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Abstract

In this paper, we prove the existence, uniqueness and multiplicity of positive solutions of a nonlinear
perturbed fourth-order problem related to the Q curvature.
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1. Introduction
In recent years, there has been an intensive study of the relationship between
conformally covariant operators and partial differential equations. See some recent
survey papers by Chang [8] and Chang and Yang [10]. Given a smooth four-
dimensional compact Riemannian manifold (M, g), let Rg and Ricg be the scalar
curvature and the Ricci curvature of g, respectively, divg the divergence operator and
d the de Rham differential; then the Paneitz operator is defined in the following way:

Pgψ = ∆2
gψ − divg( 2

3 Rg − 2Ricg) dψ;
see Paneitz [22]. For the case N ≥ 5, the Paneitz operator Pg is defined by

Pg = ∆2
g − divg[aNRgg + bNRicg] +

N − 4
2

Qg.

Here

Qg =
1

2(N − 1)
∆Rg +

N3 − 4N2 + 16N − 16
8(N − 1)2(N − 2)2 R2

g −
2

(N − 2)2 |Ric|2

and

aN =
(N − 2)2 + 4

2(N − 1)(N − 2)
,

bN = −
4

N − 2
.
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When N ≥ 5, the operator Pg has the following property: if g = u4/(N−4)g is a
conformal metric of g, then for all ϕ ∈ C∞(M)

Pg(ϕu) = ϕ(N+4)/(N−4)Pg(u).

In particular,

Pg(ϕ) =
N − 4

2
Qgϕ

(N+4)/(N−4).

Many interesting results on the Paneitz operator and related topics have been recently
studied by Branson [5], Branson et al. [6], Chang and Yang [10], Gursky [18], Ben
Ayed and El Mehdi [4], Chtioui and Rigane [11], Esposito and Robert [15], Sandeep
[24] and many others. In particular, when N ≥ 5, Djadli et al. [12] studied the
coercivity of the Paneitz operator and the positivity of solutions. Moreover, Djadli
et al. [13] and Hebey and Robert [19] studied the blow-up analysis of the Q curvature
equation.

Let us now consider the question: given a smooth function Q on SN (N ≥ 5), does
there exist a metric g conformal to the standard metric g0 such that Q = Qg?

If we assume a conformal transformation of the form g = w4/(N−4)g0, the answer to
the above question is ‘yes’ if and only if we can solve for w in the equationPg0 w =

N − 4
2

Q(x)w(N+4)/(N−4) in SN ,

w > 0 in SN .
(1.1)

The problem of finding Q such that (1.1) possesses a solution can be seen as
the generalization to the Paneitz operator of the so-called ‘Nirenberg problem’ Q;
namely: which functions on SN are the scalar curvature of a metric conformal to the
standard one? The Nirenberg problem has been studied by several authors; we mention
Ambrosetti et al. [2], Chang and Yang [10], Chang et al. [9] and Kazdan and Warner
[20]. A detailed bibliography on the Nirenberg problem can be found in Ambrosetti
and Malchiodi [3].

It can be checked that the Paneitz operator on (SN , g0) is given by

Pg0 w = ∆2
SN w −

1
2

(N2 − 2N − 4)∆SN w +
(N − 4)N(N2 − 4)

16
w. (1.2)

Consider the inverse of the stereographic projection

Π : RN → SN

given by

x 7→
( 2x
1 + |x|2

,
|x|2 − 1
|x|2 + 1

)
.

The spherical metric g0 is given in terms of the stereographic coordinate system as

g0 =
4 dx2

(1 + |x|2)2 .
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Hence, by a direct computation,

Pg0Φ(u) =

(1 + |x|2

2

)(N+4)/2
∆2u for all u ∈ C∞(RN),

where

Φ(u)(y) = u(Π(x))
(1 + |Π(x)|2

2

)(N−4)/2
, y = Π(x).

Then (1.2) reduces to

∆2u = Q̃(x)u(N+4)/(N−4) in R4, where Q̃ = Q ◦ Π. (1.3)

Let us consider the problem (1.1) by taking Q to be a perturbation of a constant
function. More precisely, we let Q = (1 + εh), where h is a smooth function on SN

and ε > 0 is a small parameter. Using the stereographic projection from SN to RN , we
transform (1.3) (with f denoting the transformed function h) to the following problem:{

∆2u = (1 + ε f (x))u(N+4)/(N−4) in RN ,
u > 0 in RN .

(1.4)

But, in this paper, we consider the nonlinear perturbed problem{
∆2u = u(N+4)/(N−4) + ε f (x)uq in RN ,
u > 0 in RN ,

(1.5)

with f (. 0) ∈ L∞(RN) ∩ L1(RN), ε being a positive parameter and 1 < q ≤
(N + 4)/(N − 4). Note that when q = (N + 4)/(N − 4), then (1.5) reduces to (1.4).
When q = (N + 4)/(N − 4), it is enough to have f ∈ L∞(RN).

