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We present a framework for predicting the interactions between motion at a single scale
and the underlying stress fluctuations in wall turbulence, derived from approximations to
the Navier–Stokes equations. The dynamical equations for an isolated scale and stress
fluctuations at the same scale are obtained from a decomposition of the governing
equations and formulated in terms of a transfer function between them. This transfer
function is closely related to the direct correlation coefficient of Duvvuri & McKeon
(J. Fluid Mech., vol. 767, 2015, R4), and approximately to the amplitude modulation
coefficient described in Mathis et al. (J. Fluid Mech., vol. 628, 2009, pp. 311–337),
by consideration of interactions between triadically consistent scales. In light of the
agreement between analysis and observations, the modelling approach is extended to make
predictions concerning the relationship between very-large motions and small-scale stress
in the logarithmic region of the mean velocity. Consistent with experiments, the model
predicts that the zero-crossing height of the amplitude modulation statistic coincides with
the wall-normal location of the very large-scale peak in the one-dimensional premultiplied
spectrum of streamwise velocity fluctuations, the critical layer location for the very
large-scale motion. Implications of fixed phase relationships between small-scale stresses
and larger isolated scales for closure schemes are briefly discussed.
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1. Large-scale motion in wall turbulence

It is now clear that large-scale motion, that is, motion comprising scales larger than
δ, where δ is the boundary-layer height, channel half-height or pipe radius, plays an
increasingly important role in wall turbulence as the Reynolds number increases (Kim &
Adrian 1999; Morrison et al. 2004; Hutchins & Marusic 2007). In addition to contributing
to the total energy, evidenced by the increasingly dominant very-large-scale peak at
wavelengths of order 10δ in the premultiplied velocity spectrum, and the Reynolds shear
stress, the very-large-scale motion also appears to modulate and organize the underlying
small-scale motion. An aspect of this phenomenon is measured by the amplitude
modulation statistic R (Mathis, Hutchins & Marusic 2009a), a one-point statistic that
measures the relative placement of small-scale activity to the large-scale motion. Near
the wall, intense small-scale stresses accompany a large-scale higher momentum region
and vice versa, corresponding to R > 0, but above a certain zero-crossing height, this
relationship is reversed, R < 0. Interestingly, this height also tracks the wall-normal
location of the very-large-scale spectral energy peak (Mathis et al. 2009a). The literature
concerning amplitude modulation is extensive, thus we review here only the work directly
relevant to the present contribution.

Bandyopadhyay & Hussain (1984) and Jacobi & McKeon (2013) used cross-correlation
techniques to determine the temporal and spatial lead/lag information, respectively, related
to the large and small scales in the amplitude modulation coefficient. Chung & McKeon
(2010) found similar information from the conditionally averaged large and small scales
from LES, and Hutchins et al. (2011) from experiments.

More recently, Talluru et al. (2014) extended the conditional averaging studies of
Chung & McKeon (2010) and Hutchins et al. (2011) and earlier qualitative observations
in Hutchins & Marusic (2007) to characterize amplitude modulation effects in all
three components of velocity with reference to the streamwise large-scale velocity.
Ganapathisubramani et al. (2012) and Baars et al. (2015) inferred a coincident frequency
modulation effect.

Schlatter & Örlü (2010) and Mathis et al. (2011) observed similarity between the
amplitude modulation statistic and the skewness of the streamwise velocity fluctuations,
at least outside of the near-wall region; Duvvuri & McKeon (2015) derived an exact
analytical relationship between these two quantities and described it in terms of
phase relationships and interactions between triadically consistent scales. The amplitude
modulation coefficient can be interpreted as a dot product between the large-scale signal
and the component of the envelope of small scales with the same frequency content, as
noted by Chung & McKeon (2010), such that as its varies from 1 to −1 the magnitude
of the relative phase between large and small signals changes from 0 to π, with a zero
amplitude modulation coefficient corresponding to signals that are π/2 out of phase. This
interpretation will prove central to the work that follows herein. Jacobi & McKeon (2013)
demonstrated that the amplitude modulation coefficient is dominated by the influence of
the very-large-scale motions (VLSMs) by using cross-spectral analysis in a canonical zero
pressure gradient turbulent boundary layer.

In terms of modelling the amplitude modulation effect, Marusic, Mathis & Hutchins
(2010) extended physical observations to provide predictions of near-wall activity based
on measurements further from the wall, while Inoue et al. (2012) have utilized this model
in combination with a large eddy simulation to extrapolate the behaviour of the streamwise
velocity fluctuations to very high Reynolds numbers. Chernyshenko, Marusic & Mathis
(2012) have given a theoretical description of the effect of the large scales on the small
scales in terms of a quasi-steady modulation of skin friction and small-scale activity, and
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Interactions between scales in wall turbulence

Mathis et al. (2013) extended these analyses to predict the time-varying skin friction from
off-wall measurements.

McKeon & Sharma (2010) and subsequent works by those authors and others presented
a resolvent analysis in wall turbulence (in the former work in turbulent pipe flow) that
predicts, amongst other things, important features of large-scale motion including scaling
behaviour and physical structure. The energetically dominant structure is proposed to
be controlled by the location of the critical layer, yc, identified as the location where
the local mean velocity is equal to the disturbance convection velocity. The predicted
physical structure of the very-large-scale motion in the log region – weak upright regions
of wall-normal momentum and inclined regions of approximately uniform streamwise
momentum which have the potential to organize vortical structure (Sharma & McKeon
2013) – are also in agreement with particle image velocimetry visualizations (e.g. Adrian,
Meinhart & Tomkins 2000) and conditional averaging, (e.g. Hutchins & Marusic 2007;
Chung & McKeon 2010; Hutchins et al. 2011).

Recently, Dawson & McKeon (2019) developed a semi-analytical procedure for
approximating the shapes of the leading (most amplified) resolvent modes in quasi-parallel
shear flows by consideration of wavepacket pseudoeigenmodes. Truncated asymptotic
expansions of Airy functions were shown to provide an accurate representation of mode
shapes associated with an approximation to the resolvent operator. Thus a template
function for the wall-normal shape variation, a Gaussian amplitude profile with associated
phase shift, with constants that can be determined by optimization can be used to give
an excellent approximation to resolvent modes without the need for the computational
cost associated with the discretization, matrix inversion and singular value decomposition
steps in the traditional resolvent analysis. While this approach reduces computational cost,
in this work the semi-analytical form for resolvent modes is of importance.

Extending the transfer function concepts underlying the analysis of McKeon & Sharma
(2010), and the treatment of the nonlinear forcing summarized in McKeon, Sharma &
Jacobi (2013), we present an analytical framework to predict the interactions between
scales in wall turbulence that is capable of linking all three components of large- and
small-scale velocity signals. To our knowledge, this is the first such approach derived
directly from the full Navier–Stokes equations. Our focus in this paper is on streamwise
velocity interactions and the modulating influence of large-scale motion in the log region
on the underlying small-scale motion; however, the results have a broader reach in terms
of a fundamental restriction on triadic interactions at all scales. The work supports the
interpretation of the amplitude modulation coefficient as a reflection of the relative spatial
organization of turbulent scales.

2. Framework for scale interactions

2.1. Approach
The incompressible Navier–Stokes equations are non-dimensionalized with friction
velocity uτ and outer length scale, h, corresponding to a half-channel height. The friction
velocity is the relevant near-wall velocity scale in the region of the logarithmic layer which
will be the focus of subsequent analysis. Following Reynolds & Hussain (1972), we then
decompose the flow field, described by the velocity ui and kinematic pressure p, into the
mean ( ), isolated single scale (̃ ) and remaining turbulent ( )′ components

ui = ūi + ũi + u′
i, p = p̄ + p̃ + p′. (2.1a,b)

Here, the isolated scale consists of a single turbulent scale and all other remaining
turbulent activity is lumped into u′

i. Such a decomposition is most easily conceptualized
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by invoking a narrow bandpass spectral filter around the wavenumber k f ; in this case the
scale is cleanly defined in a spectral sense, but requires careful connection to observed
very-large-scale motion. Here, we will adopt the simple narrow bandpass Fourier mode
representation, but we argue later in § 3.1 that this is sufficient for explaining the
observed amplitude modulation coefficient and the underlying phase relationships. Thus,
ũi comprises modes with wavenumber k f while u′

i comprises modes with wavenumbers
other than k f . In what follows, we will define k f = (kx, kz, ω), where kx and kz are
real wavenumbers in the two spatial (wall-parallel) directions and ω is the real angular
frequency, effectively a single scale in a triple Fourier decomposition. Substituting (2.1a,b)
into the Navier–Stokes equations, that is,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x2
j
,

∂ui

∂xi
= 0, (2.2a,b)

where Re ≡ uτh/ν and ν is the kinematic viscosity, and then applying the narrow bandpass
filter at k f , we obtain the dynamical equation for the isolated-scale motion at k f

