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0e clinical significance and potential targets of miR-150-5p have not been elucidated in nasopharyngeal carcinoma (NPC). 0e
pooled analysis based on 539 NPC samples and 75 non-NPC nasopharyngeal samples demonstrated that the expression of miR-
150-5p was down-regulated in NPC, with the area under the curve being 0.89 and the standardized mean difference being −0.66.
Subsequently, we further screened the differentially expressed genes (DEGs) of 14 datasets, including 312 NPC samples and 70
non-NPC nasopharyngeal samples. After the DEGs were narrowed down with the predicted targets from the miRWalk database,
1316 prospective target genes of miR-150-5p were identified.0e enrichment analysis suggested that “pathways in cancer” was the
most significant pathway. Finally, six hub genes of “pathways in cancer”, including EGFR, TP53, HRAS, CCND1, CDH1, and
FGF2, were screened out through the STRING database. In conclusion, the down-regulation of miR-150-5p modulates the
tumorigenesis and progression of NPC.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a common head and
neck malignant tumor [1, 2]. In 2018, there were about
72,987 patients who died from NPC and 129,079 new cases
of NPC worldwide, most of which were distributed in
Southeast Asia [3]. 0e preferred treatment for early-stage
NPC is intensity-modulated radiotherapy [4–6]. However,
more than 80% of patients are locally advanced during
initial diagnosis [7, 8]. For these locally advanced patients,
the treatment of choice is platinum-based concurrent
chemoradiotherapy. Nonetheless, 5%–15% NPC patients
still developed nasopharyngeal or local lymph node re-
currence after synchronous radiotherapy, and 15%–30%
NPC patients developed distant metastasis [9–12]. 0ere-
fore, exploring the pathogenesis and searching for novel
molecules are imperative for the diagnosis and individu-
alized treatment of NPC.

MicroRNA (miRNA) is a class type of noncoding RNA
consisting of 17–23 nucleotides [13]. miRNA has an im-
portant effect on the differentiation, migration, proliferation,
and apoptosis of cancer cell by binding to 3′-UTR and
regulating translation of target genes [14]. MiR-150-5p is
abnormally expressed in the non-small cell lung carcinoma,
rectal carcinoma, cervical carcinoma, and other carcinomas,
and is closely related to their tumorigenesis and develop-
ment [15–17]. However, the mechanism of miR-150-5p in
NPC remains unclear.

In order to explore the role of miR-150-5p in NPC,
miRNA microarrays and sequencing data of NPC were
collected from online databases, and the miR-150-5p ex-
pression in NPC was determined. Subsequently, the po-
tential target genes were obtained by combining the
differentially expressed genes (DEGs) of NPC with the genes
predicted using miRWalk. In addition, the DAVID database
was used to identify the potential pathways and mechanisms
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from two aspects: Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) and Gene Ontology (GO). Finally, Cyto-
scape software and the STRING database were used to screen
the hub genes.

2. Materials and Methods

2.1. Data Mining and Processing of the miR-150-5p. All
miRNA microarrays and sequencing datasets were gathered
from high-throughput databases, such as ArrayExpress,
Oncomine, Sequence Read Archive, and Gene Expression
Omnibus (GEO). “MicroRNA” and “NPC” were used to
construct a search formula for the screening. All included
datasets should meet the following standards: (1) miR-150-
5p expression data must be provided, and (2) the species
must be Homo sapiens. 0e data exclusion criteria were that
(1) studies using fewer than three samples were excluded,
and (2) animal-based studies were excluded. 0e unstan-
dardized miRNA expression data were subjected to log2
conversion, and the retrieval deadline is of 30 May 2021.

2.2. Comprehensive Analysis of miR-150-5p Expression. R
software 3.6.2, GraphPad Prism 8.0.2, and Stata 16.0 were
used for the statistical analysis and graphing. 0e violin
diagrams were used to visualize the expression of miR-150-
5p. To measure the ability of miR-150-5p to distinguish NPC
from non-NPC nasopharyngeal tissues, we generated and
calculated the receiver operating characteristic (ROC)
curves, the area under the curves (AUC), and the summary
ROC (sROC) curve. Next, the expression of miR-150-5p in
NPC and non-NPC nasopharyngeal tissues was assessed
using the standardized mean difference (SMD) calculated by
Stata. When SMD< 0 and 95% confidence interval (CI)< 0,
miR-150-5p expression was considered to be down-regu-
lated in NPC; otherwise, miR-150-5p expression was con-
sidered to be up-regulated in NPC. A fixed effect model was
selected when I2< 50%; otherwise, we selected a random
effect model. In order to detect the publication bias, the
Begg’s test was used. 0e P value with statistical significance
was less than 0.05.

