
Introduction

The Uncertain Nature of Computation

Computation is the resource that has most transformed our

age. Its application has established and extracted value from

globe-spanning networks, mobile communication, and big data.

As its importance to humankind continues to rise, computation

has come at a substantial cost. Consider machine learning, the

academic discipline that has underpinned many recent tech-

nological advances. The monetary costs of modern massively

parallel graphics processing units (GPUs), that have proved so

valuable to much of machine learning, are prohibitive even to

many researchers and prevent the use of advanced machine

learning in embedded and other resource-limited systems. Even

where there aren’t hard resource constraints, there will always

be an economic incentive to reduce computation use. Trou-

blingly, there is evidence1 that current machine learning models 1 R. Schwartz et al. “Green AI” (2019);

D. Patterson. “The Carbon Footprint of

Machine Learning Training Will Plateau,

Then Shrink” (2022).

are also the cause of avoidable carbon emissions. Computations

have to become not just faster, but more efficient.

Much of the computation consumption, particularly within

machine learning, is due to problems like solving linear equa-

tions, evaluating integrals, or finding the minimum of nonlinear

functions, all of which will be addressed in different chapters

in this text. These so-called numerical problems are studied by

the mathematical subfield of numerics (short for: numerical analy-
sis). What unites these problems is that their solutions, which

are numbers, have no analytic form. There is no known way to

assign an exact numerical value to them purely by structured,

rule-based thought. Methods to compute such numbers, by a

computer or on paper, are of an approximate nature. Their re-

sults are not exactly right, and we do not know precisely how

far off they are from the true solution; otherwise we could just

add that known difference (or error) and be done.

That we are thus uncertain about the answer to a numerical
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2 Introduction

problem is one of the two central insights of probabilistic numerics
(pn). Accordingly, any numerical solver will be uncertain about

the accuracy of its output – and, in some cases, also about

its intermediate steps. These uncertainties are not ignored by

classical numerics, but typically reduced to scalar bounds. As

a remedy, pn brings statistical tools for the quantification of

uncertainty to the domain of numerics.

What, precisely, are the benefits of quantifying this numerical

uncertainty with probability measures?

For a start, a full probability distribution is a richer output

than a sole approximation (point estimate). This is particularly

useful in sequences of computations where a numerical solu-

tion is an input to the next computational task – as is the case

in many applications, ranging from the elementary (matrix in-

version for least squares) to the complex (solving differential

equations for real-word engineering systems). In these settings,

a probabilistic output distribution provides the means to propa-

gate uncertainty to subsequent steps.

But pn’s uncertainty-aware approach does not stop with

quantifying the uncertainty over the final output. Rather, it offers

an uncertainty-aware alternative to the design of numerical

methods in two ways:

Oftentimes, numerical uncertainty already appears within nu-

merical algorithms because its intermediate values are subject to

approximations themselves. The resulting intra-algorithmic accu-

mulation of such uncertainties calls for an appropriate amount

of caution. It appears, e.g., whenever expensive function evalua-

tions are replaced by cheaper simulations (such as when cheaper

surrogate functions are used in global optimisation); or when

imprecise steps are iterated (such as when ODE solvers concate-

nate their extrapolation steps). Probabilistic numerical methods

account for these uncertainties using probability measures. This

enables such methods to make smarter uncertainty-aware deci-

sions, which becomes most salient through their formulation as

probabilistic agents (as detailed below).

Moreover, probability distributions allow to more precisely

encode the expected structure of the numerical problem into

the solver: Numerical tasks can be solved by any number of

algorithms, and it is difficult to choose among them. Not all

algorithms for, say, integration, work on all integration prob-

lems. Some require the integrand to be highly regular, others

only that it be continuous, or even just integrable at all. If their

requirements are met, they produce a sequence of numbers

that converge to the intractable solution. But they do not all
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converge at the same speed. In particular, algorithms that work

on a restricted set of problems, when applied to a problem

from that set, often converge faster than methods designed to

work on a larger, less-restrictive domain. Academic research in

numerics has traditionally concentrated on generic algorithms

that work on large spaces of problems. Such methods are now

widely available as toolboxes. These collections are valuable

to practitioners because they save design time and leverage

expert knowledge. But generic methods are necessarily inef-

ficient. Generic methods are, in essence, overly cautious. The

more that is known about a computation to be performed be-

fore one delves into it, the easier it will be to make progress.

