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Abstract

In the study of matter, both living and inanimate, the breakthrough discoveries and
most scientists’ intellectual obsessions often flow from what we call emergent behavior:
phenomena not readily predictable from a detailed knowledge of the material subunits
alone. We call systems that display emergent behavior complex adaptive matter, and
their relevant organizing principles are unique to their scales of length and time. This
issue of MRS Bulletin provides an overview of the aggregate of research on complex
adaptive matter through a survey of five examples, ranging from intrinsically disordered
electron matter in high-temperature superconductors to protein aggregates in amyloid
diseases like Alzheimer’s. We explain the philosophy and motivation for this research,
noting that the study of emergent phenomena complements a globally reductionist
scientific approach by seeking to identify, with intellectual precision, the relevant
organizing principles governing the behavior. Our authors focus on the character of
emergence for their particular systems, the role of materials research approaches to the
problems, and the efforts to identify the organizing principles at work.
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Introduction

In the study of matter, both living and
inanimate, the breakthrough discoveries
and most scientists” intellectual obsessions
often flow from what we call emergent
behavior: phenomena that owe their exis-
tence to interactions between many sub-
units, but whose existence cannot be
deduced from a detailed knowledge of those
subunits alone. A classic scientific ques-
tion that illustrates this notion of emergence
is how can an assembly of molecules (us)
actually know just what a molecule is?
Surely, consciousness and cognition are
emergent phenomena. As another example,
consider high-temperature superconduc-
tivity, a phenomenon that has been known
for nearly two decades, but that still
eludes a comprehensive understanding. No
quantum mechanical calculations pre-
dicted the existence of this remarkable
phase of matter, and to date, no micro-
scopic calculations or numerical simula-
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tions have conclusively post-dicted it,
either, despite the efforts of many brilliant
minds working on the problem.

We call materials exhibiting emergent
behavior complex adaptive matter, and their
relevant organizing principles are charac-
terized by given scales of length and time.
This issue of MRS Bulletin is organized
around the research problems in this
area and the general theme of emergent
phenomena in matter, rather than a spe-
cific class of material or materials-related
problems.

The ordering of the articles in this issue
roughly follows a progression of length
scales, from atomic-scale modulation of
electron density in the cuprate supercon-
ductors to the large-scale protein aggre-
gates visible in the brains of victims of
amyloid diseases such as Alzheimer’s. In
each case, our authors have focused on the
character of emergence for their particular
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systems, the role of materials research ap-
proaches to the problems, and the efforts
to identify the organizing principles gov-
erning these phenomena.

Before we turn to overviews of the indi-
vidual articles, we should explain our choice
of terms as well as the philosophy behind
the study of complex adaptive matter. We
ask the indulgence of the reader for this
philosophical excursion.

Complex Adaptive Matter and
Emergence: Terms and
Philosophy

In a very real sense, emergence repre-
sents a democracy of scale: no length scale,
time scale, or particle is more fundamental
than any other."** For example, the study of
the properties of electrons in isolation is a
wonderful research area, but one that has
not turned out to be a sufficient guide to
understanding the electronic properties of
the cuprate superconductors or the so-
called heavy fermion materials that are
discussed in this issue. The reason is that
collections of atoms and electrons gener-
ate new states classifiable by momentum,
energy, and other familiar quantities that
sometimes have little obvious relation to
the individual particles. Hence, a full in-
tellectual appreciation of emergence re-
quires a complement to the reductionist
dream of breaking matter into its most
fundamental pieces and reassembling them
to gain understanding.* Scientific reduc-
tionism as an approach to understanding
matter has led to remarkable perspectives
on the universe and the smallest particles
and has given us the novel realms of rela-
tivistic phenomena and the quantum. Still,
we must work with materials on a daily
basis whose properties are characterized
by new organizing principles that give rise
to quite unexpected emergent behavior that
is not manifestly connected to, say, quarks
or superstrings.®

To illustrate what we mean by this, we
note, for example, that there is no auto-
matic way to design novel electronic ma-
terials by merely coding the details of the
atoms into a computer and solving the
Schrodinger equation; rather, the skilled
electronic-structure theorist must think
deeply for each new system and use the
Schrodinger equation to that end. Simi-
larly, we have been unable to design a
functional protein molecule merely by try-
ing out amino acid sequences and inte-
grating equations of motion in time for the
atoms according to Newton’s laws and
atomic force models. Even some of the
most successful practitioners of scientific
reductionism acknowledge that it doesn’t
function fully on its home turf: many par-
ticle physicists adopt the central goal of
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describing phenomena at particular length
and time scales by categorizing them under
various “effective field theories.”®