Note that (1.5) is related to the entire space problem{
∆2U = U(N+4)/(N−4) in RN ,
U ∈ D2,2(RN),

whereD2,2(RN) = {u ∈ L2N/(N−4)(RN) :
∫
RN |∆u|2 dx < +∞}, and the solutions are given

by Lin [21] as

U1,0(x) = CN

( 1
1 + |x|2

)(N−4)/2
,

Uλ,ξ(x) = λ−(N−4)/2U1,0

( x − ξ
λ

)
(1.6)

and

〈(x − ξ),∇Uλ,ξ〉 = −

(
λ
∂Uλ,ξ

∂λ
+

N − 4
2

Uλ,ξ

)
, (1.7)

where CN = [N2(N2 − 4)(N − 4)](N−4)/8. Here

‖u‖2
D2,2(RN ) =

∫
RN
|∆u|2 dx.
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Note that when 1 < q < (N + 4)/(N − 4), we have interaction with the critical
dimension as Uq+1

1,0 is integrable provided q > 4/(N − 4), that is, the cases N = 5, 6, 7
are the worst case scenario and that is the reason why we require f ∈ L1(RN) ∩ L∞(RN).

Let us define a finite-dimensional functional J , where

J(λ, ξ) =
1

q + 1

∫
RN

f (x)Uλ,ξ
q+1(x) dx =

λN−θ

q + 1

∫
RN

f (ξ + λx)Uq+1
1,0 (x) dx, (1.8)

where θ = ((N − 4)(q + 1))/2. Using the Hölder inequality in (1.8) and choosing
N/(N − 4) < s < 2N/(N − 4),

|J(λ, ξ)| ≤C
( ∫
RN
| f (x)|s/(s−1) dx

)(s−1)/s( ∫
RN

U s
λ,ξ(x) dx

)(q+1)/s

≤ cλ(N(q+1)/s)−θ‖ f ‖L(s−1)/s‖U1,0‖
q+1
Ls .

Hence,
|J(λ, ξ)| → 0 as λ→ 0. (1.9)

As a result, we can extend J(λ, ξ) on R × RN in an odd way as

J̃(λ, ξ) = −J(−λ, ξ) for λ < 0.

Without loss of generality, we consider J̃(λ, ξ) = J(λ, ξ). Moreover, from (1.8) and
the fact that U1,0 is bounded,

J(λ, ξ) =
λN−θ

q + 1

∫
RN

f (ξ + λx)Uq+1
1,0 (x)

≤ cλN−θ‖ f ‖L1 .

Noting the fact that N − θ is negative, we conclude the fact thatJ(λ, ξ)→ 0 as |λ| → ∞.
Furthermore, if λ→ λ? > 0 and |ξ| → ∞, by the dominated convergence theorem,

J(λ, ξ) =
λ−θ

q + 1

∫
RN

f (x)Uq+1
( x − ξ

λ

)
→ 0.

Hence,
lim

|λ|+|ξ|→∞
J(λ, ξ) = 0. (1.10)

Hence, from (1.9) and (1.10), there exists (λ, ξ) with λ > 0 such that J has a critical
point (a global maximum or a global minimum) at (λ, ξ). Let

Jε(u) =
1
2

∫
RN
|∆u|2 dx −

1
p + 1

∫
RN
|u|p+1 dx −

ε

q + 1

∫
RN

f (x)|u|q+1 dx.

Hence, by Felli [16] as well as Lemma 2.2, there exists ε0 > 0 such that for all
ε ∈ (0, ε0), Jε ∈ C2(D2,2(RN),R) admits a critical point uε ∈ D2,2(RN) near M and
hence uε is a solution of (1.5), where p + 1 = 2N/(N − 4) and

M = {Uλ,ξ : (λ, ξ) ∈ R+ × RN}
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is an (N + 1)-dimensional manifold of solutions. Note that the existence of a solution
is dependent on some sort of ‘nondegeneracy’ condition of the critical point of J .

Let K ⊂ R+ × RN be a compact set and define

d(u,MK) = inf
(λ,ξ)∈K

‖u − Uλ,ξ‖D2,2(RN ).

In this paper we discuss the existence, uniqueness and multiplicity of positive
solutions of (1.5) under the assumption that f ∈ L1(RN) ∩C1(RN) ∩ L∞(RN).

Now we state the following theorems motivated by [23].

Theorem 1.1. Let (λ, ξ) be a nondegenerate critical point of J . Then there exists
ε0 > 0 such that for all ε ∈ (0, ε0), (1.5) admits a positive solution uε. Moreover,
‖uε − Uλ,ξ‖D2,2(RN ) = O(ε).

Corollary 1.2. Let uε be a sequence of solutions of (1.5) such that

‖uε − Uλ,ξ‖D2,2(RN ) → 0 as ε→ 0.

Then ∇J(λ, ξ) = 0.