∂ ũi

∂t
+ ūj

∂ ũi

∂xj
+ ũj

∂ ūi

∂xj
+ ∂ p̃
∂xi

− 1
Re
∂2ũi

∂x2
j

= −∂ r̃ij

∂xj
≡ f̃i,

∂ ũi

∂xi
= 0, (2.3a,b)

where r̃ij = ũ′
iu

′
j, the filtered fluctuation of the background mean stress, r̄ij = u′

iu
′
j, at

the isolated scale (i.e. with wavenumber k f ), with contributions from fluctuations with
k /= k f . The dynamical equation for r̃ij (see Reynolds & Hussain 1972) is

∂ r̃ij

∂t
+ ūk

∂ r̃ij

∂xk
+ ũk

∂ r̄ij

∂xk
+ r̃jk

∂ ūi

∂xk
+ r̃ik

∂ ūj

∂xk
+ r̄jk

∂ ũi

∂xk
+ r̄ik

∂ ũj

∂xk
− 1

Re
∂2r̃ij

∂x2
k

= g̃ij, (2.4a)

where

g̃ij = − ∂

∂xk
ũ′

iu
′
ju

′
k −

˜
u′

j
∂p′

∂xi
−

˜
u′

i
∂p′

∂xj
− 2

Re
∂̃u′

i
∂xk

∂u′
j

∂xk
. (2.4b)

Note the slight difference between the equivalent phase-averaged results of Reynolds &
Hussain (1972) and the effective Fourier decomposition of (2.3) and (2.4), namely, that
the difference and product terms, i.e. the mean and 2k f contributions, arising from phase
averaging do not appear here as only the fluctuations at a single scale are being considered.
The left-hand side of (2.4a) contains only linear terms, but the unclosed terms on the right
renders it intractable for analysing the interaction between the isolated-scale motion ũi and
stress fluctuation r̃ij at first glance.

The linear operator containing the mean turbulent velocity profile in (2.3), the resolvent,
describes many essential features of wall turbulence, including very-large-scale motion. In
so-called resolvent analysis, the right-hand side, f̃i, is modelled as an external forcing to the
linear operator at each k f = (kx, kz, ω) combination. The linear operator then responds to
the forcing by preferentially amplifying certain modes above others. The most amplified
(first) of these ‘velocity response modes’, or the mode most receptive to disturbances, as
identified using the gain-based singular value decomposition, are then interpreted to be
the likely candidates for turbulent motion observed in nature. For the sake of brevity, the
reader is referred to McKeon (2017) for details of the full formulation of the resolvent
analysis. Channel flow is selected because the formulation for a fully developed flow is
simpler than for a spatially growing (or locally parallel) turbulent boundary layer, although
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Interactions between scales in wall turbulence

we also make a comparison with turbulent boundary-layer results, internal versus external
flow boundary condition considerations notwithstanding.

Extending the original resolvent analysis, we wish to consider the interaction between
a given energetic motion and stress fluctuation at the same scale by augmenting the linear
operator for ũi, (2.3a,b), with the linear operator for r̃ij, (2.4a). Relative to the approach of
McKeon & Sharma (2010), this constitutes adding an equation to supply the appropriate
structure for f̃i. In the same vein, we model the nonlinear and unclosed terms g̃ij as
external forcing. Owing to the increased complexity of this proposed approach, it seems
prudent to first consider a simpler version of the scale interaction equations, namely by
setting g̃ij = 0. In effect, this can be considered as retaining only the part of r̃ij that is
directly coupled to ũi; the part of r̃ij that responds to g̃ij is treated as uncorrelated to ũi
and therefore vanishes when joint statistics with ũi are taken. Further manipulation of
terms 2–4 in g̃ij is likely to result in their expression in terms of r̃ij, particularly in light of
the Biot–Savart relationship and the characterization of the pressure associated with each
response mode by Luhar, Sharma & McKeon (2014), which was shown to constitute the
fast pressure, or that part of the pressure that is directly correlated with the mode velocity
field, and the observations of amplitude modulation of the dissipation, the last term in g̃ij,
by Guala, Metzger & McKeon (2011). However, this is beyond the scope of the current
problem. We focus on this simplified problem with a view to demonstrating the origin of
the amplitude modulation of the small scales by the large scales described in § 1.

Our approach is to formulate and analyse the transfer function between the isolated
scale and small-scale stress implied by (2.4a). In § 3, we formulate the transfer function
between the analytically inspired modal formulations of small-scale stresses and isolated
scales in the vicinity of a critical layer, and determine the phase difference between
the two modes. In light of the agreement between our analysis and observations, we
extend the modelling approach to make predictions concerning the relationship between
very-large-scale motions and small-scale stress in the logarithmic region of the mean
velocity in § 4.

2.2. Set-up for wall turbulence
Although formally applicable only for channel flows, the following analysis can also
be extended to pipe and boundary-layer flows under the parallel flow assumption.
A comparison between flows is likely to be most valid in the near-wall log and viscous
regions, that is, where differences in flow geometry are negligible. We specialize the linear
system, (2.4a) with g̃ij = 0, to wall turbulence

ū = ū( y), {v̄, w̄} = 0, (2.5a,b)

where x, y and z or u, v and w are the streamwise, wall-normal and spanwise coordinates
or velocities. The mean stresses generated by the fluctuating scales are given by

{r̄xx, r̄yy, r̄zz, r̄xy} = {r̄xx, r̄yy, r̄zz, r̄xy}( y), {r̄xz, r̄yz} = 0; (2.6a,b)

the zeroes are from statistical symmetry. Velocity and stress fluctuations at the scale of
interest are written as

{ũi, r̃ij}(x, y, z, t) = {Ũi, R̃ij}( y; kx, kz, ω) exp(i(kxx + kzz − ωt))+ c.c., (2.7)

where the complex Ũi and R̃ij can be written in terms of a magnitude and phase as Ũi =
|Ũi| eiφUi and R̃ij = |R̃ij| eiφRij , and c.c. represents the complex conjugate of the preceding
terms.
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In this work, we focus our attention on (2.4a). Substituting (2.5a,b), (2.6a,b) and (2.7)
in (2.4a), we obtain for each (kx, kz, ω),

AR + BU = 0, (2.8a)

where

A = i(−ω + kxū)

⎡⎢⎢⎢⎢⎢⎣
1 0 0 2γ 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 γ 0 1 0 0
0 0 0 0 1 γ

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ − Re−1(d2 − k2)I; R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃xx

R̃yy

R̃zz

R̃xy

R̃xz

R̃yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (2.8b)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r̄xxikx + 2r̄xy d r̄xx,y 0
0 r̄yy,y + 2r̄xyikx + 2r̄yy d 0
0 r̄zz,y 2r̄zzikz

r̄xyikx + r̄yy d r̄xy,y + r̄xxikx + r̄xy d 0
r̄zzikz 0 r̄xxikx + r̄xy d

0 r̄zzikz r̄xyikx + r̄yy d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; U =

⎡⎣Ũ
Ṽ
W̃

⎤⎦ ;

(2.8c)

γ = (dū/dy)/[i(−ω + kxū)]; ( ),y ≡ d( )/dy; d ≡ d/dy; k2 = k2
x + k2

z ; and I is the identity
matrix. The denominator of γ has special significance in the vicinity of a critical layer, i.e.
the wall-normal location, yc, where the streamwise propagation velocity of a motion of
scale kf is equal to the local mean velocity,

− ω + kxū( yc) ≡ 0 such that

⎧⎪⎨⎪⎩
ū < ω/kx if y < yc,

ū = ω/kx if y = yc,

ū > ω/kx if y > yc.

(2.9)

Given kx and kz, one could, in principle, discretize d and insert Ũi and ω from an
earlier analysis (e.g. McKeon & Sharma 2010) to obtain the response R̃ij. However,
unlike the earlier analysis of the velocities, the discretization of B involves measuring
or approximating all of the average Reynolds stresses, r̄ij, also. Because it is not clear how
sensitive the relationship between U and R is to the details of the Reynolds stresses, we
approach the problem analytically, in order to draw conclusions based on a minimum of
empirical measurements while also establishing the extent to which detailed measurements
may be important for any future, discretized analysis. Here, we examine the implications of
the analytical transfer function between R and U of (2.8) by employing a semi-analytical
form for the first resolvent modes. In particular, we focus our effort on the relationship
between the streamwise velocity components, which have been the topic of extended study
through experimental observations in canonical wall turbulence, and seek to identify the
transfer function between the isolated scale Ũ and corresponding fluctuating streamwise
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Interactions between scales in wall turbulence

stress, R̃xx. Introducing a relative phase between R̃xx ≡ R̃11 and Ũ ≡ Ũ1,

R̃xx( y)

Ũ( y)
= |R̃xx( y)|

|Ũ( y)| eiϕ( y), (2.10)

where ϕ ≡ arg R̃xx − arg Ũ = arg(R̃xxŨ∗) ≡ φR − φU , where ∗ denotes the complex
conjugate. Note that the relative phase ϕ is defined with respect to the spatial variables
such that it has the opposite sense to the phase described relative to the temporal domain
in e.g. Jacobi & McKeon (2013).