Accepting emergence, then, requires
scientists who work on the fundamental
properties of matter to humbly re-engage
the oldest traditions of science. We must
emphatically state that a focus on complex
adaptive matter should not be construed
as a rejection of reductionism per se, but
rather as a response to the limitations of a
global reductionist approach. By global re-
ductionism, we mean the historic drive to
continue to break matter into smaller and
smaller pieces with the assumption that
knowledge of the pieces can be reassem-
bled into an understanding of the whole
system at larger length scales. Indeed, we
must acknowledge the primacy of experi-
ment in producing new knowledge and
direct our hypothesis-forming and theo-
retical energies toward local reductionism:
identifying the key organizing principles of
the given complex adaptive material be-
fore us, at its relevant length and time scales,
armed with lessons derived from cen-
turies of success of a global reductionist
approach.

Global reductionism provides, for ex-
ample, some organizing principles that
transcend length scales, such as conserva-
tion laws. Because there are conservation
laws for charge that permeate all length
scales, it is helpful to know that quarks
carry multiples of one-third the electron
charge to assemble a predictive model of
hadrons such as the proton. Similarly, be-
cause electrons carry quantized charge and
magnetic moments (spin), we can use this
fact to confidently characterize the com-
posite “particles” called Cooper pairs of
electrons that condense in the supercon-
ducting state or the particle-hole excitons
in semiconducting materials in terms of
their spin and charge states.

Of course, the development of quantita-
tive descriptions of particular kinds of ma-
terials (as opposed to the global reductionist
goal of all of matter) is a longstanding tra-
dition for materials scientists and engineers.
We would hope that our work builds on
this tradition by fulfilling the criterion of
success applied to the most celebrated
reductionist theories, such as Darwinian
evolution and Newtonian mechanics: they
are themselves emergent marvels in giv-
ing back far more numerous predictions
of phenomena than the observations of
the actual phenomena that led to their
formulation.

It is fair to ask whether emergence is
inadvertent, in that human frailty prevents
us from predicting some phenomenon
beforehand that is, with some hindsight,
knowable in principle. The other more
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dramatic possibility is that emergence is
intrinsic: no current or future methodol-
ogy could enable us to make the leap from
well-understood phenomena at one length
scale to imperfectly understood phenom-
ena at another length scale, meaning that
new concepts and methods are the only
route to developing understanding. The
honest answer is this: it doesn’t matter!
Our duty as researchers on complex adap-
tive matter is to seek discovery and new
organizing principles even if we discover
after the fact that some existing theory
might have predicted them.

As an example of the limits of global re-
ductionism, consider the ab initio predic-
tion of protein structure. If we first seek
to solve the non-relativistic Schrodinger
equation relevant at the atomic scale ex-
actly for all the particles in the 42-amino-
acid peptide implicated in the amyloid
plaques of Alzheimer’s disease, for ex-
ample, we can forget about it without rad-
ical breakthroughs in computation. In the
space of many-body wave functions, the
basis set size (number of relevant coordi-
nate axes) explodes at a faster than expo-
nential rate with molecular size, dictating
an unattainable time scale for solution.
With approximate methods, such as den-
sity functional theory, overlaid with fur-
ther approximations, we can achieve
“order N” scaling” for the solution time for
the ground-state energy, where N is the
number of electrons. However, it remains
difficult to sample excited-state energetics
with such schemes, which limits a full
study of protein folding. Hence, there is
little doubt that without a breakthrough
in, say, quantum computing, existing para-
digms render an ab initio prediction of
folded protein structures unobtainable,
placing protein folding, in that sense, in
the category of intrinsic emergence. At the
same time, employing electronic-structure
programs to thoughtfully study the prop-
erties of subunits of proteins can be a very
useful exercise.

