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1. Introduction

Over the past few years quantum groups have shown to be powerful toolsin the
study of g-hypergeometric functions. They enabled proofsof identitieswhich would
have been hard to guess without quantum group theoretic motivation. We mention
for instance the papers [10], [16], [18] and [22]. See also [11], [12], [15], [20]
and [29], and references therein, for surveys on the connection between quantum
groups and basic hypergeometric functions.

The purpose of this paper is to present an addition theorem for so-called ¢-
disk polynomials, using quantum group theory. This result is a g-analogue of
a result which was proved around 1970 by Sapiro [25] and Koornwinder [13],
[14] independently. They considered the homogeneous space U (n)/U(n — 1),
were U(n) denotes the group of unitary transformations of the vector space C",
and identified the corresponding zonal spherical functions as polynomials in two

variables z and z, whose orthogonality measureis supported by the closed unit disk
D in the complex plane. These so-called disk polynomials are denoted Rl(ﬁ%(z)

({,m € Z,; o > —1) and they can be expressed in terms of the normalised Jacobi
polynomials R\ (z) = P\ (z)/P{*? (1), cf. [5, Sect. 10.8]. Explicitly;

o AR (222~ 1) (12 m)
R%(z)={" ) 1o 12 (11)
2R (2z]c=1) (I <m).
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The orthogonality reads

//R (r )R, (r&9)r(1— r2)%dr dg = 0
it (L,m) # (I',m). (12)

The zonal spherical functionson U(n)/U (n — 1) are then the constant multiples

of the polynomials R( 2 (z). The associated spherical functions were also shown
to be expressiblein terms of disk polynomials, and from this an addition formula
was derived for disk polynomials with positive integer values of «. By an easy
argument this identity is then extended to all complex values of «.. With this result
Koornwinder wasableto provean addition formulafor general Jacobi polynomials;
see [14]. In fact the line of arguing and the results in this paper are very similar to
(part of) the onesin [14].

g-Disk polynomials (quantum disk polynomialsin the terminology of [17]) are
polynomials in two non-commuting variables which are expressed by means of
little g-Jacobi polynomials, and which can be understood as a g-analogue of disk
polynomials. They appeared in [23] where the authors studied a quantum analogue
of U(n)/U(n — 1), or rather the coordinate ring of this quantum homogeneous
space. They investigated its ¢4, (gl(n))-module structure, where U4, (gl(r)) denotes
the quantised universal enveloping algebra corresponding to the Lie algebra gi(n),
using the theory of highest weight representations, and ended with identifying the
zonal spherical functions as ¢-disk polynomials. These polynomials are defined as
follows (cf. [17]): let Z be the complex unital x-algebra generated by the elements
z and z*, subject to therelation z*z = gqzz* +1— g and with involution (z)* = z*.
Then the ¢-disk polynomials R( )(z,z*;q), with o > —1and [,m € Z,, are
defined as

R

zl_mp(a’lfm)(l —22%;q) (I >m)
’m(Z Z*Q) - { (a mjlr; * * -1 (13)
p (=22 ) (%) (I < m).

Here p(z;a,b;q) = 2¢01(q7", abg't; aq; q, gx) is the little g-Jacobi polynomial
[8], and " (z; ) = pi(:4%, 4" ).

This paper is organised as follows. In Chapter 2 we recall the definition and
some of the properties of a CQG agebra, and we prove some results on quan-
tum homogeneous spaces needed later on. In the third chapter we introduce a
q-deformation Z,, of the algebra of polynomias on C* and we study its structure
as aldy(gl(n))-module. Chapter 4 then deals with Z,,, the g-deformed algebra of
polynomials on the spherein C" (this algebrais the same asthe algebra A(K'\G)
of [23], Sect. 4.1). In Section 4.1 we introduce invariant integration on Z,, and
we realise this algebra as a «-subalgebra of A, (U (n)). In the subsegquent section
we describe the irreducible decomposition of Z,, as aldy(gl(n))-module. In Sec-
tion 4.3 the zonal spherical elements are recovered as ¢-disk polynomials. Next
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we treat the irreducible decomposition of Z,, as aldy(gl(n — 1))-module and we
identify the associated spherical elements; they turn out to be expressible through
g-disk polynomias aswell. Finally, in Section 4.5 the addition theorem for ¢-disk
polynomials is proved. So, although we follow another path, the main results of
Sections 3.1 up till 4.3 of this paper are essentially already contained in [23].

It should be noted that the definition of ¢-disk polynomials as polynomialsin
two non-commuting variables accounts for the fact that the addition formula is
an identity in several non-commuting variables as well. However, in a subsequent
paper [7] we present an addition theorem in commuting variables which isin fact
equivalent to the one stated here.

The notation in this paper is taken from [8]. Throughout we fix areal parameter
O0<g<landwewriteZ, ={0,1,2,...}.

2. CQG algebras

In this chapter we establish some notation and we recall some facts on compact
guantum groups and quantum homogeneous spaces. Our language will be that of
[3]; seedaso[4] and[19]. Theground field for the vector spacesunder consideration
will always be the field C of complex numbers.

2.1. DEFINITIONS AND GENERALITIES

Let A be aHopf algebrawith comultiplication A: A — A ® A, counite: A — C
and antipode S : A — A (for the theory of Hopf algebras we refer the reader
to [27]). A is called a Hopf x-algebra if there exists an anti-linear involution
. A — A which turns A into a x-algebra and which is such that A and ¢ are
x-homomorphisms. It is not difficult to show that if A is a Hopf x-algebra, the
antipode S isinvertible and satisfies S o x 0 S o x = id. A right corepresentation of
Alisapair (V, ) of acomplex vector space V andalinearmapn: V — V ® A,
satisfying

(r@id)or=(d®A)or, (id®e)or=id. 2.1)

We aso say that (V,x), or simply V, is a right comodule for A. If V' is finite
dimensional with basis {e;} ¥, and if we write 7(e;) = Y& ;ex ® mg, then
(2.1) is equivalent to saying that the 7;; satisfy A(m;;) = fozl ik ® T and
e(m;j) = &;;. The elements 7;; of A are called the matrix coefficients of this
corepresentation. Furthermore, an element v of V' issaid to be (right) A-invariant
if m(v) =v® 1. WhenV = Z isa/(x-)agebra, the corepresentation 7 is called
a (x-)coaction if it is a homomorphism of (x-)algebras. A particular example of a
right corepresentationisgivenwhen V' isasubspaceof A suchthat A(V) C V®A,
and ™ = A.Inthiscase V issaid to be a(right) coideal of A.

Assumethat A isaHopf x-algebra. A right corepresentation7: V — V ® A
iscaled unitarisableif there exists a hermitean inner product (-, -) on V' such that
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(r(v),m(w)) = (v,w)ly for al v,w € V. Here we extended the inner product
(-,-y toamap fromV ® A to A by setting (v ® a,w ® b) = (v, w)b*a. If V is
endowed with this inner product, the corepresentation (V, ) is called unitary and
the inner product is called A-invariant.