2.3. Very-large-scale motion as the isolated scale, Ũ
We consider a three-dimensional isolated scale that is representative of the structure of
a VLSM and turn our attention to scale interactions occurring in the log region of wall
turbulence. Observations of VLSMs in the literature (e.g. Hutchins & Marusic 2007;
Chung & McKeon 2010; Hutchins et al. 2011) have identified the appropriate streamwise
and spanwise wavenumbers to be kx ≈ 1 and kz ≈ ±6, corresponding to wavelengths
of approximately six and one times the outer length scale, respectively, and a structure
convecting in the x-direction. The appropriate frequency (or, equivalently, convection
velocity) can be determined with reference to the channel flow results of Mathis et al.
(2009b) at Reτ = 3000. The locus of the outer (large scale) peak energy has been identified
as corresponding to y = 3.9Re−1/2

τ , although there remains some uncertainty about this
particular form (see Vallikivi, Ganapathisubramani & Smits 2015). McKeon & Sharma
(2010) have discussed the effectiveness of a single resolvent mode as a proxy for the real
VLSM; extending this approach, the location of the outer peak energy corresponds to the
VLSM critical layer, such that the convection velocity is given by the local mean velocity
at this wall-normal location.

2.4. Phase relationship between the streamwise velocity of the isolated scale and
corresponding fluctuating stress via correlation coefficients

The phase relationship between the streamwise component of the isolated scale, ũ, and
the stress fluctuation at the same isolated scale, r̃xx, can also be characterized using
experimental or numerical observations and a direct correlation coefficient (Duvvuri &
McKeon 2015; Jacobi & McKeon 2017)

Φ( y) = 〈ũ r̃xx〉〈
(ũ)2

〉1/2 〈
(r̃xx)2

〉1/2 , (2.11)

where 〈 〉 is the inner product. It can then be shown that

Φ = cosϕ, (2.12)

that is, Φ is directly related to the relative phase between R̃xx and Ũ (2.10). It does not
contain explicit information about their relative magnitudes due to the normalization, nor
the sense of the phase relationship due to the symmetry of the cosine function.

The more common amplitude modulation coefficient, R, was derived (e.g.
Bandyopadhyay & Hussain 1984; Mathis et al. 2009a) in terms of the correlation between
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a large-scale signal, uL, defined using a filter in wavenumber space at kx = kζ , where

u( y, t) = uL( y, t)+ uS( y, t), (2.13)

and the envelope, EL, of the small-scale turbulence signal, uS, filtered at the same
wavenumber, i.e.

R = 〈uLEL〉〈
u2

L
〉1/2 〈E2

L
〉1/2 . (2.14)

Section 4 describes the relationship between R, the stress fluctuation r̃xx and the
isolated scale ũ, and argues that the isolated-scale and the stress-fluctuation terms are
representative of the envelopes of large- and small-scale fluctuations. Therefore, the
analysis here in terms of Ũ and R̃xx is relevant also to the filtered, amplitude modulation
analysis.

Qualitatively, correlation coefficients such as Φ and R can be interpreted in terms of
triadically consistent scales: non-zero contributions arise only from stress fluctuations
at the wavenumber of the isolated scale in Φ, or from small-scale stress fluctuations
associated with the entire spectral content of the large-scale velocity signal, uL, in R.
To reiterate, then, the direct correlation coefficient, Φ, describes the relationship between
the isolated scale and that portion of the stress fluctuation rxx that is triadically consistent
with Ũ, namely R̃xx. By contrast, the amplitude modulation coefficient considers only the
small-scale stress component that is triadically consistent with the entire spectral content
of the large-scale signal, uL. A formal description of this interpretation is given in Duvvuri
& McKeon (2015).

3. Scale interactions for three-dimensional isolated scales

3.1. Transfer function including viscous effects
Our ultimate goal is the investigation of the amplitude modulation effect in canonical wall
turbulence. This has been shown to be dominated by the VLSM (Jacobi & McKeon 2013),
i.e. we will later hypothesize that the VLSM can be modelled by an isolated scale in
this analysis. However, we begin by considering the scale interactions corresponding to a
single, truly isolated very large scale. We focus our effort on the relationship between
streamwise velocity components, which has been the topic of extended study through
experimental observations in canonical wall turbulence, and identify the transfer function
between the isolated scale, Ũ, and corresponding fluctuating streamwise stress, R̃xx. The
transfer function indicates the relative magnitudes and phases between the isolated scale
and fluctuating stresses. In general, the phase difference between two scales can be
used to reconstruct the relative spatial orientation between them. If the orientation of an
isolated, large-scale motion, i.e. its downstream inclination angle, is known, then the phase
difference between that large-scale and another scale indicates the relative inclination of
the second scale with respect to the first. Here, the transfer function can provide a picture
of the relative spatial orientation of these large-scale motions and fluctuating stress in
wall-bounded flows.

Because the structure of the large-scale motions is hypothesized to be intrinsically
connected to the location of the critical layer for VLSMs, where the outer energy peak is
observed in premultiplied spectral maps, we focus the transfer function analysis on VLSMs
in the spatial vicinity of their critical layer.

The critical layer is the viscous region of flow that resolves the singularity in the
inviscid Rayleigh equation which occurs when the phase speed of a neutrally stable
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Interactions between scales in wall turbulence

velocity mode equals the local mean convection velocity of the flow in which it propagates.
The viscous critical layer behaviour applies to small amplitude velocity modes; for large
amplitude disturbances, nonlinear critical behaviour can resolve the singularity in the
absence of viscosity, as detailed in Haberman (1976). Therefore, we must assume that
the nonlinear forcing contained in the f̃i term in (2.3) is small. Lin (1955) showed through
asymptotic analysis that the thickness of the linear critical layer, ε, scales as (kxRe)−1/3,
thus approaching zero as (kxRe) → ∞. For convenience, we include the local velocity
gradient at the critical point, dūc, in the definition of the critical layer thickness

ε = (kx dūcRe)−1/3 . (3.1)

For large wavelength velocity modes, the critical layer forms a distinct region of the flow,
separate from the viscous wall layer.

However, because viscosity is not negligible in the critical layer, the Reynolds number
dependent terms in (2.8b) must be preserved, which means the A matrix operator acting
on the R̃ij terms is invertible upon discretization of the d operator, but no simple transfer
function between arbitrary Ũ and R̃ij can be determined analytically. In order to obtain a
transfer function applicable in the vicinity of the viscous critical layer, we must therefore
assume that the functional form of the stress fluctuations, R̃ij, is modal.

In order to approximate a modal representation of the stress fluctuations, we begin with
the representation of a single, isolated velocity scale. One such representation is given in
the work of Dawson & McKeon (2019), who showed that the leading streamwise modes
associated with the incompressible Navier–Stokes resolvent operator can be approximated
in analytical form, in the limit of long wavelength disturbances, k 
 1 (using the outer
non-dimensionalization), as

Ũ = MU exp

[
−iαU

( y − ym)

ε
− βU

(
y − ym

ε

)2
]
, (3.2)

for positive, O(1) coefficients αU = αU(kz, kz) and βU = βU(kz, kz) that depend on
the streamwise wavenumber kx and the wall-parallel wavenumber magnitude k, with
MU = MU(kx, kz) the amplitude of the mode peak; ym denotes the location of the modal
maximum, dictated by the wave speed of the mode, ω/kx. The asymptotic form of (3.2)
consists of a Gaussian profile whose width scales with the size of the critical layer, ε. This
general model was shown to be quite robust, applying over an unexpectedly large range of
streamwise wavenumbers, especially in the vicinity of the critical layer itself. However, the
model was not formally developed to describe the wall-normal velocity component, which
is needed here for formulating the fluctuating stresses, and thus further assumptions will
be necessary for this component. Other models are also possible; the work of Dawson &
McKeon (2019) is used by way of example. The validity of the following analysis depends
on this particular choice of model only insofar as the length scales associated with the
mode shapes scale on the critical layer thickness, ε.

The fluctuating stress, R̃ij, associated with the specific triadic interaction that includes
the isolated large scale, Ũ, can be constructed by multiplication of the two remaining
members of that triad, each obtained from a distinct, narrow, band-pass filter of the
governing equations. For the streamwise, normal Reynolds stress, we simply multiply two
instances of the Gaussian model in (3.2), which results in another Gaussian model for the
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stress with i = j = x

R̃ij = Mij exp

[
−iαij

( y − ym,ij)

ε
− βij

(
y − ym,ij

ε

)2
]
, (3.3)

where the coefficients αij = αij(kx, kz) and βij = βij(kx, kz) reflect the width and phase
variations of the resulting stress, which depend on the triadic composition of the two
isolated mode wavenumbers through their respective values of αU and βU .