2.3. Screening of Differentially Expressed Genes. All available
mRNA high-throughput datasets were screened to com-
prehensively construct the DEG profile of NPC. Retrieval
strategies and data processing were similar to those de-
scribed above. 0e sva package was applied to merge the
datasets from the same platform and remove the batch ef-
fects. And the limma package was adopted to screen the
DEGs. 0e screening criteria were: P< 0.05 and |log2 fold
change|> 1. Finally, SMDs were calculated for all the DEGs.
0e DEGs with a SMD exceeding 0 and a 95% CI not
crossing the 0-point coordinate line were regarded as up-
regulated; otherwise, DEGs were down-regulated.

2.4. Identification of Target Genes. Target gene prediction
databases can use many different computational models to
predict the genes that bind to miRNAs. 0e target genes of

miR-150-5p were predicted using miRwalk. 0e predicted
genes were further narrowed down in accordance with their
expression levels in NPC. 0e up-regulated DEGs and the
genes predicted by miRwalk were intersected using the Venn
diagrams.0e co-existing genes were considered as the most
possible target genes of miR-150-5p.

2.5. �e Enrichment Analysis of the Target Genes. DAVID
6.8 was used to identify potential pathways and mechanisms
based on two aspects: KEGG and GO. 0e GO analysis
contained cellular component (CC), molecular function
(MF), and biological process (BP).0e signaling pathways of
the target genes were explored using KEGG analysis. 0e P

value of the terms with statistical significance was less than
0.05.

2.6. Establishment of the Interaction Network. 0e pro-
tein–protein interaction (PPI) network was established us-
ing the STRING online public database. 0e score of the PPI
network exceeded 0.40. Subsequently, the results from the
STRING database were imported into Cytoscape 3.8.0 and
further analyzed using Centiscape 2.2 to identify hub genes.

3. Results

3.1. �e Expression of miR-150-5p Was Down-Regulated in
NPC. 0is study finally retrieved fourteen mRNA datasets
and seven miRNA datasets from the GEO public database
(Table 1). 0e selection process is visualized with Figures 1
and 2. 0e expression of miR-150-5p in individual datasets
was represented using violin plots and ROC curves (Fig-
ures 3 and 4), and four datasets, including GSE22587,
GSE32960, GSE36682, and GSE43039, showing that P< 0.05
in the violin plots and ROC curves. Since the individual
studies were too small to draw stable conclusions, we in-
tegrated all theincluded datasets. Due to the large hetero-
geneity (I2 = 91.8%, P< 0.05) Figure 5(a), the random effect
model was adopted. 0e SMD of miR-150-5p was =−1.20
(95% CI: −2.23, −0.17; Figure 5(a)). 0e sensitivity analysis
revealed that GSE32960 largely affected the stability of the
SMD (Figure 5(b)). 0e heterogeneity was significantly
reduced after excluding GSE32960, and the fixed effect
model was adopted (I2 = 25.7%, P � 0.241, Figure 5(c)).
0erefore, the SMD was −0.66 (95% CI: −0.98, −0.33;
Figure 5(c)). 0e above results revealed that the expression
of miR-150-5p was distinctly down-regulated in NPC.
Furthermore, Begg’s test did not indicate obvious publica-
tion bias (Figure 5(d)).

To further determine the ability of miR-150-5p to dis-
tinguish NPC and non-NPC nasopharyngeal tissues, we
generated a sROC curve with the positive and negative
diagnostic likelihood ratios, pooled sensitivity, and pooled
specificity. 0e pooled AUC was 0.89 (95% CI; 0.86, 0.92;
Figure 6(a)). 0e pooled sensitivity and pooled specificity
were 0.70 (95% CI; 0.38, 0.90) and 0.89 (95% CI; 0.68, 0.97;
Figures 6(b) and 6(c)), respectively. 0e negative and pos-
itive diagnostic likelihood ratios were 0.34 (95% CI; 0.14,
0.81) and 6.22 (95% CI; 2.26, 17.11; Figures 6(d) and 6(e)).
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3.2. �e Target Genes of miR-150-5p Were Obtained.
Overall, 12,599 predicted target genes were obtained from
miRwalk. 0e DEGs of each datasets were visualized using
volcano plots (Figure 7(a)). In addition, 1904 upregulated
DEGs were screened out. 0e SMDs of 1904 up-regulated
DEGs were displayed in Table S1. 0e genes that inter-
sected two times were regarded as the target genes, and
finally, 1316 target genes of miR-150-5p were obtained
(Figure 7(b)).