Now suppose that (V, ) is a finite dimensional right comodule for A, with
orthonormal basis {e; } ¥ ; with respect to a given inner product. Denote by {r;; }
the collection of matrix coefficients of this corepresentation. Then the following
statements are equivalent:

(1) (V,m) isaunitary corepresentation

(2) Thlq Ty = 6i5da forall 1< 4,5 < N,
() S(miy) = mj; foral 1< i,5 < N,

(@) X gmymhy, = 6i51a foral 1<, j < N.

Let us write ¥ = X(A) for the set of equivalence classes of finite dimensional
irreducible unitary corepresentations of the Hopf x-algebra A. Furthermore, for a
givenr = (m;;)i7_y € T weput Ar = span{m;}5_ ) and A,y = span{m,;} 7,
(1< r < dy). Thenonecan provethat the {7;; } (7 € £;1 < 4,5 < dr) arelinearly
independent and 3, .5, A, isadirect sum (see e.g. [4], [19]; thisis actually true
in the more general situation of coalgebras).

DEFINITION. A Hopf x-algebra A is called a CQG algebra if A is spanned by
the matrix coefficients of al itsfinite dimensional (irreducible) unitary corepresen-
tations, i.e.if A =3 . Ar.

The direct sum decomposition A = s, A isusually referred to as the Peter—
Weyl decomposition. We also remark that, with respect to A, we havethefollowing
irreducible decomposition of A asaright comodule: A = @, v, @ﬁ;l Ar(r)-

THEOREM 2.1 ([19, Sect. 2.2],[3, Sect. 2.1]). Let A bea CQG algebra. Thenthere
exists a unique linear functional h : A — C, called normalised Haar functional,
that satisfies

(1) A(la) =1,

(2) (h®id)A(a) = h(a)ls = (Id® h)A(a) (a € A),

(3) h(a*a) >0 (a € A,a #0).

An important ingredient in the proof of this theorem is the following Schur type
orthogonality result.

THEOREM 2.2 ([19, Prop. 2.6], [3, Prop. 2.1.14]). If A isa CQG algebra, then
every finite dimensional corepresentation of A is unitarisable. Moreover, for all
7 € 3 there exists a positive-definite constant matrix £ such that the equalities

* (Fﬂ)'l * (Fﬂil)kl
h(my;pk) = 5wp5ikﬁv h(miipw) = 57rp5ﬂtr(F{l)
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hold for all 7, p € X. Here‘tr’ denotes the matrix trace.

A particular class of CQG algebrasis given by the finitely generated ones, called
CMQG agebras. A CQG algebra A isaCMQG algebraif and only if there existsa
singlefinite dimensional unitary corepresentation¢ = (t;;) of A suchthat A, asan
algebra, is generated by the matrix elements ¢;;. This corepresentation is usually
referred to as the fundamental (or natural) corepresentation. As an example of a
CMQG agebrawe will meet the algebra A, (n) = A4(U(n)) of regular functions
on the quantum unitary group.

2.2. TRANSITIVE COACTIONS

In this section we recall and establish some results on quantum homogeneous
spaces. Our language will be that of [3, Sect. 4.1].

Let a CQG agebra A, with Haar functional h, and a x-algebra Z be given.
Furthermore, let us assume that there exists a «-coaction §: Z — Z ® A of A on
Z . Supposethat this coactionistransitive, i.e. supposethat there exists an injective
x-algebra homomorphism ¥ : Z — A which intertwines the coactions § on Z
and A on A. Then we know from [3, Thm. 4.1.5] that Z possesses a normalised
positive definite A-invariant linear functional hz : Z — C, by which we mean that
hy satisfies (hz ® id) o §(z) = hyz(2)14 foradl z € Z, that hz(17) = 1 and
hz(z*z) > 0if z # 0. Moreover, the coaction ¢ is unitary with respect to the inner
product given by

(z,w) = h(w*z) (z,w € Z). (2.2

Upon identifying Z with ¥(Z), we may assumethat Z is a x-subalgebra and right
coideal of A, andthat ) = A and hy = h.

Assume that there exists a Hopf x-algebra C' with unital Hopf x-algebra epi-
morphism#: A — C such that for al z € Z there holds

0(z) = e(2)1c. (2.3
By meansof 6 we defineax-coaction § from C on Z by putting ¢ = (id®6)o A.

PROPOSITION 2.3. Suppose V' isa subcomoduleof Z of finitedimension N > 1,
soA:V — V ® A. Then V contains a nonzero C-invariant vector. That is, there
exists an element (o # 0in V' with the property ¢ (Co) = (o ® 1c.

Proof. Let {e;})Y, be an orthonormal basis for V' with respect to the inner
product (2.2). Write A(e;) = .o e, ® mxi. Unitarity of A will imply that
ARA = (id®id®ma)ooxo (A®RA): Z®Z — Z® Z @ Aisdsoaunitary
coaction with respect to the inner product (v1 ® w1, v2 ® wo) = (v1, v2) (w1, W2).
Herem,: A® A — A denotes multiplication in A and o3 is the flip operator
interchanging the second and third tensor factors. Furthermore, we have

Aomyg=(my®id)o(AXA). (2.9
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Now consider the element ¢ := Zfil e; ®@efinZ ® Z. Unitarity of A implies (cf.

Sect. 2.1)
N
(ARA)() = ) ej®ck ® TjiThi
ig k=1
N
= Z 5jkej X 6;; @1y =(®1y, (2.9)
jk=1

i.e. ¢ is A-invariant. If we put ¢ = m(¢) = YN, eie; € Z, thenit follows from
(2.4) and (2.5) that A(¢) = (Aom4)(¢) = (ma®id)o(ARA)(() =(®14,and
hence¢ = (|d®h)oA(§) By theinvariance of theHaar functional (Theorem 2.1(2))
we flndg‘ = h(C)14, and from this we obtain £(¢) = h(¢) = XN, h(esel) =

Yaler,ep) > 0. Finally, put (o := (id ® €)(¢) = X1¥4 £(e})e;. Then obviously
Co € V. Also (g # 0, sincee((g) = (¢) > 0. Thelast thing to show is that (g is
C-invariant. Writing m ¢ for the multiplication in C', one has

dc(Co) = (Id® 0) o A(Co) = (i[d@mc) o ((id® 0) o A(Co) ® 1c)
id® me) o ((id® 0) o (A®e)(¢) ® 1)
o (id®f®id)o (A® (e ®6)0A)()

(

(

id® mc

id®@me)o (id®0®e®0)o (A®A)()
id@me)o (Id®e®0®0) oo (A®A)C)
o(id®@id®@ma)ooso(A®A)()
dRe®0) o (ARA)(() =(de®6)o (( ®14)
= ([d®e)(¢) ® 1o = (o ® 1c,

where in the fourth equality we used (2.3) to find that for all z € Z there holds
£(z)1c = 6(z) = (¢ ® 0) o A(z). This proves the proposition. O

)
)
)
)

idec®0

~ Y~ ~~

)
)

Remark 2.4. Observe that the element ¢ does not depend on the choice of
the orthonormal basis of V. Suppose that C' is aso a CQG-algebra and suppose
moreover that the pair (A, C') forms a quantum Gel’fand pair, meaning that in
each A, thereisan at most one-dimensional subspace of C-invariant elements. If
the comodule structure on V' is unitary and irreducible, and if we consider V' as
a subspace of A as before, then V' can be realised as some A (), say A1), for
certain © € X (cf. Sect. 2.1). The invariant subspace will then be spanned by 71;.