In order to construct the R̃xy and R̃yy fluctuating stresses, we need to first modify
(3.2) to describe the wall-normal component, Ṽ . The primary distinguishing features of
the wall-normal component are: (i) the lack of phase variation across the region of the
critical layer, as discussed in more detail in § 3.2; and (ii) a taller Gaussian profile than
the streamwise component. Therefore, we assume that αV ≈ 0 and that the profile of Ṽ
can be approximated by a constant-phase Gaussian, at least in the vicinity of the critical
layer, with βV < βU to enforce a taller profile. Performing the same multiplication within
the triad described above, R̃xy takes the same form as (3.3), since the phase variation
represented by αxy is preserved by the streamwise component, and R̃yy also takes that form
but with αyy ≈ 0, since neither wall-normal component includes phase variation, and also
βyy < βxx.

We apply the formulation of R̃ij in (3.3) to show that when the viscous part of the A
matrix operator acts on R̃ij, the result is simply proportional to R̃ij itself, i.e.

−(d2 − k2)R̃ij =
[

k2 + 2
βij

ε2 +
(
αij

ε
− i

2βij

ε2 ( y − ym,ij)

)2
]

︸ ︷︷ ︸
�−2

ij ( y)

R̃ij, (3.4)

where we define a wavenumber-dependent length scale �ij to represent the local radius of
curvature of the stress profile. See figure 1 for a sketch of the physical representation of
the isolated mode and stress, which identifies the relationship between, for example, φU
and αU .

Substituting the modal form of the stress into the matrix operator A renders the system
analytically invertible and thus the transfer function is obtained by solving

R = −A−1BU, (3.5)

to arrive at the direct relation between the streamwise component of stress, R̃xx, and the
large scale Ũ. The full transfer function, written in terms of a general modal stress, is
presented in appendix A, specifically (A3).

3.2. Simplified transfer function near the critical layer
The analytical transfer function, including viscosity, is then simplified by expanding it
about a point y in the vicinity of the critical point, yc (where the local mean velocity
matches the wave speed, according to (2.9)), by writing

(−ω + kxū) ≈ kx dūcΔy = ε−3Re−1Δy, (3.6)

where y = yc + Δy, Δy/ε 
 1 and the definition of the critical layer thickness, ε, is given
by (3.1). Substituting into γ , we obtain

γ = −i dū
(−ω + kxū)

≈ −i dū
kx dūcΔy

≈ −i
(kxΔy)

yc

y
, (3.7)
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 0
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 0

V~ < 0V~ > 0
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< 0

dφV ≈ 0

(a)

(b)

(c)

dφU = – ε

αU = –
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tan θU

ε

αU

2
π–

2
π

~ ε
βU√
—

ε

αV ≈ 0

~ ε
βV√
—

ε

αxx

dφR = – ε

αxx = –
kx

tan θR

0

2
π–

2
π–

2
3π

~ ε
βxx√
—

Figure 1. A schematic of the relevant length scales associated with the large- and small-scale motions in the
vicinity of the critical layer. (a) The streamwise component of the isolated large-scale mode can be represented
by (3.2), with mode width βU and phase slope, near its centre ym of −αU/ε, resulting in a downstream
inclination θU . (b) The wall-normal component of the isolated large-scale mode. Here, the key assumption
is that the phase variation across the critical layer, dφV is negligible and that d|Ṽ|/|Ṽ| � kx. (c) The streamwise
stress component, which can also be represented by (3.3). At the wall, the streamwise stress shares the same
phase as the isolated large scale. At the critical layer, the large-scale phase is 0 and the small-scale phase is
−π/2, such that ϕ = φR − φU = −π/2, consistent with (3.14).

where we assume that the velocity profile is logarithmic and thus dū = 1/(κy) and dūc =
1/(κyc), where κ is the von Kármán constant. (dū can also be evaluated at the critical layer
itself, but we retain the y-dependence for generality.)

Near the critical layer, we also neglect the y-dependence in the stress curvature length
scale, �ij, by assuming that the critical layer occurs near the peak of the fluctuating stress
profile. For the streamwise, normal and shear stresses, this means d|R̃ij|/|R̃ij| 
 |dφRij |.
Using the analytical model in (3.3), this assumption is equivalent to the claim that the
distance between the critical layer and the modal maximum is much smaller than the layer
itself, i.e. |yc − ym,ij|/ε 
 αij/(2βij), where�y is assumed arbitrarily small, for simplicity.
For R̃yy, where αyy ≈ 0, we assume instead that |yc − ym,yy|/ε 
 √

1/(2βyy). Because
βyy < βxx, this assumption implies that the distance between the centre of R̃yy and the
critical layer may be greater than in the case of R̃xx. Applying these assumptions about
�ij, we eliminate the final term in the square brackets of (3.4) and the radius of curvature
reduces to

�2
ij = ε2

(kε)2 + 2βij + α2
ij
, (3.8)
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where �ij > 0 is now real. Assuming that (kε) is small at high Reynolds number (i.e.
kzε 
 1 for small kx) and that the stress modes scale on the critical layer thickness, such
that the αij and βij parameters are O(1), then �ij ∝ ε.

The resulting transfer function still depends on three distinct modal scales, �xx, �xy and
�yy, as shown in full in appendix A (A4). However, for algebraic simplicity, we assume that
the �ij length scales are of similar magnitude and thus let �xx = �xy = �yy = �, although
this assumption can easily be relaxed. The analytical transfer function for the streamwise
velocity components expanded in the vicinity of critical layer, is then

− 1
ε2Re

[
i
Δy
ε

+ ε2�−2
]

R̃xx =

⎡⎢⎢⎣2ikxr̄xx + 2r̄xy d −
2
(

1
kxε

)(
yc

y

)
(ikxr̄xy + r̄yy d)

i
Δy
ε

+ ε2�−2

⎤⎥⎥⎦ Ũ

+

⎡⎢⎢⎢⎣r̄xx,y −
2
(

1
kxε

)
yc

y
(ikxr̄xx + r̄xy d + r̄xy,y)

i
Δy
ε

+ ε2�−2
+

2
(

1
kxε

)2 (yc

y

)2

(2ikxr̄xy + 2r̄yy d + r̄yy,y)[
i
Δy
ε

+ ε2�−2
] [

i
Δy
ε

+ ε2�−2
]

⎤⎥⎥⎥⎦ Ṽ,

(3.9)

where we observe that the streamwise stress depends on both streamwise and wall-normal
large scales, and their spatial derivatives, whereas the experimental measurements
typically report the connection between the streamwise components only. To simplify the
analysis, we determine the conditions under which the Ṽ contribution to the stress can be
neglected, by comparing the dominant term in Ṽ with the least dominant term in Ũ, as
elaborated in appendix A, resulting in four conditions

kxr̄xx

r̄yy,y
� 1, (3.10a)

1
kx

d|Ṽ|
|Ṽ| � 1, (3.10b)

tan θU �
∣∣∣∣ r̄xy

r̄xx

∣∣∣∣ , (3.10c)∣∣∣∣∣ Ṽ

Ũ

∣∣∣∣∣ 
 (kxε)
2
∣∣∣∣ r̄xx

r̄xy

∣∣∣∣ . (3.10d)

Condition (3.10a) indicates that the Reynolds stresses have negligible spatial variation
in the vicinity of the critical layer, which is consistent with Townsend’s equilibrium layer
argument within the logarithmic region of the velocity profile. From the boundary-layer
measurements of Jacobi & McKeon (2013) at Reτ = 910, the ratio r̄xx/r̄yy,y ≈ 1.5 near the
critical layer, and thus this is satisfied for all kx � 0.67.

Condition (3.10b) indicates that the length scale associated with wall-normal changes in
Ṽ is no smaller than the wavelength of the isolated disturbance, which is already satisfied
for most values of kx by the earlier assumption that the peak fluctuating stress occurs near
the critical layer.

Condition (3.10c) depends on the large-scale inclination angle, θU , and the ratio of the
Reynolds stresses. The ratio of the Reynolds streamwise normal stress to other Reynolds
stress components, |r̄xx/r̄xy| or |r̄xx/r̄yy|, is typically O(10), as reported in Fernholz &
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Finley (1996). And the typical streamwise inclination angle, θU ≈ 15◦, as reported in
Marusic & Heuer (2007), thus tan θU ≈ 0.27, satisfying this requirement.

