Proceedings of the Edinburgh Mathematical Society (2012) **55**, 207–213 DOI:10.1017/S0013091510001203

ON THE AF-ALGEBRA OF A HECKE EIGENFORM

IGOR V. NIKOLAEV

The Fields Institute for Mathematical Sciences, 222 College Street, Toronto, Ontario M5T 3J1, Canada (igor.v.nikolaev@gmail.com)

(Received 28 September 2010)

Abstract An AF-algebra is assigned to each cusp form f of weight 2; we study properties of this operator algebra when f is a Hecke eigenform.

Keywords: modular forms; foliations; operator algebras

2010 Mathematics subject classification: Primary 11F03 Secondary 46L85

1. Introduction

1.1. The Modularity Theorem

The modularity theorem asserts that all rational elliptic curves arise from modular forms; this result is tremendously important, since it leads to a spectacular proof of Fermat's Last Theorem. Anyone reading the excellent book [4] will find the following interesting object. Denote by $f_N \in S_2(\Gamma_0(N))$ a Hecke eigenform and by f_N^{σ} all its conjugates and consider a lattice Λ_{f_N} generated by the complex periods of holomorphic forms $\omega_N^{\sigma} = f_N^{\sigma} dz$ on the Riemann surface $X_0(N) = \mathbb{H}^*/\Gamma_0(N)$ (see § 2 for definitions of these concepts). If $|\sigma|$ is the number of conjugates, the abelian variety $\mathcal{A}_{f_N} := \mathbb{C}^{|\sigma|}/\Lambda_{f_N}$ is said to be associated to the eigenform f_N ; it has the following remarkable property: there exists a homomorphism of \mathcal{A}_{f_N} onto a rational elliptic curve.

Let $\phi_N = \operatorname{Re}(\omega_N)$ be the real part of ω_N ; it is a closed form on the surface $X_0(N)$. (Alternatively, one can take for ϕ_N the imaginary part of ω_N .) Clearly, ω_N defines a unique form, ϕ_N ; the converse follows from the Hubbard–Masur Theorem [6]. Since ω_N and ϕ_N define each other, what object will replace the associated variety \mathcal{A}_{f_N} in the case of ϕ_N ? Roughly speaking, it is shown in this paper that such a replacement is given by an operator algebra \mathfrak{A}_{f_N} coming from the real periods of the form ϕ_N ; we study the basic properties of such an algebra (Theorem 1.1).

1.2. The AF-algebra \mathfrak{A}_{f_N}

Let $f \in S_2(\Gamma_0(N))$ be a cusp form and let $\omega = f \, dz$ be the corresponding holomorphic differential on $X_0(N)$. We shall denote by $\phi = \operatorname{Re}(\omega)$ a closed form on $X_0(N)$

© 2011 The Edinburgh Mathematical Society

I. V. Nikolaev

and consider its periods $\lambda_i = \int_{\gamma_i} \phi$ against a basis γ_i in the (relative) homology group $H_1(X_0(N), Z(\phi); \mathbb{Z})$, where $Z(\phi)$ is the set of zeros of ϕ . Assume $\lambda_i > 0$ and consider the vector $\theta = (\theta_1, \ldots, \theta_{n-1})$ with $\theta_i = \lambda_{i+1}/\lambda_1$. The Jacobi–Perron continued fraction of θ [2] is given by the formula

$$\begin{pmatrix} 1\\ \theta \end{pmatrix} = \lim_{i \to \infty} \begin{pmatrix} 0 & 1\\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1\\ I & b_i \end{pmatrix} \begin{pmatrix} 0\\ \mathbb{I} \end{pmatrix} = \lim_{i \to \infty} B_i \begin{pmatrix} 0\\ \mathbb{I} \end{pmatrix},$$

where $b_i = (b_1^{(i)}, \ldots, b_{n-1}^{(i)})^{\mathrm{T}}$ is a vector of non-negative integers, I is the unit matrix and $\mathbb{I} = (0, \ldots, 0, 1)^{\mathrm{T}}$. By \mathfrak{A}_f we shall understand the approximately finite C^* -algebra (AF-algebra) given by its Bratteli diagram with partial multiplicity matrices B_i . Recall that an AF-algebra is called *stationary* if $B_i = B = \text{const.}$ [5]. When two non-similar matrices B and B' have the same characteristic polynomial, the corresponding stationary AF-algebras will be called *companion AF-algebras*. Denote by \mathfrak{A}_{f_N} an AF-algebra such that $f_N \in S_2(\Gamma_0(N))$ is a Hecke eigenform. Our main result can be stated as follows.