From Proposition 2.2 we know that the dements e; = (tr(£1)/(F1)11) Y%y,

™

form an orthonormal basis of V. Thus we obtain, again by Proposition 2.2, that
£(Co) = ity hlesef) = tr(F D /(F D = 1/h(rfymn).
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Remark 2.5. The element ¢ plays a role similar to the kernel function on a
compact homogeneous space: let T, © Z — Z be the mapping T;(z) = (id ®
hz)(¢.(1® z)). Then it is easily seen that T¢(v) = v for al v € V and that
T¢(w) = 0 if w is orthogonal to V. Indeed, if v = Zj-vzlajej then T (v) =
Zi\szl ajeihz(efe;) = Zf\szl ajei(e;, ej) = Zﬁvzl aje; = v. Inthesameway it
followsthat T; (w) = 0 whenever (w, V') = 0.

We end this section with a small lemma, needed |ater on.

LEMMA 2.6. Suppose A, C' are two CQG-algebras with normalised Haar func-
tionals hy, he respectively, and such that there exists a unital Hopf x-algebra
epimorphismz: A — C (so C is a so-called quantum subgroup of A). Suppose
furthermorethat 6: Z — Z ® A isaright x-coaction of A on some x-algebra Z,
which is unitary with respect to a given inner product (-, ).

Let V' C Z beasubcomodule for the corepresentation 6 = (id ® =) o 4, and
let a C-invariant element ¢ in Z be given.

Now, if ¢ is orthogonal with respect to (-, ) to all C-invariant elementsin V/,
then ¢ is orthogonal to the whole of V.

Proof. By assumption we have that §c(¢) = ¢ ® 1¢. Define the linear map
Toe:Z — ZbyTe = (id® he) o 0¢. Since ¢ is C-invariant, onehas T (¢) = ¢.
Furthermore, if ¢ € V is arbitrary, then T (¢) is C-invariant and contained
in V. Now note that the A-invariant inner product (-,-) is aso C-invariant:
(0c(h),0c(v)) = (p,9)1e for @Al ¢, € Z. Consequently, if ¢ € Z is C-
invariant and orthogonal to all C-invariant elementsin V', andif ) € V isarbitrary
then

(¢, %) = hc({9,9)1c) = he((dc (), dc ()
= hce((¢ ® 1c,dc(¥))) = (¢, Tc(¥)) =0

since Te(v) is C-invariant. This proves the lemma. O

3. Thequantised algebra of polynomialson C"

In this chapter we introduce the agebra Z,,, which is a ¢-deformation of the
involutive algebra of polynomials on C". On this algebra we define a x-action of
Uy(n), the quantised universal enveloping algebra of the unitary group U(n), as
the *differential’ of acertain x-coaction of .A,(n), the quantised algebra of regular
functionson U (n).

3.1. DEFINITION AND STRUCTURE OF Z,

Write Z,, for the complex *-algebra generated by the elements z;, w; (1 < i < n)
subject to the relations
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22 = %% (1<i<j<n)

Wjw; = qWw; (1<i<j<n) (3.1)
wizj = qzjw; (1<, 5 <n,i#j) '
wizi = ziw; + (1= ¢%) Ypoyzewp (1<i < n)

and with involution x: 2, — Z,,, 27 = w; (1 < i < n). For ¢ = 1thisagebra
can be viewed as the commutative involutive algebra of polynomials in the n
coordinates z1, . . . , z, on C" and their conjugates. Using [2] one proves

PROPOSITION 3.1. Z, has as a C-linear basis the set {z w" = z*...
zpmwhn .. wh*} wherethe multi-indices A, p run over 2.

Remark 3.2. In the same way one can prove that the set {wz* = w/*...

whnzon zfl}, with A\, 4 € Z", constitutes a C-basis for Z,,. This also follows
from Proposition 3.1 by applying the algebra isomorphism which interchanges z;
and w; (1< i< n)andsendsqtoq .

LEMMA 33. For 1 < i,k < n;m € Z and with Q, = >5_; z;w; there holds

Q; = Qi, QRiQr = QrQi,

zrwy = Q — Qk—1, wyzr = Qk — Q-1
2,Qi = ¢ ?Qizx  and wpQ; = ¢?Qiwy,  if k>4,
2z Qi = Qizp  and wipQ; = Quwy 1k <4,

A = QP (g me W' = QPP e

Here (a; q)m = H;?;‘ol(l — aq’) denotes the ¢-shifted factorial. The proof of this
lemmaisstraightforward from (3.1). Asfor the centre of Z,,, we havethefollowing
result.

PROPOSITION 3.4. ThecentreCent(Z,,) of Z,, isequal to the polynomial algebra
in the element Q,,: Cent(Z2,,) = C[Q,].

Proof. It iseasy to check that Q,, commutes with all the z; and w;, and there-
fore that C[Q,] C Cent(Z,,). To prove the reverse inclusion, we introduce a total
ordering on the basis of Z,, asfollows: with a basis element z*w* we associate the
sequence { A, i} = (A + |pl, Ay oo AL i1y ooy i) DEFE A = A1+ + Ay
We declare 2w = zPw? if {\,u} > {p,o} with respect to the lexicographic
ordering of elementsin Zi”“. Now aninduction argument, similar to the one given
in [26, Prop. 2.2], finishes the proof. O

Remark 3.5. What we actually constantly useisthefollowing fact. If ¢ € Z,, is
amonomia which contains z; and w; exactly \; respectively p; times(1 < i < n),
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and if §(¢) denotes the highest order term of ¢ with respect to >, then ¢ can be
written in such away that §(¢) = cz*w” withc #0and A = (Ag,..., ), pt =
(Mla s 7MTL)

3.2. AUy(gl(n))-MODULE STRUCTURE ON Z,,

Let us write Ay(n) = Ay(U(n)), with generators ¢;;(1 < 4,5 < n),detq‘l and
Uy(n) = Uy(al(n)), with generaiors ¢" (h € P* = S0 7)), ex, (1 < & <
n — 1), for the quantised coordinate ring of U(n) and the quantised universal
enveloping algebra of gi(n) respectively. Both algebras are Hopf x-algebras. For
their definition we refer the reader to [21] and [23]; the structural maps are taken
asin [21]. So in particular we define the coproduct A on the generators ¢”, ey, f

of U, (n) by
Alg") =" ®¢",
Aleg) = ¢*F 1 @ep + e, ® 1, (3.2)

A(fr) =1 fr + fr ® q_(Ek_EIc-f—l)‘

Furthermore, A, (n) andi,(n) becomeHopf +-algebrain duality (see[21, Sect. 1.3])
if we define the pairing on the generators as

(" ti) = 0ijd"™1) (er tij) = Okidksngs  (Frrtij) = Okrr.i0kj.  (3.3)
Next we defined: 2, — Z, ® A,(n) onthe generators of Z,, by

n n
zi — Z 2k @ g, w; — Z wg @t (3.9
k=1 k=1

and extend this map linearly in both factors.

LEMMA 3.6. Themap ¢ asdefinedin (3.4) extendsto a x-algebra homomor phism
on Z,, and satisfies (2.1). In other words, ¢ extendsto a right x-coaction of A,(n)
on Z,.