Theorem 1.3 (Uniqueness). Let (λ, ξ) be a nondegenerate critical point of J .
Furthermore, suppose |∇ f (x)| ≤ C and there exists two sequences of solutions {uε,i}
(i = 1, 2) of (1.5) such that

‖uε,i − Uλ,ξ‖D2,2(RN ) → 0 as ε→ 0. (1.11)

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0), uε,1 ≡ uε,2.

Remark 1.4. Note that if q = 1 and N > 8, positive solutions of (1.5) are nonunique
for ε sufficiently small. See Felli [16]. In fact, Esposito [14] proved existence of two
positive solutions of the Paneitz operator on SN (see (1.2))

Pu =
N2(N − 4)(N2 − 4)

16
|u|8/(N−4)u + (ε f + o(ε))|u|q−1u

and 1 ≤ q ≤ (N + 4)/(N − 4) when f changes sign and q ≥ 4/(N − 4) or q < 4/(N − 4)
and

∫
SN f = 0. Note that our uniqueness is different in this context.

Theorem 1.5 (Multiplicity). Assume that there is a compact set K ⊂ R+ × RN with
nonempty interior such that the critical points of J in K are finite and nondegenerate.
Furthermore, suppose |∇ f (x)| ≤ C. Then there exists ρ0 = ρ0(K) > 0 and ε0 = ε0(ρ0) >
0 such that for all ε ∈ (0, ε0), the number of solutions to the problem (1.5) with
d(u,MK) < ρ0 is the same as the number of nondegenerate critical points of J .

Corollary 1.6. Furthermore, the conclusions of Theorems 1.1–1.5 hold for the
equation

(−∆)mu = (1 + ε f (x))u(N+2m)/(N−2m) in RN

whenever ‖ f ‖∞ + ‖∇ f ‖∞ ≤ C, N > 2m and m ∈ N. The construction of positive
solutions follows from Wei and Xu [25].
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Remark 1.7. Note that the conclusions of Theorems 1.1–1.5 are not only applicable to
the powers of Laplacians, but also applicable for the coercive Hardy equation −∆u −
(µ/|x|2)u = (1 + ε f (x))u(N+2)/(N−2) with N ≥ 3 and µ > 0. Here proving the results
becomes much easier as Ker{−∆ − (µ/|x|2) − ((N + 2)/(N − 2))u4/(N−2)} in D1,2(RN)
is one dimensional due to the scaling invariance of the operator.

2. Preliminaries

Lemma 2.1 (Nondegeneracy). The kernel of the linearized operator

L = ∆2 −
N + 4
N − 4

Uλ,ξ
4/(N−4)

inD2,2(RN) is N + 1 dimensional and

Ker(L) =

{∂Uλ,ξ

∂λ
,
∂Uλ,ξ

∂ξ1
,
∂Uλ,ξ

∂ξ2
, . . . ,

∂Uλ,ξ

∂ξN

}
.

Proof. This follows from Djadli et al. [13]. �

Let H be a Hilbert space and Jε(u) = J0(u) − εG(u) be a perturbed functional, where
J0,G ∈ C2(H,R). Moreover, assume that J0 satisfies:

(f1) J0 has a finite-dimensional manifold of critical points M; let c = J0(z) for all
z ∈ M;

(f2) for all z ∈ M, J′′0 (z) is a Fredholm operator of index zero;
(f3) for all z ∈ M, TzM = Ker J′′0 (z). We denote J = G|M.

Lemma 2.2. Let J0 satisfy (f1)–(f3) and suppose there exists z ∈ M which is a critical
point of J such that one of the following conditions holds:

(1) z is nondegenerate;
(2) z is a global maximum or global minimum;
(3) z is isolated and the local degree of ∇J at z is different from zero.

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0), the functional Jε has a critical
point uε such that uε → z as ε→ 0.

Proof. The proof of this lemma follows from Ambrosetti and Badiale [1]. Also, see
Ambrosetti et al. [2, page 122] and the book by Ambrosetti and Malchiodi [3]. Note
that Lemma 2.2 is a very general theorem; it is not restricted to Laplacian operators
only. Note that in Felli’s proof [16], condition (2) of the lemma holds. �

Lemma 2.3 (Caristi and Mitidieri [7]). Let Ω be an open subset of RN (N ≥ 5) and
u ∈ W2,2

loc (Ω) be a weak solution of

∆2u = a(x)u in Ω,
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where a ∈ Lαloc(Ω) with α > N/4. Then, for any 0 < β < +∞, there exist C > 0 and R > 0
such that

sup
B(y,r)∩Ω

|u| ≤ C
[ 1
rN

∫
B(y,2r)∩Ω

|u|β+1
]1/(β+1)

for any y ∈ RN and 0 < r < R.