Theorem 1.1. The AF-algebra \mathfrak{A}_{f_N} is stationary unless f_N is a rational eigenform, in which case $\mathfrak{A}_{f_N} \cong \mathbb{C}$; moreover, \mathfrak{A}_{f_N} and $\mathfrak{A}_{f_N^{\sigma}}$ are companion AF-algebras.

The paper is organized as follows. The minimal preliminary results are expounded in $\S 2$, where we review the Hecke eigenforms, the AF-algebras and the Jacobi–Perron continued fractions. Theorem 1.1 is proved in $\S 3$.

2. Preliminaries

2.1. The Hecke eigenforms

Let N > 1 be a natural number and consider a (finite index) subgroup of the modular group given by the formula

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) \ \middle| \ c \equiv 0 \mod N \right\}.$$

Let $\mathbb{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$ be the upper half-plane and let $\Gamma_0(N)$ act on \mathbb{H} by the linear fractional transformations; consider an orbifold $\mathbb{H}/\Gamma_0(N)$. To compactify the orbifold at the cusps, one adds a boundary to \mathbb{H} , so that $\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$ and the compact Riemann surface $X_0(N) = \mathbb{H}^*/\Gamma_0(N)$ is called a *modular curve*. The meromorphic functions f(z) on \mathbb{H} that vanish at the cusps and such that

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 f(z) \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

are called *cusp forms* of weight 2; the (complex linear) space of such forms will be denoted by $S_2(\Gamma_0(N))$. The formula $f(z) \mapsto \omega = f(z) dz$ defines an isomorphism $S_2(\Gamma_0(N)) \cong \Omega_{\text{hol}}(X_0(N))$, where $\Omega_{\text{hol}}(X_0(N))$ is the space of holomorphic differentials on the Riemann surface $X_0(N)$. Note that

$$\dim_{\mathbb{C}}(S_2(\Gamma_0(N))) = \dim_{\mathbb{C}}(\Omega_{\text{hol}}(X_0(N))) = g,$$

where g = g(N) is the genus of the surface $X_0(N)$. A Hecke operator T_n acts on $S_2(\Gamma_0(N))$ by the formula

$$T_n f = \sum_{m \in \mathbb{Z}} \gamma(m) q^m,$$

where $\gamma(m) = \sum_{a \mid \text{GCD}(m,n)} ac_{mn/a^2}$ and $f(z) = \sum_{m \in \mathbb{Z}} c(m)q^m$ is the Fourier series of the cusp form f at $q = e^{2\pi i z}$. Furthermore, T_n is a self-adjoint linear operator on the vector space $S_2(\Gamma_0(N))$ endowed with the Petersson inner product; the algebra $\mathbb{T}_N := \mathbb{Z}[T_1, T_2, \ldots]$ is a commutative algebra. Any cusp form $f_N \in S_2(\Gamma_0(N))$ that is an eigenvector for one (and hence all) of T_n is referred to as a *Hecke eigenform*; such an eigenform is called *rational* whenever its Fourier coefficients $c(m) \in \mathbb{Z}$. The Fourier coefficients c(m) of f_N are algebraic integers, and we denote by $K_{f_N} = \mathbb{Q}(c(m))$ an extension of the field \mathbb{Q} by the Fourier coefficients of f_N . Then K_{f_N} is a real algebraic number field of degree $1 \leq \deg(K_{f_N}/\mathbb{Q}) \leq g$, where g is the genus of the surface $X_0(N)$ [4, Proposition 6.6.4]. Any embedding $\sigma : K_{f_N} \to \mathbb{C}$ conjugates f_N by acting on its coefficients; we write the corresponding Hecke eigenform as