This leaves just the condition (3.10d) to enforce. Substituting the definition of ε and
assuming that, in the logarithmic layer, dūc ≈ (κyc)

−1 and yc ≈ 3.9Re−1/2, and again that
|r̄xx/r̄xy| ∼ 10, yields ∣∣∣∣∣ Ṽ

Ũ

∣∣∣∣∣ 
 10k4/3
x Re−1. (3.11)

For kx = 1 and Re = 910 (for later comparison with Jacobi & McKeon (2013)), this means
the ratio of wall-normal to streamwise modes must be less than approximately 0.01, which
is almost but not exactly satisfied in numerical calculations of the resolvent modes based on
empirical mean velocity profiles, and in the forced modes observed in Jacobi & McKeon
(2017). Formally satisfying the requirement would require large scales of the order of three
outer units, kx = 2π/3, with Re ≈ 1000, or larger scales at still smaller Reynolds numbers.
Note, however, that this requirement is met by definition for resolvent modes based on the
Squire operator rather than the full Orr–Sommerfeld operator, as discussed, e.g. in Dawson
& McKeon (2019). Therefore, we proceed with some caution in neglecting all of the terms
pre-multiplying Ṽ in (3.9) and presenting the analysis of the transfer function in terms of
only the streamwise component, Ũ.

The criteria for neglecting the Ṽ contribution to the transfer function listed in (3.10) also
implicitly relied on an additional assumption, that d|Ũ|/|Ũ| 
 |dφU|, i.e. that the critical
layer occurs very near the maximum in the isolated-scale mode shape. However, this is
really the very same assumption we already applied above, with respect to the maximum
in the stress profile, where we assumed that d|R̃xx|/|R̃xx| 
 |dφR|. The result of this
assumption is that the spatial derivatives dŨ can be assumed to represent predominantly
the variation in large-scale phase, dφU and not magnitude.

The simplified, streamwise transfer function is finally separated into real and imaginary
parts, shown in detail in appendix A. A final simplifying assumption is applied to the
transfer function: terms of O(kxε) compared to the leading-order terms are neglected, to
yield

R̃xx

Ũ
=
εRe

(
−2r̄xy − 2r̄yy

dφU

kx

)(
yc

y

)
[(

Δy
ε

)2

+ (
ε
�

)4

]2

{
−2

(
Δy
ε

)(ε
�

)2 + i

([(
Δy
ε

)2

−
(ε
�

)4
])}

,

(3.12)

where we assume that dφU < 0 to represent downstream inclined structures and r̄xy < 0
following the usual convention for attached flows. Therefore, (−2r̄xy − 2r̄yy(dφU/kx)) > 0.
All of the assumptions used in this simplified analysis and the more general treatment in
the next section are summarized in table 1.

The sense of the phase, ϕ, is determined by the sign of the imaginary part of the transfer
function, which depends on the size of the region of interest, Δy surrounding the critical
layer as well as the ratio of the critical layer scaling and stress mode scaling, such that

Δy
ε
<
(ε
�

)2 ⇐⇒ ϕ < 0. (3.13)
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General assumptions and restrictions:
Upper branch critical layer scaling: ε = (kx dūcRe)−1/3

Velocity linearization at critical layer: ū( y) ≈ c + dūcΔy
Stress appears in modal form: d2R̃ij = R(ij)2 ( y)R̃ij

Modal length scale: �−2
ij = −[R(ij)2 ( y)− k2]

Quasi-isotropic modal scales: � ≈ �xx ≈ �xy ≈ �yy
Modal scales similar to critical layer thickness: � ∼ ε (equivalently αij, βij ∼ 1)

Neglect y-dependence in �:
d|R̃xx|
|R̃xx|


 |dφR|

Neglect wall-normal component: | Ṽ

Ũ
| 
 (kxε)

2| r̄xx

r̄xy
|, see (3.10)

Evaluate phase near modal maximum:
d|Ũ|
|Ũ| 
 |dφU |

Neglect small wavenumbers at high Reynolds number: (kxε) 
 1

Table 1. Definitions and assumptions made in the analysis of the transfer function. See figure 1 for a
schematic view of the quantities involved.

According to the analytical model in (3.8), � is the same order of magnitude but
nevertheless smaller than ε. Therefore, for any finite region of interest Δy � ε, the phase
is predicted to be negative.

More specifically, we note that the negligible real part of the transfer function (3.12)
changes sign across the critical layer, as Δy changes sign, and the dominant imaginary
part maintains a negative sign everywhere in the vicinity of the critical layer. Therefore,
the phase difference between the stress and the isolated large-scale motions is predicted
to hover about −π/2, crossing the negative imaginary axis, from the fourth quadrant to
the third quadrant, as the critical layer is traversed from below. As y approaches yc from
below, i.e. y → y−

c , the phase ϕ approaches −π/2 from less negative phase angles, i.e.
ϕ → −π/2+. And the reverse is true when approaching the critical layer from above,
according to{

ϕ → −π/2+ as y → y−
c ,

ϕ → −π/2− as y → y+
c ,

where ϕ = arg R̃xx − arg Ũ = φR − φU. (3.14)

At the wall, the stress and large scales are identically in phase (since they are both trivially
zero) and far from the wall, they have been observed to appear out of phase, likely due to
intermittency effects (Mathis et al. 2009a). Therefore, the phase difference at the wall
is φ( y → 0) = 0 and the phase difference near the channel centre (or boundary-layer
edge) is expected to approach φ( y → 1) = ±π, as illustrated in figure 1(a,c). The sign
of the phase differences in purely in-phase or out-of-phase orientations is ambiguous and
must be established at some intermediate wall location. The present result that, about the
critical layer, the phase hovers about −π/2, thus establishes the path by which the phase
progresses from the wall to the outer flow, through increasingly negative phase differences,
such that

ϕ : 0 → −π/2 → −π as y : 0 → yc → 1, (3.15)

consistent with previous observations that the small-scale fluctuations lead the large scales
in spatial orientation in the flow.

In the limit as the Reynolds number increases, Re → ∞, the thickness of the viscous
critical layer ε → 0, and thus we can calculate the inviscid limit for the phase relationship
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between large-scale motions and the fluctuating stresses as

lim
ε→0

Δy/ε
(ε/�)2

= Δy lim
ε→0

�2

ε3 > 1, (3.16)

assuming fixed, finite Δy and asymptotically similar ε ∼ �. Therefore, in the inviscid limit,
there is no finite region Δy for which the phase is negative, in contrast to the viscous result
and experimental measurements. Under this analytical framework, the presence of a finite,
viscous critical layer is essential to correctly predicting the experimentally measured sense
of phase between scales.

4. Predictions associated with the very-large-scale motions in the logarithmic region

Clearly, the transfer functions of (2.8) imply that there are phase relationships between
large-scale motions and fluctuating stresses in all three components; we reserve
such analysis for future work. However, more advanced modelling using the current
understanding of streamwise structure in the log region can be performed; we now exploit
our analysis to make predictions regarding the influence of the VLSMs over a finite extent
of the logarithmic region.

4.1. Relationship between the direct correlation coefficient and the amplitude
modulation statistic for the very-large-scale motion

The analysis of § 3 considered the phase relationship between a single isolated scale with
Fourier dimensions resembling a VLSM, and stress fluctuations corresponding to all other
triadically consistent scales contributing to R̃xx, a relationship associated with the direct
correlation coefficient, Φ. The amplitude modulation statistic of (2.14), however, is more
broadly defined in terms of a large-scale signal on one side of a (streamwise) wavenumber
cutoff and a small-scale signal on the other side, as described in (2.13) and (2.14), and
therefore describes a different set of triadically consistent interactions.

Following the analysis of Duvvuri & McKeon (2015), we write a simple Fourier series
decomposition of the streamwise velocity fluctuations

u′ =
∞∑

i=1

αi sin(kix + φi). (4.1)

Here, k1 is the largest scale in the signal. The single-scale (ũ) wavenumber is taken to be
kL and written as

ũ = αL sin(kLx + φL), (4.2)

and the stress can be composed as the product of the remaining triadic scales as

r̃xx =
∑

∀m,n |
kn∓km=kL

αm sin(kmx + φm)αn sin(knx + φn). (4.3)

Then, Φ can be reduced by averaging the covariance between the ũ and r̃xx over one
wavelength of scale kL to obtain

Φ = 1
4Ω

∑
∀m,n |

kn∓km=kL

±αLαmαn sin (φL − [φn ∓ φm]) , (4.4)
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where Ω = 〈(ũ)2〉1/2〈(r̃xx)
2〉1/2 is the normalization factor for the covariance 〈ũr̃xx〉. It is

seen from the above equation that only sets of wavenumbers km, kn from u′ that interact in
a triadic manner with ũ (i.e. with kL) make non-zero contributions to Φ. This is similar to
the expression for skewness and Ψ given by Duvvuri & McKeon (2015).