Lemma 2.4. Let uε be a sequence of solutions of (1.5) with ‖uε − Uλ,ξ‖D2,2(RN ) → 0 as
ε→ 0 for some (λ, ξ) ∈ R+ × RN . Then the asymptotic behavior for derivatives of uε
at infinity is given by

|∇(β)uε(x)| = O(1)|x|4−N−|β| (2.1)

for 0 ≤ |β| ≤ 3 whenever |x| � 1.

Proof. First note that if uε → Uλ,ξ inD2,2(RN), then∫
RN

u2N/(N−4)
ε (x) dx→

∫
RN

U2N/(N−4)
λ,ξ (x) dx

as ε→ 0. Moreover, as f ∈ L∞(RN) ∩ L1(RN), by the Hölder inequality,∣∣∣∣∣ ∫
RN

f (x)uq+1
ε (x) dx

∣∣∣∣∣ ≤ C,∫
RN

f (x)uq+1
ε (x) dx→

∫
RN

f (x)Uq+1
λ,ξ (x) dx.

Also, by elliptic regularity, uε → Uλ,ξ in C4
loc(RN). Hence, uε is locally uniformly

bounded. So, we need to study the decay of uε at infinity. Define the Kelvin transform
of uε as

ûε(x) := |x|4−Nuε
( x
|x|2

)
.

By the application of the Kelvin transform on (1.5),

∆2ûε = [û8/(N−4)
ε + ε f̂ (x)|x|−τûq−1

ε ]ûε in RN\{0},

where τ = N + 4 − q(N − 4) and f̂ (x) = f (x/|x|2). Let aε(x) = û8/(N−4)
ε + ε f̂ (x)|x|−τûq−1

ε .
But f̂ (x)|x|−τ is bounded near 0. Hence, by Lemma 2.3, there exist R > 0 and C > 0
independent of ε > 0 such that

sup
BR(0)
|ûε(x)| ≤ C

[ 1
RN

∫
B2R

|ûε(z)|2N/(N−4) dz
](N−4)/2N

≤ C.

This implies that, for |x| � 1,

uε(x) = O(|x|4−N).

And, hence, by the Schauder estimates,

|∇(β)uε| ≤ C|x|4−N−|β|.

Note that in the above estimate C > 0 is independent of ε > 0. �
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Lemma 2.5. Let wε be a sequence of solutions of{
∆2w = cε(x)w + ε f (x)dε(x)w in RN

w ∈ D2,2(RN) (2.2)

with ‖wε‖D2,2(RN ) ≤ C, where uε,i (i = 1, 2) are solutions of (1.5)

cε(x) =

∫ 1

0
[tuε,1(x) + (1 − t)uε,2(x)]8/(N−4) dt

and

dε(x) =

∫ 1

0
[tuε,1(x) + (1 − t)uε,2(x)]q−1 dt.

Then, for |x| � 1, we have a uniform estimate

|∇(β)wε(x)| = O(1)|x|4−N−|β| (2.3)

for 0 ≤ |β| ≤ 3.

Proof. By the standard regularity, wε is locally uniformly bounded. Let us consider
the Kelvin transform of wε

ŵε(x) := |x|4−Nwε

( x
|x|2

)
,

ûε(x) = |x|4−Nuε
( x
|x|2

)
, ŵε(x) = |x|4−Nwε

( x
|x|2

)
, x ∈ RN\{0}.

Furthermore, define

ĉε(x) =

∫ 1

0
[tûε,1 + (1 − t)ûε,2]8/(N−4) dt,

d̂n(x) =

∫ 1

0
[tûε,1 + (1 − t)ûε,2]q−1 dt.

Then, by (2.2), ŵε satisfies

∆2ŵε = ĉεŵε + ε|x|−τ f
(

x
|x|2

)
d̂εŵε in RN\{0}. (2.4)

So, we are going to study boundedness of (2.4) near a neighborhood of the origin.
From Lemma 2.4, ĉε, |x|−τd̂ε f (x/|x|2) is uniformly bounded near the origin. Hence, by
Lemma 2.3, there exist C,R > 0 such that

sup
B(y,R)∩Ω

|ŵε| ≤ C
[ 1
RN

∫
B(y,2R)∩Ω

|ŵε(z)|2N/(N−4) dz
](N−4)/(2N)

≤ C.

Hence, ŵε is uniformly bounded near the origin and hence |wε(x)| ≤ C|x|4−N when
|x| � 1. The decay of higher derivatives follows from the standard elliptic estimates. �
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Lemma 2.6 (Kazdan–Warner-type identities). Let uε be a solution of (1.5) such that
‖uε − Uλ,ξ‖D2,2(RN ) → 0 as ε → 0 for some (λ, ξ) ∈ R+ × RN . Then, we have the
following two types of Pohozaev identities:∫

RN
f (x)uq

ε

∂uε
∂xi

= 0, i = 1, 2 (2.5)

and ∫
RN

f (x)uq
ε

[
(x − ξ) · ∇uε +

(N − 4
2

)
uε

]
= 0. (2.6)

Proof. In order to prove (2.5), we multiply (1.5) by ∂uε(x)/∂xi, i = 1, 2, . . . , N, and
integrate by parts on the ball BR(0) to get∫

BR(0)
(u(N+4)/(N−4)
ε + ε f (x)uq

ε)
∂uε
∂xi

=

∫
∂BR(0)

∂∆uε
∂ν

∂uε
∂xi

dσ −
∫

BR(0)
∇∆uε ·

∂

∂xi
(∇uε).