$$f_N^{\sigma}(z) := \sum_{m \in \mathbb{Z}} \sigma(c(m)) q^m.$$

2.2. The AF-algebras

A C^* -algebra is an algebra A over \mathbb{C} with a norm $a \mapsto ||a||$ and an involution $a \mapsto a^*$ such that it is complete with respect to the norm and $||ab|| \leq ||a|| ||b||$ and $||a^*a|| = ||a^2||$ for all $a, b \in A$. Any commutative C^* -algebra is isomorphic to the algebra $C_0(X)$ of continuous complex-valued functions on some locally compact Hausdorff space X; otherwise, A represents a non-commutative topological space. The C^* -algebras A and A'are said to be *stably isomorphic* (Morita equivalent) if $A \otimes \mathcal{K} \cong A' \otimes \mathcal{K}$, where \mathcal{K} is the C^* -algebra of compact operators; roughly speaking, the stable isomorphism means that A and A' are homeomorphic as non-commutative topological spaces.

An AF-algebra is defined to be the norm closure of an ascending sequence of finitedimensional C^* -algebras M_n , where M_n is the C^* -algebra of the $n \times n$ matrices with entries in \mathbb{C} . Here the index $n = (n_1, \ldots, n_k)$ represents the semi-simple matrix algebra $M_n = M_{n_1} \oplus \cdots \oplus M_{n_k}$. The ascending sequence mentioned above can be written as $M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} \ldots$, where M_i are the finite-dimensional C^* -algebras and φ_i are the homomorphisms between such algebras. The homomorphisms φ_i can be arranged into a graph as follows. Let $M_i = M_{i_1} \oplus \cdots \oplus M_{i_k}$ and $M_{i'} = M_{i'_1} \oplus \cdots \oplus M_{i'_k}$ be the semisimple C^* -algebras and $\varphi_i \colon M_i \to M_{i'}$ be the homomorphism. One has two sets of vertices V_{i_1}, \ldots, V_{i_k} and $V_{i'_1}, \ldots, V_{i'_k}$ joined by b_{rs} edges whenever the summand M_{i_r} contains b_{rs} copies of the summand $M_{i'_s}$ under the embedding φ_i . As i varies, one obtains an infinite graph called the *Bratteli diagram* of the AF-algebra. The matrix $B = (b_{rs})$ is known as a *partial multiplicity matrix*; an infinite sequence of B_i defines a unique AF-algebra.

For a unital C^* -algebra A, let V(A) be the union (over n) of projections in the $n \times n$ matrix C^* -algebra with entries in A; projections $p, q \in V(A)$ are *equivalent* if there exists a partial isometry u such that $p = u^*u$ and $q = uu^*$. The equivalence class of projection I. V. Nikolaev

p is denoted by [p]; the equivalence classes of orthogonal projections can be made into a semigroup by setting [p] + [q] = [p+q]. The Grothendieck completion of this semigroup to an abelian group is called the K_0 -group of the algebra A. The functor $A \to K_0(A)$ maps the category of unital C^* -algebras into the category of abelian groups, so that projections in the algebra A correspond to a positive cone $K_0^+ \subset K_0(A)$ and the unit element $1 \in A$ corresponds to an order unit $u \in K_0(A)$. The ordered abelian group (K_0, K_0^+, u) with an order unit is called a *dimension group*; we denote an order-isomorphism class of the latter by (G, G^+) .

2.3. The Jacobi–Perron fractions

Let $a_1, a_2 \in \mathbb{N}$ such that $a_2 \leq a_1$. Recall that the greatest common divisor of a_1, a_2 , $\text{GCD}(a_1, a_2)$ can be determined from the Euclidean algorithm

$$a_{1} = a_{2}b_{1} + r_{3},$$

$$a_{2} = r_{3}b_{2} + r_{4},$$

$$r_{3} = r_{4}b_{3} + r_{5},$$

$$\vdots$$

$$r_{k-3} = r_{k-2}b_{k-1} + r_{k-1}$$

$$r_{k-2} = r_{k-1}b_{k},$$

where $b_i \in \mathbb{N}$ and $\text{GCD}(a_1, a_2) = r_{k-1}$. The Euclidean algorithm can be written as the regular continued fraction

$$\theta = \frac{a_1}{a_2} = b_1 + \frac{1}{b_2 + \frac{1}{\cdots + \frac{1}{b_k}}} = [b_1, \dots b_k].$$