The amplitude modulation coefficient can be similarly reduced to

R = 1
Ω

∑
∀L,m,n |

kn−km=kL
0<kL<kζ
km,kn>kζ

αlαmαn sin(φL − [φn − φm]), (4.5)

where Ω =
√

〈E2
L〉〈u2

L〉 is the normalization factor for the covariance 〈ELuL〉, with
EL denoting the large-scale-pass filtered envelope function. Only triadically consistent
interactions with wavenumbers obeying the filtering operation implicit in (2.13), i.e. a
subset of r̃xx, make a non-zero contribution to R. Even taking into account the observation
that the amplitude modulation coefficient is dominated by the VLSM (Jacobi & McKeon
2013) such that uL can be reasonably modelled using an isolated VLSM scale, ũ, Φ
contains scale interactions that are excluded by the filtering process used in R, specifically
interactions across the filter such that kn > kl and km < kl.

We argue that the critical layer origin of the correlation phenomena means that these
statistics are likely dominated by modes with similar critical layers, since the peak mode
amplitudes occur at or near critical layers and the gain, |R̃xx/Ũ|2, is large at the critical
layer. McKeon & Sharma (2010) have shown that the wall-normal height of the critical
layer increases as the streamwise wavenumber decreases, a consequence of the increased
convection speed for constant frequency (in general a more subtle influence of the blocking
effect of the wall, such that long structures cannot be centred close to the wall). Thus
cross-filter contributions to r̃xx are likely to be small, and most of the triadic contribution
to r̃xx is expected from the small scales. This means that the fluctuating stress term R̃xx can
be interpreted reasonably as a representative of the envelope of small-scale fluctuations
in the flow. And, as such, it is reasonable to investigate the similarities between Φ and R
under the assumption that the influence of the cross-filter triadic interactions is small.

In general terms, the coefficient R in physical space, with E(x, y, z, t) and uL(x, y, z, t)
is defined as

R( y) =
∫∫∫ E∗uL dx dz dt(∫∫∫ E∗E dx dz dt

)1/2 (∫∫∫ u∗
LuL dx dz dt

)1/2 . (4.6)

The covariance, represented by R, can also be expressed as the real part of the
complex cross-spectrum in Fourier space (i.e. the cospectrum). Writing the Fourier
transformed velocity signals as û(kx, kz, ω) = F [u(x, z, t)] yields, with the application of
the cross-correlation theorem (generalized Wiener–Khinchin theorem)

R( y) = Re

⎧⎪⎨⎪⎩
∫∫∫ Ê∗ûL dkx dkz dω(∫∫∫ Ê∗Ê dkx dkz dω

)1/2 (∫∫∫
û∗

LûL dkx dkz dω
)1/2

⎫⎪⎬⎪⎭ . (4.7)

The power spectral densities for the velocity signals are denoted ψL = û∗
LûL and ψSS =

Ê∗Ê , and Ê = |Ê | eiφS and ûL = |ûL| eiφL , where the phases φL and φS are wavenumber
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and frequency dependent. The signals in spectral space are related by

Ê û∗
L = Ê∗ûL exp(2i(φS − φL)), (4.8)

thus yielding

R( y) = Re

{ ∫∫∫
ψ

1/2
SS ψ

1/2
LL e−i(φS−φL) dkx dkz dω(∫∫∫

ψSS dkx dkz dω
)1/2 (∫∫∫

ψLL dkx dkz dω
)1/2

}
, (4.9)

where ϕ = φS − φL and ϕ ≡ ϕ(kx, kz, ω). Taking the real part, we note that the sign of the
phase difference, ϕ, is lost due to the symmetry of the cosine function

R( y) =
∫∫∫

ψ
1/2
SS ψ

1/2
LL cosϕ dkx dkz dω(∫∫∫

ψSS dkx dkz dω
)1/2 (∫∫∫

ψLL dkx dkz dω
)1/2 . (4.10)

Consider a large-scale signal that can be reasonably modelled by a VLSM with
wavenumber and frequency given by (kx, kz, ω) = (kL, aLkL, cLkL). Imposing a narrow
bandpass filter precisely at this VLSM to reflect the dominance of the very large scale,
these spectra are idealized as

{ψSS, ψLL} ∝ δ(kx − kL)δ(kz − aLkL)δ(ω − cLkL), (4.11)

and substituting the spectra into (4.10) yields

R( y) ≈ cos [ϕ(kL, akL, cLkL)] ≈ Φ(kL, aLkL, cLkL), (4.12)

where now ϕ = φR − φL andΦ is the direct correlation coefficient evaluated at the VLSM.
Thus the value of R can be interpreted as the cosine of the phase separating the scales,
just like the function Φ.

But, as noted above, the correlation coefficients, R and Φ, obscure the signed sense
of this phase difference due to their symmetry. However, the full spatial (or temporal)
cross-correlation function, r(Δx, y) can be plotted instead of the correlation coefficient,
in order to identify the correct sense of the phase lag (e.g. Chung & McKeon 2010;
Hutchins et al. 2011; Jacobi & McKeon 2013). The spatial cross-correlation function, in
the streamwise direction, is defined as

r(Δx, y) =
∫∫∫ E∗(x, y, z, t)uL(x + Δx, y, z, t) dx dz dt(∫∫∫ E∗E dx dz dt

)1/2 (∫∫∫ u∗
LuL dx dz dt

)1/2 , (4.13)

such that Δx > 0 indicates that the large scales lead the small scales, spatially. (If defined
temporally, then Δt > 0 would small scales lead large scales, spatially.) The correlation
coefficient is related to the cross-correlation function as: R( y) = r(0, y), and also by
R( y) = cos (ϕ) where the phase ϕ can be related to the spatial or temporal lag via
ϕ ∝ (Δx|r=rmax)/λζ where λζ is the spatial filter size used to separate between large and
small scales and the proportionality is fixed such that R = 0 corresponds to |ϕ| = π/2.
The three different representations of the phase are shown in figure 2.

According to the analysis of the preceding sections, ϕ = −π/2, i.e. R = 0, in the
vicinity of yc, the critical layer. Further, the phase lead increases with height, i.e. the
R̃xx structure leads the Ũ structure and a higher stress region can be found downstream
of a higher velocity region, and crosses −π/2 at yc in agreement with the observations
of the VLSM and consistent with the measurements shown in figure 2. This is likely the
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(a) (b)

(c)

Figure 2. (a) The correlation coefficient with symbols from Jacobi & McKeon (2013) measured at Reτ =
910 using a temporal filter cutoff between large and small scales of 1δ/U∞. (b) Map of the temporal
cross-correlation function, r(Δt, y) with the peaks marked, transformed into the phase coordinate, r(ϕ, y)
by scaling via a wavenumber very close to the filter wavenumber, kζ . (The precise wavenumber for the
transformation is selected such that the peak location corresponds to cos−1 (R).) The correlation coefficient
R corresponds to the value of r(ϕ = 0) and also, equivalently, to the cosine of the phase, ϕ evaluated at the
marked peaks. (c) The phase, evaluated from the transformed time-lag information in (b), where the sense of
the phase is clearly negative.

origin of earlier hypotheses (Chung & McKeon 2010; Hutchins et al. 2011) concerning
the dependence of the amplitude modulation coefficient on the streamwise gradient of Ũ.
Note that the shape of R could change if a weighted integral were to be taken over the full
range of large scales as opposed to the single dominant mode but we expect these to be
higher-order corrections to (4.12).

4.2. Structure angles for the stress fluctuation and large-scale velocity
The transfer function analysis of § 3 identified the sense of the phase between the stress
fluctuations and the isolated scale through the properties of the critical layer, a detail that
is not captured in the amplitude modulation coefficient due to the symmetry of the cosine
function. In this section, we use the predicted relative phase to reconstruct the physical
relationships between large- and small-scale activity.
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Interactions between scales in wall turbulence

A local isolated-scale structure inclination angle, θU , and an analogous stress-fluctuation
structure inclination angle, θR, can be introduced, and related using (2.10)

− kL

tan θR
≡ d arg R̃xx

dy
= dϕ

dy
+ d arg Ũ

dy
= dϕ

dy
− kL

tan θU
. (4.14)

The phase shift in the vicinity of the critical layer can be extracted from the ratio of the
real and imaginary parts of (3.12) and written as

ϕ ≈ arctan

⎡⎢⎢⎢⎣
(

Δy
ε

)2

−
(ε
�

)4

−2
(

Δy
ε

)(ε
�

)2

⎤⎥⎥⎥⎦, (4.15)

where the branch of the inverse tangent is taken to be [0,−π), consistent with the result
that the phase at the critical layer hovers around −π/2. Then differentiating with respect
to y and evaluating at the critical layer, and taking the limit for Δy/ε 
 1, yields

dϕ
dy

= −1
ε

2
(
�

ε

)2

1 +
(
�

ε

)4 (
Δy
ε

)2 ≈ −2
(
�

ε

)2

ε−1 (4.16)