Some knowledge is, however, not completely certain but only

expected with high probability, and thus cannot be encoded by

a function space alone. A probabilistic numerical method, on

the other hand, can exploit such less-than-certain expectations

by distributing its prior probability mass to expected subsets of

the function space, and away from less likely scenarios.

The mathematical toolkit of pn allows probabilistic algo-

rithms that leverage these benefits of uncertainty quantification.

Such algorithms have proven able to achieve dramatic reduc-

tions in computation.

NUMERICSAGENTWORLD

Data Evaluations

Actions Actions

Figure 1: A computational agent inter-

acts with the world just as its numeri-

cal algorithms interact with the agent.

That is, the agent receives data from the

world and selects actions to perform in

the world. The numerical algorithm re-

ceives evaluations from the agent and se-

lects computations (actions) for the agent

to perform. For example, the agent might

feed evaluations of an objective to an

optimiser, which selects the next evalu-

ations for the agent to make. pn recog-

nises that a numerical algorithm is just

as much an agent as one directly inter-

acting with the world.

The second of the central insights of pn is that a numerical

algorithm can be treated as an agent. For our purposes, an

agent is an entity able to take actions so as to achieve its goals.

These agents receive data from the environment, use the data

to make predictions, and then use the predictions to decide

how to interact with the environment. Machine learning often

aims to build such agents, most explicitly within its subfield

of reinforcement learning. As another example, consider an
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image classifier using active learning. This classifier receives

labelled images, uses those to predict the labels of unlabelled

images, and then uses those predictions to decide which new

data should be acquired.

It is possible to treat a numerical algorithm as just such an

agent, as laid out diagrammatically in Figure 1. Traditionally,

a numerical method takes in data, in the form of evaluations

(e.g. of an integrand), and returns predictions, or estimates

(e.g. of the integral). A numerical method must also provide

a rule, perhaps an adaptive one, determining which compu-

tations are actually performed (e.g. which nodes to evaluate):

these are decisions. There is thus a feedback-loop: an agent

that decides itself which data to collect may be inefficient by

collecting redundant data, or unreliable if it neglects to probe

crucially informative areas of the data-domain. Explicitly, pn
treats numerical algorithms just as machine learning often treats

its algorithms: as agents.

More precisely, pn is concerned with probabilistic agents. As

above, pn uses probability distributions to quantify uncertainty.

Quantified uncertainty is crucial to all agents, and numerical

agents are no exception. In particular, this understanding of

numerical solvers brings probabilistic decision theory2 to numerics, 2 M. J. Kochenderfer. Decision Making Un-
der Uncertainty: Theory and Application.

2015.
yielding a range of advantages.

For one thing, a numerical agent must decide when to stop.

Unlike in the computation of analytic expressions, there is not

always an obvious end to a numerical procedure: the error in

the current estimate is unknown, so it can be difficult to deter-

mine when to stop. Generic and encapsulated methods take a

cautious approach, usually aiming to satisfy high demands on

precision. Doing so requires many iterations, each further reduc-

ing uncertainty and improving precision, but each coming at a

cost. That is, this cautious approach consumes much computa-

tion. pn provides a new solution to this problem: if uncertainty

is well-quantified, we may be satisfied with (quantified) vague,

and thus cheap answers. pn hence provides a principled means

of stopping early, enabling fewer iterations, enabling a reduction

in computation.

Uncertainty also guides exploration. An intelligent agent,

making a decision, must weigh the uncertain consequences of

its actions, occasionally gambling by taking an uncertain ac-

tion, in order to explore and learn. Performing such exploration

is core to effective numerics. Predictive uncertainty unlocks a

fundamental means of quantifying the value of a numerical iter-

ation, and weighing it against the real cost of the computation it
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will consume. There are almost always choices for the character

of an iteration, such as where to evaluate an integrand or an

objective function to be optimised. Not all iterations are equal,

and it takes an intelligent agent to optimise the cost–benefit

trade-off.