If we content ourselves with treating
the peptide classically, writing down ap-
proximate force laws for the atoms, and
integrating their motion subject to Newton’s
laws (using molecular dynamics programs,
such as CHARMM?® or AMBER’), we find
that cleverness can currently carry com-
puter simulations into the time realm of
hundreds of nanoseconds for large pep-
tides'® and hundreds of microseconds for
small ones," sufficient to find final folded
structures in some cases. However, there
is considerable evidence that the reconfig-
uration time of large proteins and pep-
tides involved in amyloid diseases can be
on the scale of seconds, many orders of
magnitude outside the current limits of
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computation for all-atom simulations.
Moreover, the alert reader will already
have noted that all-atom molecular dy-
namics in this form already implicitly
abandons the dream of global reduction-
ism, since the force fields that are used are
by necessity semi-empirical, often biased
toward particular structures that we know
well and that are based upon ambient
physiological conditions. This discussion
of the fully classical approach to protein
folding also supports the view of protein
folding as an example of intrinsic emer-
gence.

Protein folding also allows us to explain
the depth of meaning and precision in the
words “complex adaptive matter.” There
is no doubt that proteins are complex
systems, compared with the most studied
forms of inanimate matter such as mon-
atomic elemental solids. The chemical di-
versity of the genetically coded amino
acids, the ability to put them together in
long heterogeneous sequences, and the
receptiveness of many proteins to “post-
translational modification” after synthesis
by attachment of non-amino-acid-based
molecules (e.g., sugars or transition-metal
complexes) certainly must be called “com-
plex” by any observer. The great ingenuity
of materials synthesists have given us near-
rivals in complexity such as large-unit-cell
superconductors, colossal magnetoresis-
tance materials, zero-thermal-expansion
materials, and multiferroics (materials
with, e.g., ferroelectric and ferromagnetic
order).

By “adaptive” here, we mean that these
complex materials may adopt a variety of
phases and yet robustly resist external
perturbations within a given phase. In this
sense, adaptive matter behaves like a liv-
ing organism, with identifiable, unique
properties and operational states that are
robust against all but the most severe ex-
ternal perturbations. Within the language
of the renormalization group theory of
critical phenomena, the phases are said to
be governed by “fixed-point Hamiltoni-
ans”'? that are energy functionals of the
system, unchanged under a suitably de-
fined rescaling of the volume. The signifi-
cance of this rather esoteric language is
that the properties of a system right at a
critical point are unchanged at different
length scales, as in the fluctuation spec-
trum of a liquid—-gas mixture displaying
critical opalescence. The renormalization
group theory shows that these special crit-
ical points can govern the behavior of a
system over a wide range of materials and
thermodynamic parameters. In recent
years, a broader terminology has been de-
veloped to characterize systems that may
be in or out of equilibrium and are not

MRS BULLETIN e VOLUME 30 ¢ JUNE 2005


https://doi.org/10.1557/mrs2005.118

Complex Adaptive Matter: Emergent Phenomena in Materials

macroscopically large. When they exhibit
spatio-temporal phenomena that enjoy
similar “protection” against perturba-
tions, they are called protectorates.>?

Turning back to protein matter for a
moment, the fact that many proteins with
very different sequences have the same
function suggests that well-folded biolog-
ical macromolecules may be classifiable
by this notion of protectorates, a point that
is worthy of further study. New protec-
torates seem to emerge on the nanoscale in
inanimate materials as well; there are the
famous examples of highly catalytic gold
nanoparticles” and ferroelectric niobium
nanoparticles," as well as manifold ex-
amples of structures stabilized on the nano-
scale that cannot be observed in bulk.”

A beautiful aspect of the notion of the
protectorate is that multiple-dimensional
parameter spaces describing the energy
of the system essentially collapse to low-
dimensional spaces, so that if you find one
mathematical model that happens to fall
in the range of validity of a protectorate,
you have found a good enough descrip-
tion of the phenomena. That is, while it
may be true that, say, three-atom, four-
atom, or five-atom interactions are in a
literal sense present for a solid, those in-
teractions can be mathematically irrele-
vant for a description of a phase of interest
in the material. For example, the
Bardeen—Cooper—Schrieffer (BCS) theory
of ordinary superconductors needs but
three parameters to describe the super-
conducting state: a set of electron-like,
quantum “quasi-particle” states near the
highest filled state of the metal; an energy
gap for the excitation of quasi-particles
out of the superconducting state; and a pa-
rameterization of the net attractive inter-
action between these quasi-particles, which
induces them to “pair.”'® Many magnets
can be characterized almost completely by
a handful of coupling parameters between
localized magnetic moments. In these ex-
amples, the language of the renormaliza-
tion group renders the protectorate concept
quantitatively precise, provided that the
material is in thermodynamic equilibrium
and contains large numbers of interacting
particles. In the broader space of out-of-
equilibrium and nanoscale materials, we
do not yet have such rigor, but there are
many hints of protectorate-like behavior.