≈ −2
(
�

ε

)2

(kL dūcRe)1/3 . (4.17)

Together with (4.14), (4.17) says that the relative inclination between the Ũ and R̃xx
structures at yc depends on the thickness of the critical layer, to leading order. Combining
(4.14) and (4.17), and assuming small angles for θU and θS, we obtain, to leading order,

(θR − θU)|c ≈ −θU

⎛⎜⎜⎜⎝
2
(
�

ε

)2
θU

kLε

1 + 2
(
�

ε

)2
θU

kLε

⎞⎟⎟⎟⎠ < 0. (4.18)

That is, the R̃xx structure is more inclined to the wall than the Ũ structure at yc,
the difference controlled by Re, kL and dūc. These qualitative predictions of the scale
interaction are corroborated by the boundary-layer experiments of Hutchins et al. (2011)
and Jacobi & McKeon (2013), in which the small-scale activity leads the very-large-scale
motion, but differ from those reported in Bandyopadhyay & Hussain (1984) (figures 2, 8
and 14a). Chung & McKeon (2010) and Jacobi & McKeon (2013) previously sketched such
a relationship between effective structure angles of the VLSM and small-scale stresses in
the context of the amplitude modulation coefficient. The present analysis suggests a similar
sketch of the relative orientation of large- and small-scale modes, as shown in figure 3.

4.3. The amplitude modulation statistic in the log region
Further progress in understanding the variation of the amplitude modulation coefficient
can be made by applying the results of § 3 to describe the phase over the full region Δy
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ϕ = –π/2

Figure 3. A schematic representation of the relative orientation of the large-scale motions and the envelope of
the small-scale stresses as indicated by the viscous analysis, showing that the positive small-scale signal Rxx
leads the large, Ũ, and thus the relative inclination of the small scales is steeper than that of the large scales
(after Chung & McKeon 2010) according to (4.18). Near the wall, both scales are in phase, and away from the
wall they are exactly out of phase, as suggested in (3.15).

10–2 10–1 100
–1.0

–0.5

0.5

1.0

0

–1.0

–0.5

0.5

1.0

0R(ϕ)

y/δ
10–2 10–1 100

y/δ

ϕ

(a) (b)

Figure 4. (a) The correlation coefficient, as shown in figure 2. Here, the solid line is the viscous model from
(4.15) with (�/ε,B) = (0.1, 15), where the actual values of the Reynolds stress functions were estimated, using
θU ≈ 15◦, as B( yc) ≈ 13. The dashed line is the inviscid model from (A15) with (A,B) ≈ (10, 20). Note that
both models capture the trend in R reasonably well, in an ε-size region about the vicinity of the critical layer,
marked by the dotted lines. (b) The phase, evaluated from the time-lag information in figure 2. Here, the solid
line is the viscous prediction; the dashed line is the inviscid prediction. Note that the inviscid model predicts
the incorrect sense of phase.

about the critical point yc, and even beyond. We can illustrate this by plotting R = cosϕ
with ϕ given by (4.15). As before, there are two free parameters to fit to this phase model:
the length scale associated with the fluctuating stress, �, and the function B( y) (defined
in (A10)) that represents the magnitude of the average Reynolds stresses. We now fit
the model (4.15) to the Reτ = 910 boundary-layer data from Jacobi & McKeon (2013),
see figure 4. The model demonstrates reasonable agreement for a range of y beyond the
immediate vicinity of the critical layer. The zero crossing at y = yc is captured, confirming
the hypothesized relationship between the outer layer peak, this zero crossing (Mathis et al.
2009a), and the VLSM critical layer. However, the model fails to capture the subtle peak
or plateau observed in the vicinity of the critical layer itself.

Performing the same phase analysis on the inviscid phase difference, detailed in
appendix A yields a very similar prediction for R, shown in the dashed line in figure 4(a).
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Interactions between scales in wall turbulence

But, importantly, the inviscid model fails to predict the correct sense of phase, in
figure 4(b), as explained above.

The wavenumber corresponding to the large-scale activity, kLδ, appears to be
independent of Reτ (see Mathis et al. 2009a). If the same holds approximately for θU , as
appears to be the case in the results of Marusic & Heuer (2007) who found an inclination
angle of approximately 15◦ over a range of Reynolds number spanning laboratory to
atmospheric boundary-layer conditions, then Rmax primarily depends on yc, a function
of Reτ , but also on the choice of filter cutoff, kζ , in terms of the restriction it puts onto
allowed triadic interactions (see § 4.1). The sensitivity to kζ and Reτ of the peak, but not the
zero-crossing height is reported by Mathis et al. (2009a). In more recent work, McKeon
& Sharma (2010) indicated that yc for the VLSM should scale with Re1/2. Note that if, as
reported, Rmax were to increase with Reτ then βc/( yc) must decrease accordingly.

5. Concluding remarks

The dynamical equations for an isolated scale, containing a single streamwise/spanwise
wavenumber and frequency (kx, kz, ω), and the associated stress fluctuations at the same
scale were reformulated in terms of a transfer function relationship, in line with the
input–output approach of the resolvent analysis of McKeon & Sharma (2010). In this work,
we have investigated the transfer function governing the well-studied relationship between
the streamwise stress fluctuations and the large-scale streamwise velocity.

After some simplifying assumptions, the transfer function clearly identifies the role of
the viscous critical layer in the amplitude and phase relationship between the single scale
and stress components. Specifically, we assume that the unclosed terms on the right-hand
side of (2.4) give rise to stress fluctuations that are uncorrelated with the velocity at the
isolated scale. A modal form for the velocity and, through quadratic nonlinear interaction,
the stress, is assumed in order to invert the matrix; this is consistent with the recent
analytical work of Dawson & McKeon (2019). Finally, the contribution of the wall-normal
large-scale velocity component may only be formally neglected under a certain set of
conditions. These simplifying assumptions resulted in a predicted phase relationship in
the vicinity of the large-scale critical layer consistent with experimental observations.
A full discretization of (2.8) may still be desirable, particularly for investigating the phase
relationships away from the critical layer itself, but the present analysis has shown that
near the critical layer, the phase does not depend significantly on the precise form of
the mean Reynolds stress profiles, beyond certain order-of-magnitude approximations. We
note that inclusion of viscosity is, however, vital: making an inviscid assumption leads to
the incorrect sense of the phase lead/lag.

Representing the VLSM via a single scale, consistent with the observations of Jacobi
& McKeon (2013) that the VLSMs dominate the phase relationship between large-scale
velocity and the envelope of small-scale fluctuations, a prediction of the phase relationship
between the streamwise small-scale stress and VLSM velocity was obtained. This
prediction was shown to be in good agreement with experimental observations, as well
as the quasi-steady model of Chernyshenko et al. (2012), and was subsequently used
to obtain insight into the origin of structure angles for the large and small scales, and
the form of the amplitude modulation statistic in the logarithmic region. Consistent with
experiments, the model predicts that the zero-crossing height of the amplitude modulation
statistic coincides with the wall-normal location of the very-large-scale peak in the
one-dimensional premultiplied spectrum of streamwise velocity fluctuations, the critical
layer location for the very-large-scale motion. For the VLSM, the transfer function between
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streamwise velocity and streamwise stress is closely related to the direct correlation
coefficient and to the amplitude modulation statistic.

The relationship between streamwise velocity and streamwise stress has been explored
here, with connections to an expansion of the empirical predictive model proposed
by Marusic et al. (2010), which effectively leverages phase information integrated into
the behaviour of the small scales through an off-wall measurement of the large-scale
streamwise velocity. However, we note that the transfer functions at other scales, and
between other velocity components, have equivalent (if mathematically more complex)
relationships described in full by (2.8). In addition, Luhar et al. (2014) extended the
resolvent analysis of McKeon & Sharma (2010) to explicitly include the pressure variation
(corresponding in essence to the ‘fast’ pressure identified in the Poisson equation for the
pressure fluctuations) and postulated that pressure fluctuations must experience a similar
amplitude modulation effect to the velocity. Thus the phase relationships introduced herein
can be identified as a fundamental restriction on interactions between triadically consistent
scales, with strong implications for modelling, and particularly for the small-scale stress
fluctuations which could reasonably be incorporated into a subgrid-scale model for large
eddy simulation.