On a related note, a well-designed probabilistic numerical

agent gives a reliable estimate of its own uncertainty over their

result. This helps to reduce bias in subsequent computations. For

instance, in ODE inverse problems, we will see how simulating

the forward map with a probabilistic solver accounts for the

tendency of numerical ODE solvers to systemically over- or

underestimate solution curves. While this does not necessarily

give a more precise ODE estimate (in the inner loop), it helps

the inverse-problem solver to explore the parameter space more

efficiently (in the outer loop). As these examples highlight, pn
hence promises to make more effective use of computation.

The Deep Roots of Probabilistic Numerics

Probabilistic Numerics has a long history. Quite early in the his-

tory of numerical computation, people noted that its demands

closely matched what was provided by the professional pro-

cess of guesswork known as statistical inference. It seemed to

those people that probability, central to the process of inference,

might be a natural language in which to describe computation

as the gathering of information. In the first chapter to his semi-

nal nineteenth-century Calcul des Probabilités,3 Henri Poincaré 3 H. Poincaré. Calcul des Probabilités. 1896.

§I.7, pp. 30–31. Emphasis in the original.mused about assigning probabilities to not-yet-computed num-

bers:

[Roughly:] The need for probability only
arises out of uncertainty: It has no place if
we are certain that we know all aspects of
a problem. But our lack of knowledge also
must not be complete, otherwise we would
have nothing to evaluate. There is thus a
spectrum of degrees of uncertainty.
While the probability for the sixth decimal
digit of a number in a table of logarithms to
equal 6 is 1/10 a priori, in reality, all aspects
of the corresponding problem are well deter-
mined, and, if we wanted to make the effort,
we could find out its exact value. The same
holds for interpolation, for the integration
methods of Cotes or Gauss, etc. (Emphasis

in the op. cit.)

Une question de probabilités ne se pose que par suite de notre
ignorance: il n’y aurait place que pour la certitude si nous
connaissions toutes les données du problème. D’autre part, notre
ignorance ne doit pas être complète, sans quoi nous ne pourrions
rien évaluer. Une classification s’opérerait donc suivant le plus
ou moins de profondeur de notre ignorance.
Ainsi la probabilité pour que la sixième décimale d’un nombre
dans une table de logarithmes soit égale à 6 est a priori de 1/10;
en réalité, toutes les données du problème sont bien déterminées,
et, si nous voulions nous en donner la peine, nous connaîtrions
exactement cette probabilité. De même, dans les interpolations,
dans le calcul des intégrales définies par la méthode de Cotes ou
celle de Gauss, etc.
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Although Poincaré found it natural to assign probabilities to

the value of determined but unknown numbers, it seems the

idea of uncertainty about a fully, formally determined quantity

did not sit well with a majority of mathematicians. Rather than

assigning degrees of certainty about properties of a problem, it

seemed more acceptable to formally state assumptions required

to be strictly true at the onset of a theorem. When considering a

particular numerical estimation rule, one can then analyse the

convergence of the estimate in an asymptotic fashion, thereby

formally proving that (and in which sense) the rule is admissible.

This approach leaves the estimation of the rule’s error after a

finite number of steps as a separate and often subordinate part

of the routine.

By contrast, probabilistic inference makes the formulation of

probability distributions, characterising possible error, primary.

These distributions will include an explicit prior on the latent

quantity to be inferred, and an equally explicit likelihood func-

tion capturing the relationship of computable numbers to that

latent quantity. This approach may be more or less restrictive

than the asymptotic analysis described above. It might well be

more cumbersome to state, subject to philosophical intricacies,

and requires care to not introduce new intractable tasks along

the way. Nonetheless, phrasing computation as probabilistic

inference offers substantial advantages. For one thing, the ap-

proach yields a posterior probability distribution for quantities

of interest that self-consistently combines estimate and uncer-

tainty, and can approximately track their effect through several

steps of the computation.