3.3. �e Results of Enrichment Analysis. In this study,
KEGG and GO analysis of 1316 target genes were per-
formed using DAVID to further explore the molecular
mechanisms of miR-150-5p in NPC. Regarding BP, the
target genes mainly focused on G1/S transition of mitotic
cell cycle, cell division, and DNA replication
(Figure 8(a)). For the CC, the target genes focused on the
nucleoplasm, cytoplasm, and spindle midzone
(Figure 8(b)). Regarding MF, the target genes focused on

Table 1: Characteristics of GEO datasets included in this study.

Publication year ID of datasets Platform Cancer group Normal controls
2013 GSE22587 GPL8933 8 4
2012 GSE32906 GPL11350 12 6
2012 GSE32960 GPL14722 312 18
2012 GSE36682 GPL15311 62 6
2015 GSE43039 GPL16414 20 20
2014 GSE46172 GPL16770 4 4
2015 GSE70970 GPL20699 121 17
2009 GSE13597 GPL96 25 3
2016 GSE40290 GPL8380 25 8
2014 GSE53819 GPL6480 18 18
2020 GSE61218 GPL19061 10 6
2019 GSE95166 GPL15314 4 4
2019 GSE126683 GPL16956 3 3
2019 GSE118719 GPL20301 7 4
2013 GSE39826 GPL6244 3 3
2016 GSE68799 GPL11154 42 4
2014 GSE63381 GPL11154 4 0
2017 GSE102349 GPL11154 113 0
2017 GSE64634 GPL570 12 4
2012 GSE34573 GPL570 15 3
2008 GSE12452 GPL570 31 10
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Figure 1: 0e process of miRNA datasets screening. Seven miRNA datasets are retrieved for further analysis.
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Figure 2: 0e process of mRNA screening, and fourteen mRNA datasets from the GEO database are included in this study.
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Figure 3: Continued.
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Figure 3: 0e expression of miR-150-5p in nasopharyngeal carcinoma groups and non-tumor nasopharyngeal groups. In GSE22587,
GSE32960, GSE36682, and GSE43039, the expression of miR-150-5p is down-regulated in nasopharyngeal carcinoma groups.
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Figure 4: 0e receiver operating characteristic curves of miR-150-5p. 0e area under the curve of GSE22587, GSE32960, GSE36682, and
GSE43039 suggested that miR-150-5p has a good ability to distinguish nasopharyngeal carcinoma tissues from non-tumor nasopharyngeal
tissues.
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the protein binding and protein-kinase binding
(Figure 8(c)). As for KEGG, a total of seven important
pathways were identified, including “pathways in cancer”
(Figure 8(d)).

3.4. �e Hub Genes of the Network. 0e PPI network was
constructed using the 72 target genes of “pathways in
cancer” (Figure 9). 0e Centiscape were adopted to screen
hub genes. Six hub genes were screened, including EGFR,
TP53, HRAS, CCND1, CDH1, and FGF2.

3.5.�e mRNA Expression of the Six Hub Genes. 0e mRNA
expression of the six hub genes, including EGFR, TP53,
HRAS, CCND1, CDH1, and FGF2, was assessed using SMD.
As shown in Figure 10, SMDs of all six hub genes exceeded 0,
and 95% CI was over 0. 0e above results indicated that the
six genes were highly expressed in NPC.

4. Discussion

0is study comprehensively explored the role of miR-150-5p
in NPC and confirmed that the down-regulation of miR-

150-5p promoted the tumorigenesis of NPC by regulating
the target genes.