Moreover, we note that gradients of R̃ij constitute the forcing term, fi, in (2.3a) for the
isolated scale, and thus are identically the nonlinear forcing terms in the resolvent analysis
of McKeon & Sharma (2010). As such, information on the relationships between Ũi and
R̃ij provide the potential for simplification of the resolvent analysis itself with regards to
identifying triadic interactions that sustain particular isolated scales. This is a topic of
ongoing study.
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Appendix A. Three-dimensional transfer function

A.1. Viscous transfer function

To obtain the transfer function between R̃xx and the isolated large scales, we solve (3.5)
with the assumption that the R̃ij components can be represented in modal form, according
to the analytical model in (3.3). We define that modal form explicitly, such that the second
derivative of the mode is equal to the mode itself scaled by a function R(ij)2 ( y), according
to

d2R̃ij = R(ij)2 ( y)R̃ij, (A1)
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which allows us to write the viscous terms of the governing equation −(d2 − k2)R̃ij as

−(d2 − k2)R̃ij = −
[
R(ij)2 ( y)− k2

]
︸ ︷︷ ︸

�−2
ij

R̃ij, (A2)

where the �ij length scale represents the local curvature of the stress modes, as defined in
the main body.

The R̃xx component of (3.5) is then found by inverting the A matrix to obtain

− [i(−ω + kxū)+ Re−1(k2 − R(xx)
2 )]R̃xx

=
[

2ikxr̄xx + 2r̄xy d − 2iγ (−ω + kxū)(ikxr̄xy + r̄yy d)

Re−1(k2 − R(xy)
2 )+ i(−ω + kxū)

]
Ũ

+
[

r̄xx,y − 2iγ (−ω + kxū)(ikxr̄xx + r̄xy d + r̄xy,y)

Re−1(k2 − R(xy)
2 )+ i(−ω + kxū)

− 2γ 2(−ω + kxū)2(2ikxr̄xy + 2r̄yy d + r̄yy,y)

[Re−1(k2 − R(xy)
2 )+ i(−ω + kxū)][Re−1(k2 − R( yy)

2 )+ i(−ω + kxū)]

]
Ṽ. (A3)

This general transfer function can then be expanded in a narrow region Δy about yc, to
obtain

− 1
ε2Re

[
i
Δy
ε

+ ε2�−2
xx

]
R̃xx =

⎡⎢⎢⎣2ikxr̄xx + 2r̄xy d −
2
(

1
kxε

)(
yc

y

)
(ikxr̄xy + r̄yy d)

iΔy
ε

+ ε2�−2
xy

⎤⎥⎥⎦ Ũ

+

⎡⎢⎢⎣r̄xx,y −
2
(

1
kxε

)
yc

y
(ikxr̄xx + r̄xy d + r̄xy,y)

iΔy
ε

+ ε2�−2
xy

+
2
(

1
kxε

)2 (yc

y

)2

(2ikxr̄xy + 2r̄yy d + r̄yy,y)[
i
Δy
ε

+ ε2�−2
xy

] [
i
Δy
ε

+ ε2�−2
yy

]
⎤⎥⎥⎥⎦ Ṽ,

(A4)

and finally applying the assumption that the �ij scales are quasi-isotropic yields (3.9).

A.2. Simplifying the transfer function

The transfer function for the streamwise component of the stress, R̃xx, in (3.9), expanded
about the critical layer, can be simplified according to two additional assumptions:
(i) negligible contributions to R̃xx from the Ṽ component and (ii) negligible spatial
variation in the amplitude of the Ũ component. Both of these simplifying assumptions
are consistent with the typical mode shapes of resolvent modes, in which Ũ exhibits
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its maximum magnitude near the critical layer, and the magnitude of Ṽ is everywhere
significantly less than that of Ũ.

First, we analyse under what conditions Ṽ can be neglected. Among the contributions to
the Ṽ term, the largest magnitude term is O[(kxε)

−2], assuming the �ij ∼ ε and taking the
limit as Δy/ε 
 1. Similarly, among the contributions to the Ũ term, the kxr̄xx and r̄xyd
terms are the smallest. Therefore, to neglect Ṽ , we must establish that the smallest terms
in Ũ still dominate the largest in Ṽ

[
2ikxr̄xx + 2r̄xy d

]
Ũ � 2

(
1

kxε

)2 (yc

y

)2 [
(2ikxr̄xy + 2r̄yy d + r̄yy,y)

]
Ṽ, (A5)

which can be expanded as[
2ikxr̄xx + 2r̄xy

(
d|Ũ|
|Ũ| + i dφU

)]
Ũ

� 2
(

1
kxε

)2 (yc

y

)2
[
(2ikxr̄xy + 2r̄yy

(
d|Ṽ|
|Ṽ| + i dφV

)
+ r̄yy,y)

]
Ṽ. (A6)

We already assumed earlier that the critical layer and modal large-scale maximum are very
close, |yc − ym|/ε 
 αU/(2βU), making use of the analytical formulation in (3.2). This is
equivalent to assuming that the d|Ũ|/|Ũ| 
 |dφU|.

This condition can be simplified to four requirements, making use of the relationship
that dφU ≈ −kx/tan θU for large-scale stream inclination angle θU∣∣∣∣∣ Ṽ

Ũ

∣∣∣∣∣ 
 (kxε)
2
∣∣∣∣ r̄xx

r̄xy

∣∣∣∣ , kxr̄xx

r̄yy,y
� 1,

1
kx

d|Ṽ|
|Ṽ| � 1, tan θU �

∣∣∣∣ r̄xy

r̄xx

∣∣∣∣ , (A7a–d)

where the condition on the variation in the amplitude of Ṽ can also be written in terms of
the semi-analytical model described below (3.2)

1
kx

d|Ṽ|
|Ṽ| � 1 ⇐⇒ yc − ym,V

ε
�
(

1√
2βV

)(
kxε√
2βV

)
(A8)

and thus we observe that the condition on neglecting Ṽ is automatically satisfied by the
earlier assumption that �yy > 0 independent of y.

Neglecting Ṽ yields

− 1
ε2Re

[
i
Δy
ε

+ ε2�−2
xx

]
R̃xx =

⎡⎢⎢⎣2ikxr̄xx + 2r̄xy d −
2
(

1
kxε

)(
yc

y

)
(ikxr̄xy + r̄yy d)

i
Δy
ε

+ ε2�−2
xy

⎤⎥⎥⎦ Ũ.

(A9)

Expanding the terms involving dŨ, dividing through by Ũ and applying the above
assumption on the location of the modal maximum, which is equivalent to assuming that
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d|Ũ|/|Ũ| 
 |dφU|, yields

R̃xx

Ũ
= ε3Re

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−

kx

A( y) > 0︷ ︸︸ ︷(
2r̄xx + 2r̄xy

dφU

kx

)
ε

(
Δy
ε

− iε2�−2
xx

) + i
kx

(
yc

y

) B( y) > 0︷ ︸︸ ︷(
−2r̄xy − 2r̄yy

dφU

kx

)
ε(εkx)

(
Δy
ε

− iε2�−2
xy

)(
Δy
ε

− iε2�−2
xx

)
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

(A10)

where the combination of Reynolds stress and large-scale phase terms are represented by
real, positive functions A( y),B( y). Finally, assuming �xx = �xy = �yy = � and separating
the real and imaginary parts then yields

R̃xx

Ũ
= εRe[(

Δy
ε

)2

+
(ε
�

)4
]2

×
{

−
(

Δy
ε

)(
2B( y)

(
yc

y

)(ε
�

)2 + A( y)(kxε)

[(
Δy
ε

)2

+
(ε
�

)4
])

+i

(
−A( y)(kxε)

(ε
�

)2
[(

Δy
ε

)2

+
(ε
�

)4
]

+ B( y)
(

yc

y

)[(
Δy
ε

)2

−
(ε
�

)4
])}

.

(A11)

Neglecting small (εkx) 
 1 yields

R̃xx

Ũ
=

εRe B( y)
(

yc

y

)
[(

Δy
ε

)2

+
(ε
�

)4
]2

{
−2

(
Δy
ε

)(ε
�

)2 + i

([(
Δy
ε

)2

−
(ε
�

)4
])}

, (A12)

which is described in (3.12).

A.3. Inviscid transfer function
Taking the inviscid (distinguished) limit of (A10) as Re → ∞ and the critical layer
thickness, ε → 0, assuming that

lim
ε→0

Re→∞
ε3Re = (kx dūc)

−1 (A13)

yields

R̃xx

Ũ
= (kx dūc)

−1

⎧⎪⎪⎨⎪⎪⎩−kxA( y)
Δy

+ i
B( y)

(
yc

y

)
(Δy)2

⎫⎪⎪⎬⎪⎪⎭ . (A14)

The distinguished limit follows from the definition of the critical layer thickness itself,
(3.1).
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Note that the sign of the dominant imaginary component is positive, indicating a phase
difference between the stress and large scales of +π/2, in contrast to the results taking
into account the effect of viscosity, where the sign is negative. The phase difference can
be written as

ϕinv = arctan

⎛⎜⎜⎝ B( y)
(

yc

y

)
−kxA( y)(Δy)

⎞⎟⎟⎠, (A15)

and its meaning is explained in the context of (3.16) above.
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