In the twentieth century, the idea of computation as inference

lingered in the margins. In the 1950s and 1960s – the golden

age of probability theory following the formal works of Kol-

mogorov – perhaps Sul’din should be mentioned as the first to

return to address it in earnest.4 He focused on the approxima- 4 Sul’din (1959); Sul’din (1960).

tion of functions, a task underlying many numerical methods.

In statistics, where this process is known as regression, it took

on a life of its own, leading to a deep probabilistic framework

studied extensively to this day, whose early probabilistic inter-

pretations where driven by people like Sard (1963), or Kimeldorf

and Wahba (1970). Parallel to Sul’din’s work in Russia, the task

of integration found the attention of Ajne and Dalenius (1960)

in Scandinavia. The English-speaking audience perhaps first

heard of these connections from Larkin (1972), who went on to

write several pieces on the connection between inference and

computation. Anyone who missed his works might have had
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to wait over a decade. By then, the plot had thickened and au-

thors in many communities became interested in Bayesian ideas

for numerical analysis. Among them Kadane and Wasilkowski

(1985), Diaconis (1988), and O’Hagan (1992). Skilling (1991) even

ventured boldly toward solving differential equations, display-

ing the physicist’s willingness to cast aside technicalities in the

name of progress. Exciting as these insights must have been

for their authors, they seem to have missed fertile ground. The

development also continued within mathematics, for example in

the advancement of information-based complexity5 and average- 5 Traub, Wasilkowski, and Woźniakowski

(1983); Packel and Traub (1987); Novak

(2006).
case analysis.6 But the wider academic community, in particular

6 Ritter (2000)users in computer science, seem to have missed much of it. But

the advancements in computer science did pave the way for

the second of the central insights of pn: that numerics requires

thinking about agents.

Twenty-First-Century Probabilistic Numerics

The twenty-first century brought the coming-of-age of machine

learning. This new field raised new computational problems,

foremost among them the presence of big data sets in the com-

putational pipeline, and thus the necessity to sub-sample data,

creating a trade-off between computational cost and precision.

Numerics is inescapably important to machine learning, with

popular tracks at its major conferences, and large tracts of ma-

chine learning masters’ degrees, devoted to optimisation alone.

But machine learning also caused a shift in perspective on mod-

elling itself.

Modelling (or inference) used to be thought of as a passive

mathematical map, from data to estimate. But machine learning

often views a model as an agent in autonomous interaction with

its environment, most explicitly in reinforcement learning. This

view of algorithms as agents is, as above, central to pn.

Machine learning has been infused with the viewpoints of

physicists and other scientists, who are accustomed to limits on

precision and the necessity of assumptions. The Bayesian view-

point on inference soon played a prominent (albeit certainly not

the only leading) role in laying its theoretical foundations. Text-

books like those of Jaynes and Bretthorst (2003), MacKay (2003),

Bishop (2006), and Rasmussen and Williams (2006) taught a gen-

eration of new students – the authors amongst them – to think

in terms of generative models, priors, and posteriors. Machine

learning’s heavy emphasis on numerics couldn’t help but lead

some of those students to apply their hammer, of probabilis-
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tic inference, to the nails of the numerical problems that they

encountered. These students were bound to revive questions

from the history of pn. For instance, if computation is inference,

should it then not be possible to build numerical algorithms

that:

1. rather than taking in a logical description of their task and

returning a (floating-) point estimate of its solution, instead

take probability distributions as inputs and outputs?;

2. use an explicit likelihood to capture a richer, generative

description of the relation between the computed numbers

and the latent, intractable quantity in question?; and

3. treat the CPU or GPU as an interactive source of data?

In 2012, the authors of this text co-organised, with J. P. Cun-

ningham, a workshop at the Neural Information Processing Sys-
tems conference on the shores of Lake Tahoe to discuss these

questions. We were motivated by our own work on Bayesian

Optimisation and Bayesian Quadrature. At the time, the wider

issue seemed new and unexplored to us. By a stroke of luck, we

managed to convince Persi Diaconis to make the trip up from

Stanford and speak. His talk pointed us to a host of prior work.