NPC is a malignant tumor prevalent in Southeast Asia
and Southern China [18]. Due to the lack of biomarkers for
early diagnosis and a high degree of malignancy, most
patients have local metastases at initial diagnosis [19, 20].
0erefore, exploring the pathogenesis and discovering new
biomarkers are imperative. miRNA is a type of endogenous
RNA with 17–23 nucleotides in length [13]. It regulates the
transcription of target genes by combining with the 3′-UTR
region, thereby modulating cell growth, differentiation, and
apoptosis [21]. Many miRNAs are aberrantly expressed in
NPC and regulate relevant target genes, thus affecting
proliferation, invasion, and metastasis of tumor cells. For
example, miR-142 is highly expressed in NPC and enhances
the invasiveness and proliferation of NPC by inhibiting
PTEN expression [22]. MiR-129-5p inhibits NPC lymph
node metastasis and lymphangiogenesis by reducing ZIC2
expression [23]. MiR-18a plays its carcinogenic role by
inhibiting SMG1 expression and activating the mTOR
pathway in NPC [24]. LINC01551 promotes the metastatic
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Figure 5: 0e expression of miR-150-5p is down-regulated in nasopharyngeal carcinoma. (a) Due to the large heterogeneity (I2 � 91.8%,
P< 0.05), a random effect model is chosen for pooled analysis. 0e standardized mean difference of miR-150-5p is �−1.20. (b) 0e
sensitivity analysis reveals that GSE32960 affected the stability of the standardized mean difference. (c) 0e heterogeneity is significantly
reduced after excluding GSE32960 (I2 � 25.7%, P � 0.241). And the standardized mean difference of miR-150-5p (a fixed effect model) is
−0.66. (d) After excluding GSE32960, Begg’s test shows no significant publication bias.
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Figure 7: Continued.
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Figure 7: Identification of miR-150-5p target genes. (a) 0e volcano plots presents the DEGs. (b) 1316 target genes of miR-150-5p are
obtained.

GOTERM_BP

negative regulation of
cell proliferation

lung development

extracellular matrix
organizationTe

rm

DNA replication

cell division

cell adhesion

- log10 (P_Value)
10
9
8
7

Count
30
40
50
60
70

0.02 0.03 0.04 0.05

G1/S transition of
mitotic cell cycle

Rich_factor

(a)

GOTERM_CC

spindle midzone

plasma membrane

nucleoplasm

cytosol

cytoplasm

cell surface

0.0 0.1 0.2 0.3

Rich_factor

Te
rm

Count
100
200
300
400

8
9

7
6
5
4
3

- log10 (P_Value)

(b)
GOTERM_MF

protein kinase binding

protein binding

identical protein binding

enzyme binding

collagen binding

ATP binding

0.0 0.2 0.4

integrin binding

Count
200
400
600

10
8
6
4

- log10 (P_Value)

Te
rm

Rich_factor

(c)

KEGG_PATHWAY

Pathways in cancer

PI3K-Akt signaling pathway

Hippo signaling pathway

Cell cycle

Small cell lung cancer

ECM-receptor interaction

0 20 40 60
Count

Focal adhesion - log10 (P_Value)

Te
rm

24
21
18
15
12

(d)
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ability of NPC by regulating miR-132-5p [25].0ese indicate
that miRNAs are critical in NPC tumorigenesis and de-
velopment. Exploring the mechanism of miRNAs contrib-
utes to the treatment and diagnosis of NPC.

0e miR-150-5p has been demonstrated to have an
important effect on proliferation, invasion, and metas-
tasis of multiple tumors. For example, miR-150-5p
contributes to the epithelial–mesenchymal transition and
cell growth of cervical carcinoma cells by regulating
SRCIN1 [17]. In addition, miR-150-5p enhances the
metastasis and proliferation of gastric cancer by inter-
acting with circLMTK2 [26]. However, the mechanisms
of miR-150-5p in NPC remain unclear. 0is study is
helpful in revealing the mechanism of miR-150-5p in
NPC tumorigenesis and progression.

In this study, a pooled analysis based on 539 NPC
samples and 75 non-NPC nasopharyngeal samples
demonstrated that the expression of miR-150-5p was
down-regulated in NPC. 0e sROC curve indicated that
miR-150-5p had high specificity for differentiating NPC
from non-NPC nasopharyngeal samples. Subsequently,
1316 target genes were screened to perform GO and
KEGG enrichment analysis. Finally, 72 target genes of
“pathways in cancer” were selected to construct the PPI
network, and six hub genes were screened, including
EGFR, TP53, HRAS, CCND1, CDH1, and FGF2.