If a_1, a_2 are non-commensurable in the sense that $\theta \in \mathbb{R}-\mathbb{Q}$, then the Euclidean algorithm never stops, and $\theta = [b_1, b_2, ...]$. Note that the regular continued fraction can be written in matrix form

$$\begin{pmatrix} 1\\ \theta \end{pmatrix} = \lim_{k \to \infty} \begin{pmatrix} 0 & 1\\ 1 & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1\\ 1 & b_k \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix}.$$

The Jacobi–Perron algorithm and connected (multidimensional) continued fraction generalizes the Euclidean algorithm to the case $\text{GCD}(a_1, \ldots, a_n)$ when $n \ge 2$. Namely, let $\lambda = (\lambda_1, \ldots, \lambda_n), \lambda_i \in \mathbb{R} - \mathbb{Q}$ and $\theta_{i-1} = \lambda_i/\lambda_1$, where $1 \le i \le n$. The continued fraction

$$\begin{pmatrix} 1\\ \theta_1\\ \vdots\\ \theta_{n-1} \end{pmatrix} = \lim_{k \to \infty} \begin{pmatrix} 0 & 0 & \cdots & 0 & 1\\ 1 & 0 & \cdots & 0 & b_1^{(1)}\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 1 & b_{n-1}^{(1)} \end{pmatrix} \cdots \begin{pmatrix} 0 & 0 & \cdots & 0 & 1\\ 1 & 0 & \cdots & 0 & b_1^{(k)}\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 1 & b_{n-1}^{(k)} \end{pmatrix} \begin{pmatrix} 0\\ 0\\ \vdots\\ 1 \end{pmatrix},$$

where $b_i^{(j)} \in \mathbb{N} \cup \{0\}$, is called the *Jacobi–Perron algorithm (JPA)*. Unlike the regular continued fraction algorithm, the JPA may diverge for certain vectors $\lambda \in \mathbb{R}^n$. However, for points of a generic subset of \mathbb{R}^n , the JPA converges [1]; in particular, the JPA for periodic fractions is always convergent.

3. Proof of theorem 1.1

A standard dictionary [5] between AF-algebras and their dimension groups is adopted. Instead of dealing with \mathfrak{A}_f , we work with its dimension group $G_{\mathfrak{A}_f} = (G, G^+)$, where $G \cong \mathbb{Z}^n$ is the lattice and $G^+ = \{(x_1, \ldots, x_n) \in \mathbb{Z}^n \mid \theta_1 x_1 + \cdots + \theta_{n-1} x_{n-1} + x_n \ge 0\}$ is a positive cone. Recall that $G_{\mathfrak{A}_f}$ is abelian group with an order that defines the AF-algebra \mathfrak{A}_f up to a stable isomorphism. We arrange the proof in a series of lemmas. First, let us show that \mathfrak{A}_f is a correctly defined AF-algebra.

Lemma 3.1. The \mathfrak{A}_f does not depend, up to a stable isomorphism, on a basis in $H_1(X_0(N), Z(\phi); \mathbb{Z})$.

Proof. Denote by $\mathfrak{m} := \mathbb{Z}\lambda_1 + \cdots + \mathbb{Z}\lambda_n$ a \mathbb{Z} -module in the real line \mathbb{R} . Let $\{\gamma'_i\}$ be a new basis in $H_1(X_0(N), \mathbb{Z}(\phi); \mathbb{Z})$, such that $\gamma'_i = \sum_{j=1}^n a_{ij}\gamma_j$ for matrix $A = (a_{ij}) \in \operatorname{GL}_n(\mathbb{Z})$. Using the integration rules, one gets

$$\lambda'_i = \int_{\gamma'_i} \phi = \int_{\sum_{j=1}^n a_{ij}\gamma_j} \phi = \sum_{j=1}^n \int_{\gamma_j} \phi = \sum_{j=1}^n a_{ij}\lambda_j.$$

Thus, $\mathfrak{m}' = \mathfrak{m}$ and a change of basis in the homology group $H_1(X_0(N), Z(\phi); \mathbb{Z})$ amounts to a change of basis in the module \mathfrak{m} . It is an easy exercise to show that there exists a linear transformation of \mathbb{Z}^n sending the positive cone G^+ of $G_{\mathfrak{A}_f}$ to the positive cone $(G^+)'$ of $G_{\mathfrak{A}'_f}$. In other words, \mathfrak{A}'_f and \mathfrak{A}_f are stably isomorphic. \Box

Lemma 3.2. The (scaled) periods λ_i belong to the field K_{f_N} .