In search of an inclusive, short title for the workshop, we had

chosen to call it Probabilistic Numerics (pn). In the years since,

this label has been increasingly used by a growing number of

researchers who, like us, feel that the time has come to more

clearly and extensively connect the notions of inference and

computation. The 2012 workshop also marked the beginning of

a fruitful collaboration between the machine learning commu-

nity and statisticians like M. Girolami7 and C. J. Oates, as well as 7 Hennig, Osborne, and Girolami (2015)

applied mathematicians like T. J. Sullivan, I. Ipsen, H. Owhadi

and others. They ensured that existing knowledge in either com-

munity was not forgotten,8 and their research groups have since 8 Owhadi and Scovel (2016); Oates and

Sullivan (2019).laid an increasingly broad and deep foundation to the notion

of computation as probabilistic and also more narrowly, care-

fully defined Bayesian inference.9 They have also undertaken a 9 Cockayne et al. (2019b)

commendable effort to build a community for pn within the

mathematical fields.

Although numerous interesting insights have already been

reached, just as many questions are still scarcely explored. Many

of them emerge from new application areas, and new associated

computational problems, in the age of Big Data, GPUs, and

distributed, compartmental, computation.
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We made a conscious decision not to use the word Bayesian in

naming Probabilistic Numerics. We will unashamedly adopt a

Bayesian view within this text, which forms a natural framework

for the core ideas within pn; those ideas can also be found in

many alternative approaches to machine learning and statistics.

But there is also an important way in which pn can be viewed

as non-Bayesian. The Bayesian norm enforces hygiene between

modelling and decision-making. That is, you write down a prior

capturing as much of your background knowledge as possible,

and do inference to compute a posterior. Then, with that poste-

rior, you write down a loss function and use expected loss to

choose an action. The Bayesian’s counterpart, the frequentist,

has the loss function in mind from the outset.

However, in numerics, we are rarely afforded the luxury of

using models informed by all available prior knowledge. Such

models are usually more computationally expensive, in them-

selves, than models that are built on only weak assumptions.

Sometimes, we are willing to spend a little more computation

on a model to save even more computation in solving its nu-

merical task, but other times we are not. That is, in considering

an additional computation cost on a model, we must consider

whether it is justified in improving performance for the given

numerical task: this performance is measured by a loss function.

pn is hence, in this way, more akin to the frequentist view

in muddling the loss function and the prior. That is, numerics

requires us to make, in some cases, drastic simplifications to our

models in order to achieve usable computational complexity.

This can be conceived as letting some (vaguely specified) loss

function on computation dictate which elements of the prior

can be incorporated.

This Book

This book aims to give an overview of the emerging new area of

Probabilistic Numerics, particularly influenced by contemporary

machine learning. Even at this early point in the field, we have

to concede that a complete survey is not possible: we are bound

to under-represent some rapidly developing viewpoints, and

apologise in advance to its authors. Our principal goals will be

to study uses and roles for uncertainty in numerical computation,

and to employ such uncertainty in making optimal decisions
about computation.

Invariably, we will capture uncertainty in the language of

probabilities. Any quantity that is not known to perfect (machine)
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precision will ideally be assigned an explicit probability dis-

tribution or measure. We will study algorithms that take and

return probabilities as inputs and outputs, respectively, but

also allow for uncertain, imprecise, computations to take place

within the algorithm itself. These algorithms will explicitly be

treated as agents, intelligently making decisions about which

computations to perform. Within our probabilistic framework,

these decisions will be selected as those that minimise an expected
loss.

Along the way, we will make several foundational observa-

tions. Here is a preview of some of them, forming a quick tour

through the text:

Classical methods are probabilistic Classical methods often have

clear probabilistic interpretations. Across the spectrum of nu-

merical tasks, from integration to linear algebra, nonlinear opti-

misation, and solving differential equations, many of the foun-

dational, widely used numerical algorithms can be explicitly

motivated as maximum a posteriori or mean point-estimates aris-

ing from concrete (typically Gaussian) prior assumptions. The

corresponding derivations take up a significant part of this text.

