 4/27, then the hypothesis of Theorem 1 is satisfied with
hit) = -3/0/-1'3) and h,{t) = WU3)W2'3)-

THEOREM 2. Let

f'f-5l4 = Kt)+h1(t)

and suppose that the following conditions hold:

f-3l*\m\dt<oa,

and

r°°, ,I . w
with h(co)2 ^ 16 for 1=1, A(oo)2 ?4 (Aft for 1 = 2. Then there is a number t0 and a fundamental
matrix T of (5) such that, as t-* oo,

K, (17)

where Q(t) and E(t) are the diagonal matrices

2(0 = diag[/(03/8,/(01/8,/(0-1/8,/(0"3/8] (18)

and

E(t) = diag [exp(- Ax(0) exp(-A4(0)],

in which, for i = 1, 2 ,3 ,4,

are /Ae 4 roots of the equation

X1 = 5 A ( T ) 2 / 6 4 ± { ( - 1 ) ' + / I ( T ) 4 / 4 4 } 1 / 2 .
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Also K={k,j} is given by kl} = 1, k2J = A/oo)—3A(oo)/8, k3J = Xj(ao)k2J —A(oo)/8, and
kA} = Aj(co)k3j+h(co)l8 for j = 1, 2, 3, 4.

Proof. The proof is similar to that of Theorem 1. The transformation Z = QT with Q
as in (18) yields

where

,4 =

3/i(oo)/8

0

0

(-1)'

1

fc(oo)/8

0

0

0

1

-*(oo)/i

0

0

0

i 1

-3fc(go)/8

= [A(r)-/!(oo)]diag[3/8, 1/8, -1/8, -3/8],

and

3fci(0/8

0 J

0

(-i)XO//(O

0

(,,(0/8

0

0

0

0

-*i(0/8

0

0

0

0

— 3/,

C =

Define k(t) = J a / 1 / 4 d r , and let g be the inverse of k. As in Theorem 1, k(t) -> oo as < -> oo
and, if ^ (5 ) = Z(sr(s)), then

satisfy the

(19)

(20)

where B(s) = 5(3(5)) and C(s) = C(g(j)). The characteristic roots X(s) o
equation

A4-5A2%(*))2/32+9%(*))4/84 = ( -1 ) ' .

From (19) it follows that

A2 = 5%(5))2/64± { ( - l ) '+%( S ) ) 4 /4 4 } 1 / 2 .

For / = 1, the condition A(oo)2 ¥= 16 implies that (20) has, for s sufficiently large and ^ 00
and A(oo)2 > 16, four distinct real roots; for A(oo)2 < 16, roots of the form a±ifi and — a+ijS
with a > 0, P > 0. For / = 2, the condition A(oo)2 ^ 64/3 implies that (20) has, for s sufficiently
large and ^ 00 and A(oo)2 > 64/3, four distinct real roots; for h(co)2 < 64/3, roots of the
form + a and ± //? with a > 0, /? > 0. Thus, as in Theorem 1, we have, for each i,j, that either
Re [Xt(s)-Xj(s)] = 0 or Re [Xi(s)-Xj(s)] tends to a nonzero constant as s -* 00. Application
of the theorem of Levinson as in Theorem 1 yields (17).
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