(2.7)
By (2.1), we obtain∫

∂BR(0)

∣∣∣∣∣∂∆uε
∂ν

∂uε
∂xi

∣∣∣∣∣ dσ = O

( 1
R2(N−2)

)
as R→∞.

Again, by a suitable integration by parts and using (2.1) and Lemma 2.4, we get, as
R→∞,∫

BR(0)
∇∆uε ·

∂

∂xi
(∇uε) =

∫
∂BR(0)

(
∆uε

∂

∂ν

(
∂uε
∂xi

)
−

1
2R

xi|∆uε|2
)

dσ = O

( 1
R2(N−2)

)
.

Hence, from the last two relations,

lim
R→∞

{
Right-hand side of (2.7)

}
= 0. (2.8)

We note that, again integrating by parts,∫
BR(0)

(u(N+4)/(N−4)
ε + ε f (x)uq

ε)
∂uε
∂xi

=
1
R

∫
∂BR(0)

xiu2N/(N−4)
ε dσ + ε

∫
BR(0)

f (x)uq
ε

∂uε
∂xi

.

Using (2.1) and letting R→∞ in the above equation,

lim
R→∞

∫
BR(0)

(u(N+4)/(N−4)
ε + ε f (x)uq

ε)
∂uε
∂xi

= ε

∫
RN

f (x)uq
ε

∂uε
∂xi

. (2.9)

Therefore, we obtain, using (2.9) and (2.8),

ε

∫
RN

f (x)uq
ε

∂uε
∂xi

= lim
R→∞
{Left-hand side of (2.7)} = 0,

which proves (2.5).
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For (2.6), we multiply (1.5) by (x − ξ) · ∇uε + ((N − 4)/2)uε on either side and
integrate on the ball BR(y) as before to obtain∫

BR(y)
(u(N+4)/(N−4)
ε + ε f (x)uq

ε)
(
(x − ξ) · ∇uε +

(N − 4
2

)
uε

)
=

∫
BR(y)

∆2uε
(
(x − ξ) · ∇uε +

(N − 4
2

)
uε

)
.

(2.10)

Integrating by parts,

Left-hand side of (2.10) = R
∫
∂BR(y)

u(N+4)/(N−4)
ε dσ

+ ε

∫
BR(y)

f (x)uq
ε

(
(x − ξ) · ∇uε +

(N − 4
2

)
uε

)
.

Again integrating by parts suitably,

Right-hand side of (2.10) =

∫
∂BR(y)

(
|x − ξ|

[1
2
|∆uε|2 +

∂uε
∂r

∂

∂r
(∆uε)

]
− ∆uε

∂

∂r

(
r
∂uε
∂r

))
dσ.

Using the decay estimate (2.1),

lim
R→∞
{Left-hand side of (2.10)} = ε

∫
RN

f (x)uεq
(
(x − ξ) · ∇uε +

(N − 4
2

)
uε

)
and

lim
R→∞
{Right-hand side of (2.10)} = 0.

Hence, (2.6) follows. �

Remark 2.7. Note that when q = (N + 4)/(N − 4) one can derive the Kazdan and
Warner [20] kind of identities using the concept of an integral equation inD2,2(RN);

uε(x) =

∫
RN

(1 + ε f (y))F(x, y)u(N+4)/(N−4)
ε (y) dy, (2.11)

where F(x, y) = 1/(4 − N)σN |x − y|N−4 is the fundamental solution of ∆2 and σN is the
area of the unit sphere in RN . The main idea is the fact that

∆2u = f in RN

can be written as u = u1 + u2, where ui ∈ D
2,2(RN); i = 1, 2, u1(x) =

∫
RN F(x, y)g(y) dy

and ∆2u2 = 0. But this implies u2 = 0. As a result, we end up getting (2.11).
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Proof of Corollary 1.2. By the Schauder estimates, uε → Uλ,ξ in C4
loc(RN), and by

Lemma 2.6 and the dominated convergence theorem we can pass to the limit in (2.5)
and (2.6). Using (1.7), ∫

R3
f (x)Uq

λ,ξ

∂Uλ,ξ

∂xi
= 0, i = 1, 2, . . . ,N (2.12)

and ∫
R3

f (x)Uq
λ,ξ

∂Uλ,ξ

∂λ
= 0. (2.13)

Hence, we obtain ∇J(λ, ξ) = 0. �

Lemma 2.8. If (λ0, ξ0) is a critical point of J , then

λ0
∂2J

∂λ2 (λ0, ξ0) =−θ

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂Uλ0,ξ0

∂λ
(z) dz

− N
∫
RN

f (z)Uq
λ0,ξ0

(z)
〈
z − ξ0,∇

∂Uλ0,ξ0

∂λ
(z)

〉
dz

− Nq
∫
RN

f (z)Uq−1
λ0,ξ0

(z)〈z − ξ0,∇Uλ0,ξ0〉
∂Uλ0,ξ0

∂λ
(z) dz.