Proof. Extending ¢ as a x-algebra homomorphism, we only need to verify that
it respects the relations (3.1). One can readily check that this is implied by the
relations [9, (2.1), (2.13-16)], which are valid in A,(n). It is aso immediate that
J satisfies (2.1). O

‘Differentiating’ this right x-coaction one obtains a left x-action of the quantised
universal enveloping algebralf,(n) on Z,;

X p=(d®X)od(¢), (X EUln)pe Z,). (3.5)

The element X on the right of (3.5) is identified with the linear functional on
Ay4(n) whichisinduced by the pairing between ¢/, (n) and A, (n). Following [27]
we symbolically write A(X) = 3= x) X(1) ® X (o) for X € Uy(n).
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LEMMA 3.7. (3.5) defines an algebra action of ¢,(n) on Z,, and it satisfies

X - () = Xx) (X - ¢) (X(2) - ¥). Moreover, X - ¢* = (S(X)* - ¢)* for all
X € Ug(n) and all ¢,¢ € Z,.

Notethat if ¢ € Z,, is A, (n)-invariant thiswill imply that X - ¢ = ¢(X)¢ for all
X € Uy(n),i.e. ¢ isUy(n)-invariant.

LEMMA 3.8. Theelement Q,, is.A,(n)-invariant, and hencealso/, (n)-invariant.
Proof. Thisfollowsimmediately from (3.4), the fact that § is an algebrahomo-

morphism and therelation 371 ¢;,t7, = di514,(n) (se€[9, (2.12)]). O

The x-action of U, (n) corresponding to ¢ is given in the following proposition.

PROPOSITION 3.9. For h € P*, 1< k <n—1and A, € Z'} there holds

qh AP = q<h,>\—u>zx\wu

fi - Z)\wu — _qﬂk+1[uk+l]q722,)\wli—8k+l+8k
+q/\k+1+ﬂk_likz+l[)\k]q_zz/\_fk+5k+lwﬂ7

e - At = _q_lqﬂk+1+/\k_)\k+l[uk]q_zz/\wﬂ+5k+l_5k

A A —
+q k[)\k+1]q_zz +ek 5k+1wli’

where [m], = (1 —¢™)/(1 — q) isthe g-number and A + ¢; = (Ag,..., A\ +
..., ).
Proof. Combine (3.5) and Lemma 3.7 with (3.2), and use therelations (3.1). O

Remark 3.10. One can rewrite thisresult alittle when using that for all m € Z
one has the identity [n],—2 = ¢ 2™ Ym] 2 .

Itisactually theleft action of ¢, (n) given by Proposition 3.9 that we will consider,
rather than the A, (n)-coaction, sinceit is easier to handle.
Observe that we have the following decomposition of Z,,;

zZ, = GB Zn(lam)a

l,mEZ 4

where Z,,(I,m) is the subspace of Z,, spanned by all elements which are homo-
geneous of degree! in the z;, and homogeneous of degree m in the wy. Note that
it makes sense to speak of homogeneous elements, since the relations (3.1) are
homogeneous. Also note that O is homogeneous of any degree (I, m). It follows
from Proposition 3.1 that Z,,(/,m) has a linear basis consisting of al elements
2 w* with the property that |A\| = [ and || = m; here |A\| = A1 + -+ + A,
Hencethe Z,,(I,m) (I, m € Z.) arefinitedimensional. It iseasy to check that they
are subcomodules of Z,, under ¢ (and hence submodules for the action of ¢, (n)).
Observeadsothat Q, Z,(I — 1,m — 1) C Z,(I,m) and Z,(l,m)* = Z,(m,1).
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PROPOSITION 3.11. Suppose ¢ € Z,,(I,m) isU,(n)-invariant. Then,

(i) ifI #£ m,then$ =0,

(i) if I = m, then ¢ = cQ!, (c € C).

Proof. We already know from Lemma 3.8 that @,, isi,(n)-invariant. Suppose
now that ¢ € Z, (I, m) isl,(n)-invariant, and write ¢ = cz w” + ¥, ¢;22 " wh"”
where ¢ # 0 and for all i there holds z*w# » 2*" w"" with respect to the total
ordering on monomialsin Z,, (cf. Proposition 3.4 and Remark 3.5). As before let
h(¢) be the highest order part of ¢ (so f(¢) = cz*w*). Since e(¢") = 1 for all
h € P*, we must have fj(¢°' - ¢) = b(¢). But from Proposition 3.9 we find that
h(g%i - @) = cqgHiz wt. Thisimpliesthat \; = y; forall 1 < i < n, andtherefore
[ = |\l = |u| = mif ¢ # 0. This proves part (i). Arguing by contradiction, one
proves part (ii) in asimilar way (see[6, Prop. 3.15]). O

LEMMA 3.12. Onehasw;"z; = qzmziwgn +(1- qzm)wlm_lQi forall<ig<n
andeachm € Z .

Proof. Observe that w;z; = ¢°zw; + (1 — ¢%)Q;. Now proceed by induction
with respect to m. i

COROLLARY 3.13. For all 1 < i < n and each m € Z_ one has the identity
(ziw;)™ = S0 o cp2Fwf QT for certain coefficients ¢y, € Z[¢F.

Suppose we are given the two algebras Z,, and Z, with generators z;, w; (1 <
i<n)andz’, w; (1<1i< s)respectively, and assume s < n. Then we have the
canonical embedding (5™ : Z, < Z,, which sendsthe generators z;’, w;’ of Z, to
the first s pairs of generators z;, w; (1 < ¢ < s) of Z,,. We also have arestriction
map p\"*): Z, — Z, which puts z; and w; equal to zerofori =1,...,n — s and
maps z; and w; to z;_,, , ;andw;_, .  respectively fori =n —s+1,...,n. Both
maps are x-algebra homomorphisms. So in particular we can view Z,,_1(l,m) as
sitting in Z,, (I, m), by means of ,(»=17).

Furthermore, observe that for 1 < p < n — 1 we have a natural embedding
Uy(n — p) — Uy(n) by identifying U,(n — p) with the subalgebra of U, (n)
generated by theelements ¢® (1 < i < n—p), e, fr (L <k <n—p—1).Inthis
way it is possible to speak of U, (n — p)-invariant elementsin Z,,.

PROPOSITION 3.14. Suppose ¢ € Z, (1, m) isUy(n — 1)-invariant. Then ¢ is of
theform¢ = 325 ¢; 277w =7 QJ,, wherel A m = min(l,m). Conversely, any ¢
of this formis ¢, (n — 1)-invariant. Hence the dimension of ¢, (n — 1)-invariant
elementsin 2, (I, m) equals! A m + 1.