These insights are crucial for two reasons.

First, finding a probabilistic interpretation for existing meth-

ods shows that the idea of a probabilistic numerical method

is not some philosophical pipe dream. Probabilistic methods

tangibly exist, and are as fast, and as reliable as the methods

people trust and use every day – because those very methods

already are probabilistic numerical methods, albeit they are not

usually presented as such.

Second, once phrased as probabilistic inference, the classical

methods provide a solid, well-studied and understood foun-

dation for the development of new numerical methods and

novel functionality addressing modern challenges. It may be

tempting to try and invent probabilistic methods de novo; but

the analytical knowledge and practical experience embodied in

numerical libraries is the invaluable condensed labor of genera-

tions of skilled applied mathematicians. It would be a mistake

to throw them overboard. Classical numerical methods are com-

putationally lightweight (their cost per computational step is

often constant, and small), numerically stable (they are not

thrown off by small machine errors), and analytically efficient

(they converge to the true solution at a “good” rate). When

developing new functionality, one should strive to retain these

properties as much as possible, or at least to take inspiration
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from the form of the classical methods. At the same time, we

also have to leave a disclaimer at this point: Given the breadth

and depth of numerical analysis, it is impossible to give a uni-

versal introduction in a book like this. The presentations of

classical methods in these pages are designed to give a concise

introduction to specific ideas, and highlight important aspects.

We refer interested readers from non-numerical backgrounds to

the established literature, referenced in the margins.10 10 The text contains a large number of

notes in the margins. It is generally pos-

sible to read just the main text and ignore

these offshoots. Some of them provide

short reference to background knowl-

edge for the readers’ convenience. Others

are entry points to related literature.

Numerical methods are autonomous agents We will employ the

decision-theoretic, expected-loss-minimisation, framework to

design numerical algorithms. Often, it is not just that the way

a classical numerical method combines collected floating-point

numbers into a numerical estimate can be interpreted as a pos-

terior expectation or estimate. Additionally, the decision rule

for computing those numbers in the first place also arises natu-

rally from the underlying prior probabilistic model, through a

decision-theoretic treatment. Thus, such a classical numerical

algorithm can indeed be interpreted as an autonomous agent
acting consistently with its internal probabilistic “beliefs”. At

first glance, this insight has primarily aesthetic value. But we

will find that it directly motivates novel algorithms that act in

an adaptive fashion.

Numerics should not be random Importantly, we will not identify

probabilistic uncertainty with randomness.11 Randomness is but 11 §12.3 delves into this topic.

one possible way for uncertainty to arise. This kind is sometimes

called aleatory or stochastic, in contrast to the epistemic uncer-

tainty capturing a lack of knowledge. Probability theory makes

no formal distinction between the two, they are both captured

by spreading unit measure over a space of hypotheses. But there

are some concepts, notably that of bias, which require a careful

separation of these types of uncertainty. Furthermore, random-

ness is often used within numerics today to make (tough!)

decisions, for instance, about where to make evaluations of

an integrand or objective. We will argue that randomness is

ill-suited to this role, as can be seen in describing a numerical

algorithm as an agent (whose expected-loss-minimising action

will never be returned by a random number generator). We

will show (§12.3) how non-random, expected-loss-minimisation,

decisions promise the reward of dramatically lowered compu-

tation consumption. This is not a fundamental rejection of the

concept of Monte Carlo methods, but it reveals deep philosoph-

ical subtleties surrounding these algorithms that raise concrete
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research questions.