Furthermore,

∂2J

∂λ∂ξi
(λ0, ξ0) =−

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂

∂zi

(∂Uλ0,ξ0

∂λ
(z)

)
dz

− q
∫
RN

f (z)Uq−1
λ0,ξ0

(z)
∂Uλ0,ξ0

∂λ
(z)
∂Uλ0,ξ0

∂zi
(z) dz.

Moreover, for 1 ≤ i, j ≤ N,

∂2J

∂ξi∂ξ j
(λ0, ξ0) =−

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂

∂zi

(∂Uλ0,ξ0

∂z j
(z)

)
dz

− q
∫
RN

f (z)Uq−1
λ0,ξ0

(z)
∂Uλ0,ξ0

∂z j
(z)
∂Uλ0,ξ0

∂zi
(z) dz,

where z = ξ + λx.

Proof. As Uλ,ξ satisfies (1.6) and (1.7),

∂J

∂λ
(λ, ξ) =

λN−θ

q + 1

∫
RN
〈x,∇ f (λx + ξ)〉Uq+1

1,0 (x) dx

+
N − θ
q + 1

λN−θ−1
∫
RN

f (λx + ξ)Uq+1
1,0 (x) dx,

∂J

∂ξi
(λ, ξ) =

λN−θ

(q + 1)λ

∫
RN

∂ f (λx + ξ)
∂xi

Uq+1
1,0 (x) dx.
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Also, note that θ = (N − 4)(q + 1)/2. Integrating by parts,

λ
∂J

∂λ
(λ, ξ) = −

N
q + 1

λN−θ
∫
RN

f (λx + ξ)Uq+1
1,0 (x) dx

− NλN−θ
∫
RN

f (λx + ξ)Uq
1,0〈x,∇U1,0(x)〉 dx

+
N − θ
q + 1

λN−θ
∫
RN

f (λx + ξ)Uq+1
1,0 (x) dx

= −
θ

q + 1
λN−θ

∫
RN

f (λx + ξ)Uq+1
1,0 (x) dx

− NλN−θ
∫
RN

f (λx + ξ)Uq
1,0〈x,∇U1,0(x)〉 dx

and
∂J

∂ξi
(λ, ξ) = −λN−θ−1

∫
RN

f (λx + ξ)Uq
1,0(x)

∂U1,0

∂xi
dx.

Since (λ0, ξ0) is a critical point of J , we must have (∂J/∂λ)(λ0, ξ0) = 0 and
(∂J/∂ξi)(λ0, ξ0) = 0. Hence, letting z = ξ + λx,

λ0
∂2J

∂λ2 (λ0, ξ0) = −θ

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂Uλ0,ξ0

∂λ
(z) dz

− N
∫
RN

f (z)Uq
λ0,ξ0

(z)
〈
z − ξ0,∇

∂Uλ0,ξ0

∂λ
(z)

〉
dz

− Nq
∫
RN

f (z)Uq−1
λ0,ξ0

(z)〈z − ξ0,∇Uλ0,ξ0〉
∂Uλ0,ξ0

∂λ
(z) dz.

Furthermore,

∂2J

∂λ∂ξi
(λ0, ξ0) = −

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂

∂zi

(∂Uλ0,ξ0

∂λ
(z)

)
dz

− q
∫
RN

f (z)Uq−1
λ0,ξ0

(z)
∂Uλ0,ξ0

∂λ
(z)
∂Uλ0,ξ0

∂zi
(z) dz.

Moreover, for 1 ≤ i, j ≤ N,

∂2J

∂ξi∂ξ j
(λ0, ξ0) = −

∫
RN

f (z)Uq
λ0,ξ0

(z)
∂

∂zi

(∂Uλ0,ξ0

∂z j
(z)

)
dz

− q
∫
RN

f (z)Uq−1
λ0,ξ0

(z)
∂Uλ0,ξ0

∂z j
(z)
∂Uλ0,ξ0

∂zi
(z) dz. �

3. Proof of the main theorems

Proof of Theorem 1.1. Let (λ, ξ) be a nondegenerate critical point of J . Then
∇J(λ, ξ) = 0 and det(∇2J(λ, ξ)) , 0. Hence, ∇2 J(λ, ξ) is an invertible matrix of
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order N + 1. Our aim is to obtain a solution of (1.5) which is of the form uε = Uλ,ξ + φε.
Note that

Jε(u) = J0(u) −
ε

q + 1

∫
RN

f (x)|u|q+1 dx,

where
J0(u) =

1
2

∫
RN
|∆u|2 dx −

1
p + 1

∫
RN
|u|p+1 dx

and Ker(L) is N + 1-dimensional; see Lemma 2.1. Moreover, it is easy to check that
J0 satisfies (f1)–(f3). Hence, by Lemma 2.2, (1) holds and we obtain a solution of (1.5)
for sufficiently small ε > 0.