Proof. Let $\mathfrak{m} = \mathbb{Z}\lambda_1 + \cdots + \mathbb{Z}\lambda_{2g}$ be a \mathbb{Z} -module generated by λ_i ; we seek the effect of the Hecke operators T_m on \mathfrak{m} . By the definition of a Hecke eigenform, $T_m f_N = c(m) f_N$ for all $T_m \in \mathbb{T}_N$. In view of the isomorphism $S_2(\Gamma_0(N)) \cong \Omega_{hol}(X_0(N))$, one gets $T_m \omega_N = c(m)\omega_N$, where $\omega_N = f_N dz$. Then $\operatorname{Re}(T_m \omega_N) = T_m(\operatorname{Re}(\omega_N)) = \operatorname{Re}(c(m)\omega_N) = c(m)\operatorname{Re}(\omega_N)$. Therefore, $T_m \phi_N = c(m)\phi_N$, where $\phi_N = \operatorname{Re}(\omega_N)$. The action of T_m on \mathbb{Z} -module \mathfrak{m} can be written as

$$T_m(\mathfrak{m}) = \int_{H_1} T_m \phi_N = \int_{H_1} c(m) \phi_N = c(m) \mathfrak{m},$$

where $H_1 := H_1(X_0(N), Z(\phi_N); \mathbb{Z})$. Thus, the Hecke operator T_m acts on the module \mathfrak{m} as multiplication by an algebraic integer $c(m) \in K_{f_N}$.

The action of T_m on $\mathfrak{m} = \mathbb{Z}\lambda_1 + \cdots + \mathbb{Z}\lambda_n$ can be written as $T_m\lambda = c(m)\lambda$, where $\lambda = (\lambda_1, \ldots, \lambda_n)$; thus, T_m is a linear operator (on the space \mathbb{R}^n), whose eigenvector λ corresponds to the eigenvalue c(m). It is an easy exercise in linear algebra to show that λ can be scaled so that all λ_i lie in the same field as c(m); Lemma 3.2 follows.

https://doi.org/10.1017/S0013091510001203 Published online by Cambridge University Press

I. V. Nikolaev

Case 1. Let f_N be a non-rational eigenform; then $n = \deg(K_{f_N}/\mathbb{Q}) \ge 2$. Note that $\mathfrak{m} = \mathbb{Z}\lambda_1 + \cdots + \mathbb{Z}\lambda_n$ is a full (i.e. the maximal rank) \mathbb{Z} -module in the number field K_{f_N} . Indeed, rank(\mathfrak{m}) cannot exceed n, since $\mathfrak{m} \subset K_{f_N}$ and K_{f_N} is a vector space (over \mathbb{Q}) of dimension n. On the other hand, $(\lambda_1, \ldots, \lambda_n)$ is a basis of the field K_{f_N} and, as such, rank(\mathfrak{m}) cannot be less than n; thus, rank(\mathfrak{m}) = n.

Lemma 3.3. The vector $(\lambda_1, \ldots, \lambda_n)$ has a periodic (Jacobi–Perron) continued fraction.

Proof. Since $\mathfrak{m} \subset K_{f_N}$ is a full \mathbb{Z} -module, its endomorphism ring $\operatorname{End}(\mathfrak{m}) = \{\alpha \in K_{f_N} : \alpha \mathfrak{m} \subseteq \mathfrak{m}\}$ is an order (a subring of the ring of integers) of the number field K_{f_N} ; let u be a unit of the order [3, p. 112]. The action of u on \mathfrak{m} can be written in a matrix form $A\lambda = u\lambda$, where λ is a basis in \mathfrak{m} and $A \in \operatorname{GL}_n(\mathbb{Z})$; with no loss of generality, one can assume the matrix A to be non-negative in a proper basis of \mathfrak{m} .