Proof. Using Proposition 3.1 and the commutation relations for the z;, w;, we
seethat ¢ can be written uniquely as ¢ = 3°i_o X7 o 25wl I pgj(z1, . . ., Zno,
wy, ..., wp—1) for certain p;; € Z,_1(4,7). Then the action of U,(n — 1) is
on the elements p;; (cf. Proposition 3.9). From Proposition 3.11 we obtain that
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pij = 0ijd; Q) _y, and thus ¢ = Y% a2l -7 win—iQ7 | which already yields
the stated dimension. Since Q,, is central we canwrite @’ _, = (Q,, — zow,, )’ =

7 _o(=1)¥ay, j(zqw,)* Q4 ", where the ay ; are ordinary binomial coefficients.
If we substitute thisin ¢ we obtain

IAm

¢ = sz ar iz ) wp Y (zwn) Q).
j=0k=0

Now, after applying Corollary 3.13 and changing the summations we obtain that ¢
is of the asserted form. The converse statement in the proposition isobvious. 0O

Similarly one proves

PROPOSITION 3.15. Suppose¢ € Z, (l m). Then ¢ islty(n — 2)-invariant if and
onlyif ¢ isof theform¢ = ZM’"Z 0> s a]rszl I=rpm=0=821 1w Q1.

4. Thequantised algebra of polynomialson the spherein C”

In thislast chapter we construct the quantised algebraof polynomials on the sphere
S2n=1 from the algebra Z,, by putting the invariant central element Q,, equal
to 1. Furthermore we construct an invariant functional on this algebra, we give
its irreducible decomposition into ¢, (n)-modules and we recover the U, (n — 1)-
invariant elements, the so-called zonal spherical functions, as ¢-disk polynomials.
Finally we prove an addition theorem for these ¢-disk polynomials.

4.1. DEFINITION OF én AND INVARIANT FUNCTIONAL

We know (Proposition 3.4) that ),, is acentral element of Z,,. So it makes sense
to consider the following projection map

T2y = 2,/ (Qn — 1) =: Z,. (4.1)

We denote the images of the generators z;, w; of Z,, under = by the same symbols
and we define the map ¢ on those images as in (3.4). This gives a well-defined
x-coaction of A,(n) on Z,, since (), is atrivial element for the A,(n)-coaction
(Lemma 3.8). In other words, § factors through the projection 7. The algebra
Z, playsthe role of quantised polynomial algebra on the (2n — 1)-sphere 5271
within C", and was introduced in [24]. It is the same as the algebra A(K\G) of
[23, Sect. 4.1]. _

We recall that a linear functional »: 2, — C issaid to be A,(n)-invariant if
the identity (h ® id) o d(¢) = h($)14,(n) holdsfor al ¢ € Z,. Thiswill imply
(see (3.5)) that h(X - ¢) = e(X)h(¢) for ¢ € Z, and X € U, (n). In other words,
h will bel,(n)-invariant. The functional is called positive definite if A (¢*¢) > 0
whenever ¢ # 0.

https://doi.org/10.1023/A:1000179602766 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000179602766

ADDITION FORMULA FOR ¢-DISK POLYNOMIALS 135

PROPOSITION 4.1. On Z, there exists a unique normalised, positive definite,
Uy(n)-invariant functional 4, : Z, — C. Itisgiven on the basis elements by

o (2 ?) = (5)\Mq—z((n—1)>\1+(n—2))\2+--.+)\n71)

DY it YRR U P Ui = (4.2)

(% qu)\A|+n—1

where (a; q),, iSthe g-shifted factorial (Lemma 3.3) and |A\| = A1+ -+ + Ay,

The proof of this proposition is analogous to [23, Prop. 4.5], and uses Proposi-
tion 3.9.

Remark 4.2. One can write (4.2) equivalently as
hn(Z/\’LU‘u) = 5)\uq‘>\|2+2?:1(2(i_1))‘i_)‘zg)

y (6% 4% - - - (6% 6®), (6% %) n—1
(q2; q2)|)\\+nfl

, (4.3

whenusing that (=%, ¢71),, = (—1)ma*mq_%m(m_l)(a; Qm

Recall the g-integral for functionson [0, ¢| (see[8]);

| f@dg =1 =) 3 fled)e"
0 k=0
It satisfies
c T 1
/ f (—) dgx = c/ f(z)dgx. (4.4
0 c 0
The next lemma now follows from adirect calculation.

LEMMA 4.3. For all «, 6 € Z and any continuous function f there holds
/ flq (2347 pdgz = ¢V / f(z)z%(2q; q) pdg.

Consequently we find that [ z(z; ¢ V) gdge = ¢* V(1 — ¢)(¢;9)a(q; 9)s/
(¢; 9)a+p+1 Since the integral on the right-hand side in Lemma 4.3 is the ¢-beta
integral in case f = 1 (see[8, (1.11.7)]);

Yo 1\ GDals)s
| " @aia)sd,e = @ )i

The following result was already found in [23, Thm. 4.6].
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PROPOSITION 4.4. In Z,, wehavethat span{z*w*|\ € Z,} = C[Q1, ..., Qn_1],
and for each ¢ = ¢(Q1,...,Qn-1) € C[Q1,...,Qn—1] the value of the invariant
functional is given by the following multiple g-integral;

hn(¢) = 1 2 nl //in / #(Q1,- -, Qn-1)

qule BN dqun_quan_l. (4.5)

Proof. Thefirst statement follows from Lemma3.3. Henceweonly haveto ver-
ify that (4.5) istrue for any monomial z*w*. From Lemma 3.3 we obtain theidenti-
ty 2wt = QO ... Q1 (Q1/Q2 ¢ I (Q2/ Q3¢ g - (Qu-1:q ).
Now substitute this into the right-hand side of (4.5) and use (4.4). Then, by
successive use of Lemma 4.3, one checks that for ¢ = 2 w” (4.5) agrees with
(4.3). O

PROPOSITION 4.5. The x-algebra homomorphism ¥ : Z,, — Aq(n), zi = to
is well-defined, intertwines § and A and isinjective. So we can apply the results of
Section 2.2with A = A,(n) and Z = Z,,.

Proof. Itisstraightforward to verify that ¥ iswell-defined and intertwines § and
A. To show injectivity wefirst view ¥ asamap from Z,, to A(Mat,(n)) ®<C[detq‘l]
(we use the notation of [23, Sect. 1.1]), where we assume det, ! to be a centra
element but we do not assume the identities det, det, * = 1 = det, * det, to hold.
Suppose ¢ is a monomial in the elements ¢;; (1 < 4,5 < n) which contains a;;
factors¢;; (1 < 4,7 < n). We can arrange things in such away that ¢ has leading
term ¢4 = 31 e g L 52 L. 4 (s we use the following total ordering
on thegeneratorstw tij <tk |f i<k,orifi=kandj <1[).From[9, Thm. 3.1]
we know that monomialsin the ¢;; corresponding to different matrices A = (a;;)
are linearly independent in A(Mat,(n)). Hence, since we know a linear basis for
Z,, we must show that the matrix A(\, i) corresponding to ¥ (z*w*) is different
for different choices of the pair (A, 11). Thisis straightforwardly checked (since it
suffices to look at the highest order term of U(z*w*)). Finally, using the identity
>he1 tnk(—q)k—”DﬁE = det, in A(Mat,(n)) ([9, (2.10)], [23, (1.15.b)]), wefind
that W(Q,, — 1) = det, det, 1 _1. Thisshowsthat ¥ extendsto an injective homo-
morphism from Z,, to A, (n). O

Remark 4.6. From this it follows that the algebra A(K\G) of [23, Sect. 4.1]
has no relations additional to the relations (4.9.a—d) (loc. cit.). This was already
observedin [28, Thm. 4.4].
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4.2. IRREDUCIBLE DECOMPOSITION

Withtheinvariant functional 4, of Proposition 4.1 one can definean invariant inner
product on Z,, asfollows

(Vi Z,x Z, > C
(@) 1= hn (" ¢).