At this point, the reader is perhaps
ready to turn from such philosophical
considerations and ask, “OK, so what is
complex adaptive materials research in
practice?” What we have observed is that
complex adaptive materials research is it-
self an emergent process, organically
driven by the needs of the participating
scientists. We have noticed that complex
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adaptive materials typically fall at the
boundaries between the traditional disci-
plines, demanding “cross-pollinating” col-
laborative study by physicists, chemists,
materials scientists, engineers, and biolo-
gists. While discovery is experimentally
driven (as it always has been in science),
theoretical and computational scientists
steeped in reductionist tradition can still
play extraordinarily useful roles in formu-
lating precise descriptions of organizing
principles.

ICAM and the Articles in This Issue

To facilitate interaction among the
diverse disciplines that feed into this
area, an organization has emerged: the In-
stitute for Complex Adaptive Matter
(ICAM, see http://icam.ucop.edu and
Reference 17), whose form continues to
evolve organically. The articles presented
here either are derived from or have fig-
ured prominently in ICAM-sponsored
workshops.

Our first article, by Schmalian and
Wolynes, discusses the notion of “elec-
tronic mayonnaise,” a general theoretical
scenario for inducing intrinsic electronic
heterogeneity, which was recently discov-
ered experimentally in the cuprate super-
conductors as discussed in the second
article, by Slezak et al. The terminology
refers to the well-known microscopic basis
for the microemulsion we call mayon-
naise: oil and vinegar, which would prefer
not to mix, are held together by am-
phiphiles (supplied by lecithin from egg
yolk) that are hydrophobic on one side
and hydrophilic on the other. “Electronic
mayonnaise” describes the phenomenon
of different electronic phases such as anti-
ferromagnetism (in which magnetic mo-
ments alternate in direction from site to
site) and charge doped states (which can
be either metallic or have ordered insulat-
ing electronic density) coexisting via a
self-generated amphiphile-like crossover
region. Similar to mayonnaise, the antifer-
romagnetism (“oil”) and the charge doped
phase (“water”) can coexist in highly
complex morphologies. The key is having
rather long-range interactions (found in
the charged regions, for example, due to
unscreened Coulomb coupling of charges),
which serve to uniformly frustrate the or-
dering tendencies.

The idea that such disorder can be self-
generated is truly remarkable, and time
will tell whether the disorder of the super-
conducting gap discussed by Slezak et al.
is an intrinsic property of the electron sys-
tem or is driven by closely coupled atomic
disorder. Schmalian and Wolynes also
note several other analogies to micro-
emulsions, and suggest, based upon their
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work from the quantum end, the possibil-
ity of a self-generated microemulsion glass,
heretofore unseen. It appears that Schmalian
and Wolynes may have possibly found the
description of a new protectorate.

In our second article, Slezak et al. de-
scribe how they have used ultralow-
temperature scanning tunneling microscopy
(STM) to open a new window on the phe-
nomenon of high-temperature supercon-
ductivity in particular and strongly inter-
acting electronic materials more generally.
By this we mean materials in which the
average repulsive energy of electrons is
comparable with or exceeds the average
kinetic energy. These strongly interacting
materials include the cuprate high-
temperature superconductors, because
their parent phase is an interaction-driven
Mott insulator: effectively, the electrons
are in a traffic jam because of high density
and blocking of motion from a very strong
local Coulomb repulsion.

This article reports on results from tech-

nology developed in the Davis laboratory:
1. The ability to examine simultaneously
real space and Fourier-transformed STM
conductances as a function of voltage. The
former measures the local density of elec-
tronic states, and the latter provides in-
formation about the modulation of the
density of states at suitable scattering vec-
tors in momentum space. Essentially, at
various wave vectors, which span the
highest occupied Fermi surface in mo-
mentum space, standing waves of elec-
tronic density can be set up and sampled
by the STM. These improved methods
have also been used to sample checker-
board patterns of electron density with
unit cells of periodicity ~4 times the un-
derlying atomic unit cell.
2. Using STM to map out the real-space
variation of not just electronic density,
but also electronic gaps in the super-
conducting state. Perhaps the most
spectacular discovery of the group was
that for Bi,Sr,CaCu,Og,, in a range of
oxygen dopings (x) between 0.1-0.19,
there is intrinsic heterogeneity in the gap
map at the nano-scale, a completely novel
phenomenon.