According to Proposition 3 of [1], the matrix A can be uniquely factorized as

$$A = \begin{pmatrix} 0 & 1 \\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b_k \end{pmatrix},$$

where vectors $b_i = (b_1^{(i)}, \ldots, b_{n-1}^{(i)})^{\mathrm{T}}$ have non-negative integer entries. By Satz XII of [7], the periodic continued fraction

$$\begin{pmatrix} 1\\ \theta' \end{pmatrix} = \operatorname{Per} \overline{\begin{pmatrix} 0 & 1\\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1\\ I & b_k \end{pmatrix}} \begin{pmatrix} 0\\ \mathbb{I} \end{pmatrix}$$
(3.1)

converges to a vector $\lambda' = (\lambda'_1, \ldots, \lambda'_n)$, which satisfies the equation $A\lambda' = u\lambda'$. Since $A\lambda = u\lambda$, the vectors λ and λ' are collinear, but collinear vectors have the same continued fractions [2].

The first case of Theorem 1.1 follows from Lemma 3.3, since \mathfrak{A}_{f_N} is a stationary AFalgebra, whose period is given by the matrix A.

Case 2. Let f_N be a rational eigenform; in this case n = 1 and $K_{f_N} = \mathbb{Q}$. The Bratteli diagram of \mathfrak{A}_{f_N} is finite and one dimensional; therefore, $\mathfrak{A}_{f_N} \cong M_1(\mathbb{C}) = \mathbb{C}$. This argument finishes the proof of the first part of Theorem 1.1.

To prove the second part by contradiction, let $A \neq A'$ be similar matrices. To find S such that $A' = S^{-1}AS$, notice that $\mathfrak{m}^{\sigma} = \lambda_1^{\sigma}\mathbb{Z} + \cdots + \lambda_n^{\sigma}\mathbb{Z}$. Since $\mathfrak{m}^{\sigma} = \mathfrak{m}$, $\lambda_j^{\sigma} = \sum s_{ij}\lambda_i$, where $S = (s_{ij})$; but $\sigma^k = \mathrm{Id}$ for some integer k and thus $S^k = I$. Therefore, $(A')^k = (S^{-1}AS)^k = A^k$ and A' = A, which contradicts our assumption. On the other hand, $\lambda_j^{\sigma} \in K_{f_N}$ implies that the characteristic polynomials $\mathrm{ch}(A) = \mathrm{ch}(A')$; therefore, \mathfrak{A}_{f_N} and $\mathfrak{A}_{f_N}^{\sigma}$ are companion AF-algebras.

Acknowledgements. This research was partly supported by NSERC. The author is grateful to Professor Yu. I. Manin for helpful remarks and to Professor D. Solomon for his interest; Dr L. D. Taylor kindly provided the author with a copy of his unpublished note 'Foliations on modular curves' (University of Nottingham, 2007). The author thanks the referee for prompt and thoughtful comments.

References

- 1. M. BAUER, A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi–Perron algorithm, *Bol. Soc. Bras. Mat.* **27** (1996), 109–128.
- 2. L. BERNSTEIN, *The Jacobi–Perron algorithm, its theory and applications*, Lecture Notes in Mathematics, Volume 207 (Springer, 1971).
- 3. Z. I. BOREVICH AND I. R. SHAFAREVICH, *Number theory* (Academic Press, New York, 1966).
- 4. F. DIAMOND AND J. SHURMAN, A first course in modular forms, Graduate Texts in Mathematics, Volume 228 (Springer, 2005).
- 5. E. G. EFFROS, *Dimensions and C*-algebras*, CBMS Regional Conference Series in Mathematics, Volume 46 (American Mathematical Society, Providence, RI, 1981).
- 6. J. HUBBARD AND H. MASUR, Quadratic differentials and foliations, Acta Math. 142 (1979), 221–274.
- 7. O. PERRON, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, *Math. Annalen* **64** (1907), 1–76.