Proof of Theorem 1.3. If possible, let there exist a sequence εn → 0 and two
distinct functions u1,εn ≡ u1,n, u2,εn ≡ u2,n which solve (1.5) with ε = εn and ‖ui,n −

Uλ,ξ‖D2,2(RN ) → 0 as n→∞ for i = 1, 2. Set w̃n = u1,n − u2,n. Then ‖w̃n‖D2,2(RN ) → 0 as
n→∞. Hence, by Lemma 2.4, ‖w̃n‖L∞(RN ) ≤ C.

Define wn = w̃n/‖w̃n‖L∞(RN ). Then there exists xn ∈ R
N such that |wn(xn)| ≥ 1

2 . Then
wn satisfies

∆2wn = cn(x)wn + ε f (x)dn(x)wn with cn(x) =

∫ 1

0
[tu1,n + (1 − t)u2,n]8/(N−4) dt

and

dn(x) =

∫ 1

0
[tu1,n + (1 − t)u2,n]q−1 dt.

Using Schauder estimates, we obtain wn → w in C4
loc(RN), where w satisfies the entire

problem

∆2w =
N + 4
N − 4

U8/(N−4)
λ,ξ w in RN .

By the nondegeneracy result in Lemma 2.1,

w = c0
∂Uλ,ξ

∂λ
+

N∑
j=1

c j
∂Uλ,ξ

∂x j

for some c j ∈ R, j = 1, . . . , N. We claim that c j = 0 for all j = 0, 1, . . . , N. By the
identity (2.5), ∫

RN
f (x)ui,n

q ∂ui,n

∂x j
= 0, j = 1, 2, . . . ,N. (3.1)

We derive from (3.1) and (2.1)∫
RN

∂ f
∂x j

uq+1
ε,i = 0, i = 1, 2 and j = 1, 2, . . . ,N.

Therefore, ∫
RN

(
∂ f
∂x j

u1,n
q+1 −

∂ f
∂x j

u2,n
q+1

)
= 0 for j = 1, 2, . . . ,N
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and, using the fundamental theorem of integral calculus,∫
RN

∂ f
∂x j

( ∫ 1

0
[tu1,n + (1 − t)u2,n]q dt

)
w̃n dx = 0 for j = 1, 2, . . . ,N. (3.2)

Letting ε→ 0 in (3.2),∫
RN

∂ f
∂x j

Uλ,ξ
q

c0
∂Uλ,ξ

∂λ
+

N∑
i=1

ci
∂Uλ,ξ

∂xi

 = 0, j = 1, 2, . . . ,N.

That is, integrating by parts again,∫
RN

f
∂

∂x j
(Uλ,ξ

qw) = 0, j = 1, 2, . . . ,N.

This implies that

q
∫
RN

f (x)Uq−1
λ,ξ

∂Uλ,ξ

∂x j
w +

∫
RN

f (x)Uq
λ,ξ

∂w
∂x j

= 0. (3.3)

Furthermore, we obtain by integrating on BR(y)∫
BR(y)

(x − ξ) · ∇( f uq+1
i,n ) = R

∫
∂BR(y)

f (x)uq+1
i,n − N

∫
BR(y)

f (x)uq+1
i,n for i = 1, 2.

This implies that as R→ +∞∫
RN

(x − ξ) · ∇( f uq+1
i,n ) = −N

∫
RN

f (x)uq+1
i,n for i = 1, 2.

And, as a result,∫
RN
〈(x − ξ),∇ f (x)〉uq+1

i,n + (q + 1)
∫
RN

f (x)〈(x − ξ),∇ui,n〉u
q
i,n = −N

∫
RN

f (x)uq+1
i,n .

Hence, by the Pohozaev identity (2.6), we have for i = 1, 2∫
RN
〈(x − ξ),∇ f (x)〉uq+1

i,n =

[ (N − 4)(q + 1) − 2N
2

] ∫
RN

f (x)uq+1
i,n

= γ

∫
RN

f (x)uq+1
i,n ,

where γ = (N − 4)(q + 1) − 2N/2. This implies that∫
RN
〈(x − ξ),∇ f (x)〉uq+1

1,n −

∫
RN
〈(x − ξ) · ∇ f (x)〉uq+1

2,n = γ

∫
RN

f (x)[uq+1
1,n − uq+1

2,n ]

and, by the application of the mean value theorem,∫
RN
〈(x − ξ),∇ f (x)〉

( ∫ 1

0
(tu1,n + (1 − t)u1,n)q dt

)
wn

= γ

∫
RN

f (x)
( ∫ 1

0
(tu1,n + (1 − t)u1,n)q dt

)
wn.
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And, letting n→∞,∫
RN
〈(x − ξ),∇ f (x)〉Uq