This work has stimulated enormous ex-
perimental and theoretical effort, includ-
ing a re-examination of what we know
about other electronic materials. It pro-
vides perhaps the clearest example of why
the study of the emergent properties of
complex adaptive matter is (and must be)
experimentally driven.

In our third article, three examples of re-
cently discovered emergent phenomena in
strongly interacting electron materials are
discussed by Curro et al.; their identifica-
tion of scaling behavior in these systems
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makes it possible to establish the magnetic
origin of the emergent phenomena:

1. Emergent scaling of heavy electron itiner-
ancy. Heavy electron metals are lan-
thanide/actinide intermetallics such as
Ce,La;_,Colns, so called because they be-
have as though their mass is 100-1000
times enhanced over free electrons. Al-
though these electrons are almost local-
ized, in terms of their enormous effective
mass (infinite mass implies localization),
they remain itinerant, as do the charge car-
riers in any simple metal like aluminum,
free to roam through the entire sample.
The open f shells display local moment be-
havior at high temperature, evidenced by
a Curie-Weiss-like magnetic susceptibility
characteristic of immobile electrons, and
itinerant behavior at low temperature,
where the magnetic susceptibility looks
like an enhanced metallic Pauli (constant)
behavior. The dividing point in tempera-
ture between these regimes is called the
Kondo temperature scale (Tx). This Kondo
scale appears both for a concentrated lat-
tice limit (x = 1) and for a dilute limit (x
tending to zero). Analysis of nuclear mag-
netic resonance (NMR) Knight shift data
for heavy electron alloys with variable x
shows a “two-fluid description” to be ap-
propriate. In this analysis, a distinct tem-
perature scale (T*) emerges in the fully
concentrated limit describing itinerant
electrons and associated with intersite
magnetic interactions. The second “fluid” is
described as localized heavy electrons as-
sociated with the dilute-limit Kondo scale.
2. Layered heavy electron superconductors act-
ing like high-temperature superconductors.
One of the great surprises of heavy elec-
tron metals is that despite the near-
localization of the electronic quasi-particles,
as measured by their huge mass, these
same electrons can pair and induce super-
conductivity at low temperatures. By
measuring and analyzing the NMR spin
lattice relaxation rate, they show a
common feature of the cuprate high-
temperature superconductors and a class
of layered cerium and—quite unex-
pected!—plutonium heavy electron su-
perconductors: the spin lattice relaxation
rate, which probes the loss of nuclear po-
larization to the electrons, is a function of
temperature T/T. , where T, is the transi-
tion temperature to the superconducting
state. The same function describes both
classes of materials, and the scaling de-
scription works out to 3—4T.. The analysis
suggests (1) a common origin of attractive
electron pairing via antiferromagnetic cor-
relations, and (2) that the heavy fermion
superconductor’s pairs have an anisotropic
energy gap (d-wave character) like their
high-temperature cousins.
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3. Scaling analysis of pseudogap behavior
in high-temperature superconductors. The
cuprate superconductors can be doped by
varying their oxygen content, with an op-
timal oxygen concentration yielding the
highest T.. The magnetic susceptibility of
these materials below the optimal doping
shows “pseudogap” behavior, achieving a
peak at a temperature T* (not to be con-
fused with the heavy electron scale just
described) and then decreasing rapidly
with temperature. Curro et al. summarize
experimental data from a variety of
probes (NMR, inelastic neutron scattering,
angle-resolved photoemission spectra) to
argue that the pseudogap behavior in fact
corresponds to parts of the Fermi surface
of highest occupied electron states partici-
pating in a kind of “incoherent” pairing
below T*, with coherent superconducting
pairing resulting for the rest of the Fermi
surface states at T.. This work demon-
strates the quantitative power that well-
defined organizing principles can have.
In the fourth article, Ramirez examines
the organizing principles of geometric
frustration in the context of both magnetic
and structural ordering. As alluded to pre-
viously, frustration refers to the inability
of a system to satisfy all energy-lowering
interactions. For example, magnetic mo-
ments on triangular lattice elements are
generally frustrated if they experience
antiferromagnetic interactions such that
not all magnetic bonds can be satisfied.
Ramirez points out that crystalline and
well-ordered yet frustrated magnetic sys-
tems are characterized exclusively by
structures with triangular subunits. Ex-
perimentally, this frustration is character-
ized by a magnetic susceptibility that
shows a large and negative Curie-Weiss
temperature (associated with local cou-
pling) at high temperatures, but a sup-
pression or even absence of ordering
down to very low temperatures.
Frustrated systems also possess consid-
erable low-temperature entropy associ-
ated with an abundance of low-lying
equivalent states. For example, assuming
that anisotropy limits the magnetic mo-
ments to point up or down, a single frus-
trated antiferromagnetic triangle has a
ground state which is sixfold degenerate
(six states have the same energy). Indeed,
as noted long ago by Pauling, ice presents
a classically known nonmagnetic example
in which frustration is associated with the
ambivalence of proton positions in hydro-
gen bonds. Ramirez details the recent dis-
covery of a magnetic analogue to ice, a
system termed “spin ice.” He then dis-
cusses how frustration can extend to dis-
placement degrees of freedom, speculating
that the negative-thermal-expansion ma-
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terial ZrW,0Oy retains cubic symmetry to
the lowest temperatures despite having
underconstrained and nominally “floppy”
structural units. Although at present the
explicit source of frustration is a subject of
ongoing study, the relevance of geometric
frustration to this material seems very
high.