This non-degenerate bilinear form satisfies (X - ¢, ¢) = (¢, X* - ) foral X €
Uy(n) and al ¢,9 € Z,. Soin particular (¢" - ¢, ) = (¢,¢" - ¢) foradl h € P*
and al ¢, € Z,. Put Z,(I,m) := w(Z,(I,m)), with = the projection (4.1),
and let #,,(I,m) be the orthogonal complement of Z,(I — 1,7 — 1) in Z,,(I,m)
with respect to the inner product (4.6) (recall that we have Q,, 2, (I —1,m — 1) C
Z,(l,m),whence Z,(l —1,m — 1) C Z,(l,m)). So thereis the orthogonal direct
sum decomposition

(4.6)

Zo(l,m) = Z,(l—1,m — 1) & H, (I, m).

LEMMA 4.7. The projection map 7 : Z,,(I,m) — Z,(l,m) isinjective.
Proof. This is a consequence of Proposition 3.1 and the fact that the element
Q. — 1isnot homogeneous. a

From this lemma it follows that 7 : Z,(I,m) — Z,(l,m) is an isomorphism.
Hence we obtain from Proposition 3.1 that

o~ ) l+n—-1 m+n—1
dm2Z,(l,m) =dimZ,(l,m) = 4.7
n—1 n—1
and
d(l,m) = dimH,(I,m) = dim Z,(l,m) —dimZ,( — 1,m — 1)

C(+mAn -1 +n—2)(m+n—2)!
B Nml(n — 1){(n — 2)! : (4.8)

Moreover, we have the decomposition

Zy= Y Zu(l,m). (4.9)

l,meZy

If we write #,,(l,m) for the inverse image of H,(I,m) under the projection

m
w: Z,(l,m) — Z,(l,m), then Z,(I,m) = Q,Z,(l — 1L, m — 1) ® H,(l,m) asa
direct sum.
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PROPOSITION 4.8. There exists the following orthogonal decomposition into
inequivalent irreducible i/, (n)-modules;

Z,(l,m) = P Hu(l — k,m — k). (4.10)

Herel A m = min(l,m).

Proof. Itisclear, by the definition of the spacesH,, (r, s), that Z,({, m) alows
the orthogonal direct sum decomposition (4.10). Irreducibility of H, (I — k, m — k)
follows from Proposition 2.3: each nontrivial U, (n)-invariant subspace of a given
H.,(I—k, m—k) should contain at |east onel/ ;(n—1)-invariant element. But there
are, accordl ng to Proposition 3.14, only [ A m + 1 linearly independent invariant
elementsinthe space Z,, (I, m). Hencenoneof the spacesH,,, (I — k, m— k) contains
anontrivial invariant subspace. N _

To prove inequivalence, assumethat #,, (I — k,m — k) ~ H,(l — k',m — k')
for k # k'. Soin patticular d,, (I — k,m — k) = d,(I — k',m — k') =: N. Teke
orthonormal bases {e;}1Y.; and {f;}1, in the respective spaces and construct the
elements(o = -\ e(e})e; and (o’ = Y71 e(f7) f; asinthe proof of Proposition
2.3.By linear independenceit followsthat not all of thee (e} ) and (f;°) canbezero.
Furthermore, puty = S0, e <§§>f;C Againwewill havethat (AR A)(n) =n®1
and A(77) =7 ® 1wherer = Ek 1€kfk (cf. the proof of Proposmon 2.3). From
this and the orthogonality of the spaces #,, (I — k,m — k) and 7, (=K' m — k),
weobtaine(7j) = hy, () = 0. Findly, putno = S r_1(f5)ex € Ho(l—k,m—k).
Thenng # 0, sincenot all of thee( f;) are zero and the e; are linearly independent.
Moreover e(ng) = €(77) = 0. But thismeansthat we have two linearly independent
invariant elementswithin ,, (I—k, m—k), namely (p and njo (linearly independent
sincee({p) > 0and e(no) = 0). This gives a contradiction. Hence the two spaces
Ho(l — k,m — k) and H,, (I — k', m — k') cannot be equivalent. O

Remark 4.9. Using exactly the same argument as in the proof of the previous
proposition, one shows that the modules H,, (I, m) are inequivalent for different
choicesof thepair (/,m). From the proof of Proposition 4.8 weimmediately obtain
that each #,, (1, m) containsaunique, up to constants, Uy (n —1)-invariant element.
Itiscalled a(zonal) spherical function, or spherical element.

LEMMA 4.10. If (I,m) # (I',m/), then H,, (I, m) L Hn (', m').

Proof. Suppose first that I’ — | = m'— m, and say this is non-negative. This
means that I = | + k,m’' = m + k for some k& > 0. But then #,(l,m) and
H,(I',m') are contained in the same space Z,,(I’, m'), and hence are orthogonal
by Proposition 4.8. If, on the other hand, I — [ # m/— m, choose ¢ € H,, (I, m)
and ¢ € H,(I',m'). By invariance of the inner product (4.6) we have

¢ Py = (¢ pp) = (p g ) = ¢! (g, ). Since
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we assumed that I’— | # m'— m, and since ¢ is not aroot of unity, this provesthat

(¢,9) = 0. O

COROLLARY 4.11. Thereistheorthogonal, irreducibledecompositionintoinequiv-
alent U, (n)-modules

GB Ho(l,m).

l,meZy

Proof. This now follows from the decomposition (4.9) together with
Proposition 4.8, Lemma4.10 and Remark 4.9. a

4.3. ZONAL SPHERICAL FUNCTIONS

Let us write (,m) for a spherical element contained in H,,(I,m), which is
unique up to constants (see Remark 4.9). Now suppose that (1, m) # (I',m'), and
assumethatl — m = I'—m' = 8 > 0. From Proposition 3.14 and Lemma 3.3 we
know that (I, m) = 2, ™ Slocizn I wi ™ = 21pm(Qn-1) and p(I',m') =
b S e Iwi I = 28p, (Qn-1) for certain polynomials py,, p,, of
degreem and m' respectively. As aconsequenceof the orthogonality of the spaces
Hn(l,m) and H,, (I, m') wefind

0 = (p(I';m"), (1, m)) = hn(Pin(Qn—1) W} 2 P (Qn1))
= hn(pm(anl)*pm’(anl)(qunfl;q )ﬂ)
(cf. Lemma 3.3). Observe that

Qn-1 Q2 (1- q2)n—2 >
/0 TN /0 dqul e quQn—Z = mQZ*l' (411)

So we obtain from Proposition 4.4

1
0= /0 pm(anl)pm’(anl)QZ:i(qunfl; qz)ﬂdqunfl (m 7é ml)-

But letting n and m/ run over Z ., these are exactly the orthogonality relations[8,

(7.3.3)] for thelittle g-Jacobi polynomlaISp n—2,0) (Qn 1; ¢%). Inother words, there

exist constants c,,, € C such that p,,(Qn_1) = ¢,,p'" > (Qn_-1; ¢?) (m € 7).