λ,ξw = γ

∫
RN

f (x)Uq
λ,ξw = 0 (3.4)

because of (2.5) and (2.6) and passing to the limit as ε→ 0.Again, integrating by parts
(3.4),∫

RN
f (x)Uq

λ,ξ[Nw + 〈(x − ξ),∇w〉] + q
∫
RN

f (x)Uq−1
λ,ξ w〈(x − ξ),∇Uλ,ξ〉 = 0. (3.5)

From (3.3), (3.5), Corollary 1.2 and Lemma 2.8, ∇J(λ, ξ) = 0 and

∇2J(λ, ξ)(c0, c1, . . . , cN)T = 0

with ∇2J(λ, ξ) an invertible matrix, which implies c0 = c1 = c2 · · · = cN = 0. Also,
note that there will be some cancelation in Lemma 2.8 due to (2.12) and (2.13). This
proves that w ≡ 0 in RN and hence wn→ 0 in C4

loc(RN).Hence, we must have |xn| → ∞.
As usual, we define the Kelvin transform of the functions ui,n(x) and wn(x) as

ûi,n(x) = |x|4−Nui,n

( x
|x|2

)
, i = 1, 2, ŵn(x) = |x|4−Nwn

( x
|x|2

)
, x ∈ RN\{0}.

Furthermore, define

ĉn(x) =

∫ 1

0
[tû1,n + (1 − t)û2,n]8/(N−4) dt,

d̂n(x) =

∫ 1

0
[tû1,n + (1 − t)û2,n]q−1 dt.

Clearly, we have |ŵn(xn/|xn|
2)| ≥ 1

2 for all large n. It is easily seen that ŵn satisfies
the following equation:

∆2ŵn = ĉnŵn + ε f
(

x
|x|2

)
|x|−(N+4)+q(N−4)d̂nŵn.

By the decay estimate, we obtain |ŵn(x)| ≤ 1 for all n and all x ∈ B1(0)\{0}. Since
ŵn → 0 in C4

loc(RN\{0}), by the dominated convergence theorem, we obtain ŵn → 0 in
Lp(B1(0)) for all p ≥ 1. Using the assumption f ∈ L∞(RN) ∩ L1(RN) and the estimate
(2.3),

ĉn(x), f
( x
|x|2

)
|x|−τd̂n(x)

are bounded sequences in L2(B1(0)). Using Lp theory on ŵn [17, Corollary 2.23,
page 45],

‖ŵn‖L∞(B 1
2

(0)) ≤ C‖ŵn‖Lp(B1(0)) → 0.

This gives a contradiction, since

‖ŵn‖L∞(B 1
2

(0)) ≥

∣∣∣∣∣ŵn

( xn

|xn|
2

)∣∣∣∣∣ ≥ 1
2

for all large n. This proves the theorem.
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Proof of Theorem 1.5. By the assumptions, the nondegenerate critical points of J
are contained in the interior of a ball K = BR(0) ⊂ R+ × RN for some R > 0. Let (λi, ξi)
be the nondegenerate critical points of J (i = 1, 2, . . . , s) contained in K. Then, by
Theorem 1.1 and Corollary 1.2, there exists ε0 > 0 such that for any ε ∈ (0, ε0), the
problem (1.5) has at least s solutions uε,i and s points (λi, ξi) such that uε,i − Uλi,ξi → 0
inD2,2(RN). For any µ > 0, define

Sµ = {u solves (1.5) for ε ∈ (0, µ)}\{uε,i}0<ε<µ,1≤i≤s.

Let
θµ = inf

u∈Sµ
d(u,MK).

We now claim that
θ0 = lim inf

µ→0
θµ > 0.

If possible, let θ0 = 0; then there exist sequences {un} ⊂ Sµ and {(λn, ξn)} ⊂ K such
that ‖un − Uλn,ξn‖D2,2(RN ) → 0 as n→ ∞. Let (λn, ξn)→ (λ, ξ). Then (λ, ξ) ∈ K and
∇J(λ, ξ) = 0 and hence {un} is a sequence of solutions bifurcating from (λ, ξ). But, by
the uniqueness theorem (Theorem 1.3) and {un} ⊂ Sµ, we obtain a contradiction. This
proves the claim.

As a result, we can choose µ0 > 0 small such that θµ ≥ θ0/2 for all µ < µ0. By
Theorem 1.1, there exist some C > 0 and ε′ > 0 such that

d(uε,i,MK) ≤ Cε, i = 1, . . . , s, ε ∈ (0, ε′).

Choosing ρ0 = θ0/2 and ε1 = min{θ0/2C, µ0, ε
′}, we obtain the required result.
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