The last article in this issue, by Cox
et al., veers from studies of inanimate mat-
ter to living systems. It provides an
overview of a body of results from mate-
rials research approaches to the study of
protein aggregation phenomena seen in
amyloid disorders such as Alzheimer’s
and mad cow disease. In these diseases,
proteins misfold relative to their ordinary
monomeric forms and aggregate into
novel structures, some of which are “amy-
loid,” or starch-like, so called because of
their response to dyes that stain starch.

Postmortem studies have found in
many cases large aggregates, or plaques,
composed of one-dimensional “fibrillar”
structures of proteins. These fibrils are, in
a very real sense, protein nanotubes with a
width on the order of ~10 nm.

Whether these aggregated structures or
their precursors lead to toxicity is still
under study, and there is no consensus of
understanding on the origin of the pathol-
ogy. Because aggregation of proteins is
also observed in nonbiological environ-
ments, and because studies on living or-
ganisms suggest little biological control or
regulation of amyloidogenic aggregation,
an approach focusing on the physical and
chemical aspects of these systems is
clearly of interest and has yielded fruit.
High-resolution electron microscopy and
atomic force microscopy have provided
evidence for protein oligomers which can
be spherical, annular, or filamentary in
morphology. The annular oligomers are of
particular interest because to the extent
that they can pierce cell membranes, they
kill cells by acting as superfluous ion
pores, admitting, for example, excess cal-
cium into the cell. One suggestion is that
the fundamental aggregating unit may be
built from “left-handed B-helices,” spiral
structures of remarkably regular triangu-
lar cross section of ~1.9 nm edge length,
in which strands of peptide hydrogen
bond to neighboring strands on the trian-
gular edges. Although the authors prima-
rily focus on the protein misfolding and
aggregation discovered in diseased tis-
sues, nature has found ways to usefully
employ and control amyloid structures
(e.g., spider silk), and researchers are also
finding ways to exploit these materials in
nanotechnology (for example, by growing
extraordinarily regular nanowires inside
amyloid fibrils).
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Summary

We hope that these articles inspire dis-
cussion of and increased participation in
the study of complex adaptive matter, and
that they make it clear that those of us
who have joined such research are as
much motivated by a sense of beauty in
the discovery and observation as by po-
tential practical outcomes.

We close by recalling a parable of N.
David Mermin, whose fictional Prof.
Mozart despaired of what a global reduc-
tionist approach to matter had taught us,
apart from providing a beautiful and de-
tailed “archaeology” of the cosmos.'
Comparing the world around us to the
collected plays of Shakespeare, he sug-
gests that a global reductionist would first
try to understand correlations between
the 50,000 or so words found in the Bard’s
work. But then he or she would notice:
there are far fewer (only 26!) fundamental
letters making up those words. Certainly,
understanding the letter-letter interac-
tions would provide a detailed under-
standing of the plays! But wait: letters are
made of lines, which are still smaller in
number. Aha! On to the study of lines! But,
oh my, lines are made up of points, which
are there or not—what can be simpler
than zero or one?

In contrast, the researcher of complex
adaptive matter might first respond

“What beautiful plays!” and take it from
there.
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