Thus we obtain that in case ! > m ageneral spherlcal element in H,,(I,m) is

given by a constant multiple of zL-™p{""2'"™(Q,,_1; ¢?). Similar calculations
are made in case m — [ > 0. One finds, using (4.11), Lemma 3.3 and Lemma

4.3, that the spherical elements of #,,(I,m) for | < m are constant multiples of

P2 (Qp_1; ¢?)wm . Summarising we have
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THEOREM 4.12. For arbitrary [, m € Z thel,(n — 1)-invariant elements (i.e.

the zonal spherical elements) in #,(l,m) are constant multiples of the ¢-disk
polynomials

\Y

)

o 2 T (Quosi?) (1> m
Rl(,m 2)(Zn,wn;q2) = { (n—2,m—1) 2 —1 ’
p O (Que1g)wy ™t (I < m)
Wherepgf"ﬂ) (z;q) = pr(z; ¢, ¢%; q) isthelittle g-Jacobi polynomial [8, (7.3.1)].

This result was already obtained in [23, Thm. 4.7].
Finally we calculate the norms of these spherical elements, since we will need
them later on. First let usassumethat [ — m = 3 > 0. Recal that

R(n_Z) (Zn, Wnp, qz)*Rl(,nm_2> (Zn, W, q2) Z:E quQn—l

1
= /0 P 20(Qn1; P\ (Qn—1: ) QP 2(6°Qu-1: ¢°) pd 2 Qn—1

_ A=A () ) pm
1= q2(o¢+ﬂ+2m+1) (q2(o¢+1) , q2)m(q2(a+1); qz)ﬁ+m

Thus, forl > m,

(R(”*Z)

I,m

n—2
(2 wn 42), Ry 2 (2, wn; 7))

(1— @2 D20 (42 ¢2),(¢% ¢®)m
1— q2(n+l+m71) (q2(n71); q2)l(q2(n71); q2)m ’

Thecasermn —1 = 3 > Oistreated similarly and givesthe same answer. This proves
the following proposition.

PROPOSITION 4.13. For [,m € Z anda = n — 2 € Z, the square of the norm
of the ¢-disk polynomial R (Zn, wn; ¢%) isgiven by

l,m

VR i NP = (R s w0 2)* R 2y 4)) = €}

)

in which
(@ _ (1 o q2(a+l))q2m(a+l) (qz; q2)l(q2; qZ)m
Clom = 2(ati+m+1 200+1)- ;2\, (g2(atD) - 2y (4.12)
) 1_q(a++m+) (q (a+);q)l(q (a+);q)m

Note that, unlike in the classical case, ) is not symmetricin [ and m.

l,m

4.4, ASSOCIATED SPHERICAL FUNCTIONS

Suppose we are given the x-algebra Z,, 1 with generators z;", w;' (1 < i <n —1)
and with corresponding projection «' : Z,_1 — Z,_1. Recall that for r,s € Z

https://doi.org/10.1023/A:1000179602766 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000179602766

ADDITION FORMULA FOR ¢-DISK POLYNOMIALS 141

we havethe embedding .("=1") : Z, 4(r, ) < Z,(r, s) (Sect. 3.2). Then, by use
of themap 7 o L(»~ ™) o (x')~1, one canidentify ¢ = ¢(2',w') € Z,_1(r, s) with
Q00,4 wQ, ) € 2,0, ).

Giveni,m € Z, and 0 < r < [;0 < s < m, define the following elementsin
Zn(l,m);

Y(lymir,s) = QUM 2R ZE) (1, QL WD Ly, @, 12 ¢?)
XQH-S /2 n 3)(2,” 1Q (/2 Wh— 1Q 1/2 )
—1Q,
Denote their restrictions in Zz(l ,m) viar by the same symbols.

PROPOSITION 4.14. In Z,, thereholds (4 (I', m'; 7', s'), (1, m; 7, s)) = Owhen-
ever onehas (I',m/,r', s") # (I,m,r, s). Moreover,

1— q2(a+1)
- 2 +r+ -1
HQﬁ(l’ et 8) H - 1- qz(a-l-r-l-s-l-l) ngryrmjzcs“,o; )

wherea =n — 2.
Proof. Thisisdone by direct calculation. O

PROPOSITION 4.15. For fixed [,m € Z, ¢(l,m;r,s) € Hn(l,m) for al 0 <
(

r < landall 0 < s < m. Moreover, an eIementF € Hu(l,m) isUy(n — 2)-
invariant if and onIyifF € span{yp(l,m;r,s)|0 <r <1,0< s <m}.
Proof. ForO<j <IAm;0<r<l—50<s<m—j consdertheelements

Qlp(l —j,m — g, s) in Z,(l,m). The|r restrlctlonstoZ are mutually orthog-
onal by the previous proposition, hence they are linearly independentin 2, (1, m).
Sincethey areall U, (n — 2)-invariant they will span the entire space of U, (n — 2)-
invariant elements within 2, (1, m) because of their number, cf. Proposition 3.15.
In the same way al elements Q/v (I — j,m — j;7r,s) with 1 < § < [ A'm and
0 < r < 1—4;0 < s < m—jwill spanthe subspaceof U, (n—2)- mvanantelements
inQ, n( —1,m — 1) Now, using the orthogonality of the (I, m;r, s) together
with Lemma2.6, we concludethat the (I, m;r,s) withO < r < 1,0 < s < m are
orthogonal to thewhole of Z,(I — 1, m — 1), hence belong to H,, (I, ). Because
of their number the second part of the proposition isalso clear. O

Forgivenl,m e Z,and0 < r <1, 0< s < m put
Hall,mirs) = QU™ HZRY T (2,Q7 D Q412 42)
XHp—1(r, s).

Thenclearly H,, (I, m;r,s) C Z,(l,m) (0 < r < ;0 < s <m). There even holds
the following result.
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LEMMA 4.16. For all 0 < r < land all 0 < s < m we havetheinclusion

Hn(l,m;r,s) C Hp(l,m).

Proof. As U,(n — 1)-modules there is the isomorphism #,(l,m;r,s) =
Hp—1(r,s). SinceH,,_1(r, s) isirreducible asaif, (n — 1)-module, by the fact that
itisisomorphictothemodule H,,_1(r, s), and since (I, m; r, s) € H, (I, m;r, s),
wegeti,(n—1)-p(l,m;r,s) = H,(l,m;r,s)foral 0 < r <landal 0 < s < m.
On the other hand weknow that ¢ (1, m; r, s) € H,(l, m) (Proposition 4.15), hence
Uy(n—1) -4, m;r,s) CHy(l,m). Thuswe seethat H,, (I, m;r,s) C Hy(l,m)
foral0<r<landal 0< s <m. O

PROPOSITION 4.17. We have the following direct sum decomposition into irre-
ducible, inequivalent ¢/, (n — 1)-modules;

I m
Hao(l,m) = P P Hnll,m;r,s). (4.13)

r=0s=0

Proof. From the previouslemmawe obtain that the direct sum on the right-hand
sideiscontained in H,, (I, m). Counting dimensions gives the equality. O

Write H, (1, m;r,s) = n(Hyn(l,m;r, s)) for theimage of H,, (I, m;r, s) under the
projection 7 of (4.1).