Numerics must report calibrated uncertainty To complete the de-

scription of classical methods as probabilistic, it does not suffice

to note these methods give point estimates that arise from the

most probable or expected value, the “location” of a posterior

distribution. We also have to worry about the “width”, cap-

tured by variance and support, of the posterior around this

point estimate. We must ask whether the posterior can indeed

be endowed with an interpretation as a notion of uncertainty,

connected to the probable error of the numerical method. The

sections that study connections to existing methods will pro-

vide some answers in this regard. We will frequently argue

that certain classical methods arise from a family of Gaussian
prior measures, parametrised by either a scalar or multivariate

scale of uncertainty. All members of that family give rise to

Gaussian posteriors with the same mean (which is identical to

the classical method) and a posterior standard deviation that

contracts at the same rate, and thus only differs by the constant

scale. We will see that the contraction rate of this posterior

variance is related to classical convergence rates of the point es-

timate (in its non-adaptive form, it is a conservative, worst-case

bound on the error). We will further show that the remaining

constant parameter can be inferred at runtime with minimal

computational overhead, using either probabilistic, statistical,

or algebraic estimation rules. Throughout, we will argue that

the provision of well-calibrated quantifications of uncertainty is

crucial to numerical algorithms, whether classical or new. Such

reliable uncertainty underpins both the trust that can be placed

in numerical algorithms and effective decision-making about

computation.

Imprecise computation is to be embraced Having adopted reliable

quantifications of uncertainty, we are freed from the burden

of ensuring that numerical calculations must always be highly

precise. Not all numerical problems are equal: computation can

be saved, in lowering precision, for the least important. From our

perspective, some of the most pressing contemporary numerical

problems arise in data science and machine learning, in the

processing pipelines of big data sets. In these settings, data are

frequently sub-sampled at runtime. This introduces stochastic

disturbances to computed numbers that significantly lowers the

precision of the computation. Yet sub-sampling also drastically

reduces computational cost compared to computations on the
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entire data set. The trade-off between computation cost and

precision results in tuning parameters (e.g. specifying how large

a random sub-sample should be chosen) being exposed to the

user, a major irk to practitioners of data science. pn here offers

value in enabling optimisation of this trade-off, freeing the user

of the nasty task of fiddling with parameters.

pn consolidates numerical computation and statistical inference Both

numerical solvers and statistical-inference methods convert the

information available to them into an approximation of their

quantity of interest. In numerics, this information consists of

evaluations of analytic expressions (or functions) – e.g. of the in-

tegrand for quadrature. In statistics, it comes as measurements

(data) of observable variables. But ultimately, when viewed

through the lens of information theory, these types of informa-

tion are essentially the same – namely nothing but the output of

a (noisy) communication channel,12 either through an (impre- 12 MacKay (2003), §9

cise) function or a (noisy) statistical observation. pn exploits this

analogy by recasting numerical problems as statistical inference.

More precisely, probabilistic numerical methods work by provid-

ing a statistical model linking the accessible function evaluations

to the solution of a numerical problem, and then approximating

the solution by use of statistical inference in this model. But this

statistical model can be useful beyond the numerical problem

at hand: should the occasion arise, it can be extended to include

additional observational data containing more information. This

way, the computational and observational data (information)

can work together, in a single model, to improve the inference

of the numerical solution, and of other latent variables of this

joint model. Real payoffs of this probabilistic consolidation of

numerics and statistics have, for example, been demonstrated

for differential equations – as we will detail in §41.3.

Probabilistic numerical algorithms are already adding value The

pn approach to global optimisation is known as Bayesian opti-

misation, and, in fact, Bayesian optimisation was conceived as

probabilistic since its invention. Bayesian optimisation is widely

used today to automatically make decisions otherwise made

by human algorithm designers. Machine learning’s growth has

created a bewildering variety of algorithms, each with their own

design decisions: the choices of an algorithm and its detailed

design to be made can be framed as an “outer-loop” global

optimisation problem. This problem makes careful selection of

evaluations of the algorithm and its design primary, as the cost
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of evaluating an algorithm on a full data set is expensive enough

to prevent anything approaching exhaustive search. In finding

performant evaluations sooner, Bayesian optimisation saves, rel-

ative to the alternative of grid search, considerable computation

on evaluations. Pre-dating the recent surge of research in wider

Probabilistic Numerics, Bayesian optimisation has already blos-

somed into a fertile sub-community of its own, and produced

significant economic impact. Chapter V is devoted to this do-

main, highlighting a host of new questions and ideas arising

when uncertainty plays a prominent role in computation.