EGFR was demonstrated to have an important effect
on the proliferation, invasion, and metastasis of multiple
tumors [27]. After being activated by ligands, EGFR
dimerizes and triggers the production of tyrosine kinase
activity to activate downstream signal pathways and
participate in cell proliferation, differentiation, division,
survival, and cancer development [28, 29]. Leong et al.
found that EGFR was overexpressed in most NPC pa-
tients [30]. Nimotuzumab is a monoclonal antibody
against EGFR. Combined treatment with nimotuzumab
and celecoxib can enhance the radiosensitivity of CNE2
cells by inhibiting the EGFR pathway [31]. A retro-
spective analysis showed that nimotuzumab combined
with concurrent chemoradiotherapy achieved exciting
efficacy in the treatment of locally advanced NPC [32].
TP53 is a tumor suppressor gene that encodes a protein
with a molecular weight of 53 kDa. It participates in the
processes of cell differentiation, proliferation, apoptosis,
senescence, autophagy, inflammation, and metabolism by
regulating the transcription of various genes [33]. TP53 is
abnormally expressed in thyroid carcinoma, gastric
cancer, and esophageal carcinoma and is associated with
tumorigenesis and progression [34–36]. CCND1 is an
important regulator of cell cycle [37, 38]. MiR-584 targets
CCND1 to inhibit invasion and proliferation of pan-
creatic carcinoma [39]. In colorectal carcinoma, miR-
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Figure 9: 0e PPI network is constructed based on the 72 target genes of “pathways in cancer”. Six hub genes, including EGFR, TP53,
HRAS, CCND1, CDH1, and FGF2, are selected using Centiscape plug-in.
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628-5p can downregulate CCND1 expression to induce
apoptosis and restrain cell proliferation [40]. In ovarian
cancer, the inhibition of CCND1 expression by cisplatin
can reduce cell proliferation and increase cell apoptosis
[41]. LncRNA HCG18 can act as a ceRNA of miR-140 to
upregulate the expression of CCND1 and promote the
progression of NPC [42]. HRAS is an important member
of the RAS oncogene family. As an essential part of the
signal network that controls cell proliferation, differen-
tiation, and survival, the RAS protein plays a vital role in

tumorigenesis and progression [43]. In NPC, circZNF609
affects cell proliferation, invasion, migration, and gly-
colysis by regulating the miR-338-3p/HRAS axis [44].
CDH1 encodes E-cadherin. As a calcium-dependent
transmembrane protein, E-cadherin is involved in
cell–cell adhesion and has an important effect in main-
taining epithelial structure and function [45]. As a vital
angiogenic factor, FGF2 induces the migration and
growth of endothelial cells [46]. FGF2 is produced by
tumor cells and surrounding stromal cells, and promotes
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Figure 10: 0e expression of all six hub genes is significantly up-regulated in nasopharyngeal carcinoma.
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angiogenesis, migration, proliferation, and invasion of
tumor cells [47].

All in all, the expression of miR-150-5p was down-
regulated in NPC and affected tumorigenesis and progres-
sion of NPC by regulating target genes. We will further
validate the effects of miR-150-5p on the six hub genes by
experiments and further explore the key pathways.

5. Conclusions

0is study confirmed the low expression of miR-150-5p in
NPC, and that miR-150-5p regulated the tumorigenesis and
progression of NPC by targeting EGFR, TP53, HRAS,
CCND1, CDH1 and FGF2.

Data Availability

All datasets were obtained from GEO database. 0e cor-
responding author can be contacted to obtain relevant data
used in this study.

Conflicts of Interest

0e authors declare no conflicts of interest.

Authors’ Contributions

Gang Chen and Ren-Sheng Wang directed this project. Jia-
Ying Wen, Jian-Di Li, and Li-Ting Qin obtained and further
analyzed the data. Jia-Yuan Luo and Juan-He wrote the
manuscript. 0e manuscript was revised by all authors.

Acknowledgments

0is work was funded by the Guangxi Higher Education
Undergraduate Teaching Reform Project (2020JGA146),
Guangxi Zhuang Autonomous Region Health Commission
Self-Financed Scientific Research Project (Z20201236),
Guangxi Educational Science Planning Key Project
(2021B167), and Guangxi Medical High-Level Key Talents
Training “139” Program (2020). Guangxi Key Laboratory of
Medical Pathology offered technical support.

Supplementary Materials

Table S1. 0e standardized mean differences of 1904 up-
regulated differentially expressed genes. (Supplementary
Materials)

References

[1] L. Su, L. She, and L. Shen, “0e current role of adjuvant
chemotherapy in locally advanced nasopharyngeal carci-
noma,” Frontiers in Oncology, vol. 10, Article ID 585046, 2020.

[2] Y. P. Chen, A. T. C. Chan, Q. T. Le, P. Blanchard, Y. Sun, and
J. Ma, “Nasopharyngeal carcinoma,” �e Lancet, vol. 394,
no. 10192, pp. 64–80, 2019.

[3] H. M. Lee, K. S. Okuda, F. E. González, and V. Patel, “Current
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