A Note on Double Limits.

By C. E. WALSH.

(Received 20th November 1928. Read 1st March 1929.)

Let u_{mn} , v_{mn} be functions of m and n, v_{mn} being real and positive for all positive values of m and n.¹ Suppose that either v_{mn} increases steadily to infinity with n, or that u_{mn} and v_{mn} both tend to zero (the latter steadily) as $n \to \infty$, for any fixed value of m. Denote $\frac{u_{m,n+1} - u_{mn}}{v_{m,n+1} - v_{mn}}$ by w_{mn} , and assume that $\lim_{n \to \infty} w_{mn}$ exists for every value of m, being denoted by l_m . Then from Stolz' extension of a result proved by Cauchy, and an allied theorem,² we have $\lim_{n \to \infty} \frac{u_{mn}}{v_{mn}} = l_m$, for all values of m. It follows from Pringsheim's Theorem that if the double limit of $\frac{u_{mn}}{v_{mn}}$ exists, being l, then $l_m \to l$ as $m \to \infty$.

As a particular case, if u_{mn} is a real function, if the double sequence $\frac{u_{mn}}{v_{mn}}$ is monotonic³ (either increasing or decreasing) in both m and n, and it is known that $l_m \rightarrow l$ as $m \rightarrow \infty$, then the double limit of $\frac{u_{mn}}{v_{mn}}$ will also be l.

For example, let $S_{\mu\nu}$ be any monotonic (increasing or decreasing) double sequence in both μ and ν , converging to S, and take $\sum_{\mu=1}^{m} \sum_{\nu=1}^{n} S_{\mu\nu}/mn$ as $\frac{u_{mn}}{v_{mn}}$. Then $\frac{u_{mn}}{v_{mn}}$ is also monotonic (in the same sense as $S_{\mu\nu}$) in both m and n. We then have $w_{mn} = \sum_{r=1}^{m} S_{r, n+1}/m$. If $S_{m\infty}$

¹ Or for all values of m and n greater than fixed values, say m_1 and n_1 .

² See Bromwich Infinite Series, pp. 377-378, for both of these.

³ Hereafter when the word "monotonic" is used, the functions concerned are to be regarded as real.

denote $\lim_{n\to\infty} S_{mn}$ (which can be seen to exist for all values of m)

$$\lim_{n \to \infty} w_{mn} = \frac{\sum S_{r\infty}}{\frac{1}{m}}.$$
 Since a_n and $\sum a_r$ converge to the same limit $\frac{1}{m}$

if a_n converges, it follows that

$$\lim_{m \to \infty} \lim_{n \to \infty} w_{mn} = \lim_{m \to \infty} \sum_{\substack{m \to \infty \\ 1 \ m}}^{m} S_{r\infty} = \lim_{m \to \infty} S_{m\infty} = \lim_{m \to \infty} \lim_{n \to \infty} S_{mn} = S.$$

Thus the double limit of $\sum_{\substack{m \\ 1 \ mn}}^{m} \sum_{\substack{n \\ 1 \ mn}}^{n} S_{\mu\nu}$ is $S.$

Again if the double limits of $\frac{u_{mn}}{v_{mn}}$ and w_{mn} are both known to exist, being U and W respectively, we have

 $U = \lim_{m \to \infty} \lim_{n \to \infty} \frac{u_{mn}}{v_{mn}} = \lim_{m \to \infty} \lim_{n \to \infty} w_{mn} = W, \text{ so } U \text{ and } W \text{ will be equal.}$

In addition if $\lim_{m\to\infty} \lim_{n\to\infty} \frac{u_{mn}}{v_{mn}} = l$, and the double sequence w_{mn}

is monotonic (either way) in both m and n, the double limit of w_{mn} will be l, this being true also in the more general case where the double limit of w_{mn} is known to exist.

If $lm \rightarrow \infty$, and $\frac{u_{mn}}{v_{mn}}$ is monotonic increasing in *m*, the double

limit is $+\infty$. For, given any number *R*, however large we can find *M* so that $l_m > R$ if $m \ge M$. Then *N* can be found so that

$$\text{if } n > N, \ \frac{u_{Mn}}{v_{Mn}} > l_M - \frac{R}{2} > \frac{R}{2} \ , \ \text{and now if } m > M, \ n > N,$$

$$\frac{u_{mn}}{v_{mn}} > \frac{u_{Mn}}{v_{Mn}} > \frac{R}{2}$$

This proves the result.

198