Pipelines of computation demand harmonisation A probabilistic-

numerics framework, encompassing all numerical algorithms,

grants the ability to efficiently allocate computation, and man-

age uncertainty, amongst them. A newly prominent compu-

tational issue is that realistic data processing in science and

industry happens not in a single computational step, but in

highly engineered pipelines of compartmental computations.

Each step of these chains consumes computation, and depends

on and propagates errors and uncertainties. The area of uncer-

tainty quantification13 has developed methods to study and 13 Sullivan (2015)

identify such problems, but its methods tend to add compu-

tational overhead that is not recouped in savings elsewhere.

Probabilistic numerical methods, with their ability to handle

uncertain inputs and produce calibrated uncertain outputs, offer

a natural notion of uncertainty propagation through compu-

tational graphs. The framework of graphical models provides

a scaffolding for this process. Depending on the user’s needs,

it is then possible to scale between simple Gaussian forms of

uncertainty propagation that produce simple error bars at only

minimal computational overhead, to full-fledged uncertainty

propagation, with more significant computational demands.

With a harmonised treatment of the uncertainty resulting from

each step, and the computational costs of reducing such uncer-

tainty, pn allows the allocation of computational resources to

those steps that would benefit from it most.

Open questions Finally, the text also highlights some areas of

ongoing research, again with a focus on desirable functionality

for data-centric computation.

We will not pay very close attention to machine precision,

machine errors, and problems of numerical stability. These is-

sues have been studied widely and deeply in numerical analysis.

They play an important role, of course, and their ability to cause
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havoc should not be underestimated. But in many pressing

computational problems of our time, especially those involving

models defined on external data sets, the dominant sources of

uncertainty lie elsewhere. Sub-sampling of big data sets to speed

up a computation regularly causes computational uncertainty

many orders of magnitude above the machine’s computational

precision. In fact, in areas like deep learning, the noise fre-

quently dominates the signal in magnitude. This is also the

reason why we spend considerable time on methods of low

order: advanced methods of high order are often not applicable

in the context of high computational uncertainty.

This Book and You

We wrote this book for anyone who needs to use numerical

methods, from astrophysicists to deep learning hackers. We

hope that it will be particularly interesting for those who are,

or are aiming at, becoming a developer of numerical methods,

perhaps those with machine learning or statistical training.

We invite you to join the Probabilistic Numerics community.

Why should you care?

Probabilistic Numerics is beautiful The study of pn is its own

reward. It offers a unified treatment of numerical algorithms

that recognises them as first-class citizens, agents in their own

right.

Probabilistic Numerics is just beginning to bloom The pn banner

has been borne since Poincaré, and ours will not be the genera-

tion to let it slip. Despite these deep roots, the field’s branches

are only now beginning to be defined, and we can only guess at

what wonderful fruit they will produce. In Chapter VII, we will

describe some of the many problems open to your contributions

to pn.

Probabilistic Numerics is your all-in-one toolkit for numerics Nu-

merics need not be considered foreign to those with statistical

or machine learning expertise. pn offers a machine learning or

statistics researcher the opportunity to deploy much of their

existing skillset in tackling the numerical problems with which

they are so commonly faced. pn allows the design of numeri-

cal algorithms that are perfectly tailored to the needs of your

problem.
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Probabilistic Numerics grants control of computation pn’s promise

is to transform computation, sorely needed in an age of balloon-

ing computation demands and the ever-growing evidence that

its costs cannot continue to be borne.

With this, it is time to get to the substance. The next chapter

provides a concise introduction to the most central arithmetic

framework of probabilistic inference: Gaussian probability dis-

tributions, which provide the basic toolbox for computationally

efficient reasoning with uncertainty. Readers fully familiar with

this area can safely skip this chapter, and move directly to

the discussion of the first and arguably the simplest class of

numerical problems, univariate integration, in Chapter II.
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