PROPOSITION 4.18. There exists the following orthogonal decomposition into
irreducible, inequivalent ¢4, (n — 1)-modules

I m
Ho(l,m) = P P Hall,m;r, s). (4.14)

r=0s=0

This proposition follows from the previous proposition and the following one.

PROPOSITION 4.19. If the set {7 (gi(r,s))}, withi = 1,...,dy_1(r,s), forms
an orthonormal basis for #,,_1(r, s) with respect to the inner product defined by
h,_1, then the set
{((1 _ q2(n71)) Cl(ﬁj’;j:?;Z)/(l _ q2(n+r+571)))7(1/2)
R{™ 25 (2w )i, 9))

vvith~0 <r<hogsgmandi=1,...,d, 1(r, f), forms an orthonormal basis
for H,,(1, m) with respect to the inner product on Z,, defined by 4,,.

Proof. The proof of this is aong the same lines as the proof of Pro-
position 4.14. i
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Remark 4.20. The elementsin Proposition 4.19 are called associated spherical
elementsin H,, (I, m).

4.5. ADDITION FORMULA FOR ¢-DISK POLYNOMIALS

We are now at the stage where we can prove the addition theorem for g-disk
polynomials. For this we use the concrete realisation of Z,, as a x-subalgebra of
Ag(n) which was established in Proposition 4.5.

So let usidentify z; = t,;, w; = t;,. Under this correspondence the coaction
d is merely the comultiplication A of A,(n). Write 7 for the anti-linear and
involutive algebra automorphism * o S of Ay(n). We know that 7(t;;) = tj;,
since t;; = S(tji) = (—q)J—ZD;]Adet Where Dy denotes the quantum minor-
determinant corresponding to the two subsets I,J C{1,...,n} (see[23, (1.8)]).
Soin particular we get 7(z,,) = z,. Moreover, recall from [23, (3.2)] that

sgn, (/5 J¢)
sgn, (1; I¢)

in which I¢ denotes the complement of 7 in{1,...,n}, and

(D;j)* = S(Dyp) = Dje e det,* (4.15)

0 INJ#0D

sgnq(I;J) = { (_q)l(I;J) INJ=0’

wherel(I; J) =#{(i,7) € I x J |i > j}.Using (4.15) we seethat S(t},,) = tun,
whence 7(w,,) = w,,. So we concludethat 7(Q,,—1) = @Qn—_1in Z,.

As was observed in Remark 2.4 we can exhibit #,,(I,m) as the row space
Az (1) for some irreducible unitary matrix corepresentation « of A, (n), such that

T = Rl(?njz)(zn,wn;qz) (since it is easily seen that S(Rl(?m_z)(zn,wn;qz)) =
1). The basis elements {71, } of A, then correspond to the elements given in
Proposition 4.19 with » + s # 0. Again by virtue of Remark 2.4, and by the fact

that (id® 7) o A(m11) = >, T1x ® 715, ONE CAN WritE
(id® 7)o AR ? (20, wni ¢?)

= h (R (2, w; A R (2, wn; 42))

I,m I,m

m dn— lrv

l 2 2
XZZ S (@ AR (o ws P)m(gi(r, 5)))
r=0s=0 =1
®a, AR 2V (2w, P)m(gi(r, 5)),

where Umrs = (1-— q2(n—1))(1 _ q2(n+r+s—l))—lc(n+r+572). Here we choose

l—r,m—s

the bases {g;(r, s)} of H,—1(r, s) in such away that for all r, s € Z_ there holds
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ga(r,s) = (% )W PRI (2010, P, wi1Q, 11?1 4). Let us
pull the aboveidentity inH,, (1,m) ® H,, (1, m) back to H,, (I, m) ®Hn(l,m). We
obtain

(temy2 pn-2) (4@ DA(z) (d®T)Aw,) . ,
(@u QR <(Qn®Qn)l/2’ (ann)lﬂ'q)

m dn—1(r,s)

_clm ZZ Z lmrs

r=0s=0 =1

XQZ r+m— s)/le(n 2+r+s) ( nQ;(l/z),anﬁ(l/z)iqz)gi(r, s)

r,m—s

@Q{ T 2R 2 (4, 2 w0, Q, Y ) gi(r, 5). (4.16)
Now recall the projection p(™2) : 2, — Z, whichputsz, ..., 2p—2, W1, ..., Wy_2
equal to zero (cf. Sect. 3.2). Let uswritey, §, —¢ 13, « for therespectivegenerators
z1', 2!, w1’ and wy' of Z,. We also write D for the generator of the centre of Z,:
D = a*a+yy* = da—q 1By. Another way of writing D isD = aa* 4+ ¢?yy* =
ad — qf3v. Having this, we can write the projection p(™?) as

pm2: 2, — Z,

anl — 77 'wnfl — r)/* = _q_lﬁJ (4 17)
Zn — 0, w, — 0 = a. .
zi,w; — 0 (i:1,...,n—2).

LEMMA 4.21. For 0 < r < ;0 < s < m pick a basis {g;(r, s)} of H,_1(r, s)
such that in each case g(r,s) = (cis )~ WAQUHI2R I (2, 10, Y?
wa-1Q,, 15 ¢?). Then p(2 (g, (r, 5)) = du(crly )= H2y7(77)°.

Proof. From Proposition 4.17 we obtain the decomposition

Hp—1(r,s) @@’Hnlrsuv)

u=0v=0

-1 )

Thisimmediately yields that p("?|3, (s # 0if and only if (u,v) = (0,0).
SinceH,,—1(r, s; 0, 0) isthe one-dimensional space spanned by g1(r, s), thelemma
now follows from an easy computation. O

LEMMA 4.22. The following equalities hold;

n

(id@7) o Alza) = szzk, (d@ 7)o Adwn) = 3 " Py © wy.
k=1
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Proof. The first equality follows directly from (3.4) and the fact that 7(t;;) =
t;;. Asfor the second one, use (4.15) to obtain 7(t}, ) = ¢*™*)wy,. Together with
(3.4) thisyields the stated resullt. i

As an immediate consequence of thislemmaand (4.17) wefind
COROLLARY 4.23. Thefollowing identitiesarevalid in Z,, ® 25;
(id®@ p™?) o (Id® 1) 0 A(zp) = 2p1 @7+ 2, @6

(id® p™?) o (Id® 7) 0 Alwn) = Pwn_1®~" +w, @ §*

= —quw, 1® B+ w, ® .
Consider the x-algebras X’ and ) generated by the elements

X Q:Qn7 X]_:Zn,]_, XI = Wp—1, XZZZnu X; = Wp, (4 18)
Y:D=0D, Y1:77 Y]_*:fy*a Y2:67 YZ*:(S* '
and with x-structures
* — , X * — ‘X*7 X * — X*
=0 =Xl () =X w19

D* =D, (Y1)* = YT, (Y2)" =Y

(sowe merely changed notations). It isstraightforward from (3.1) that thefollowing
relations are satisfied.

LEMMA 4.24. In X and ) respectively, one has

X1Xo = qXoXy, Y1Y2 = ¢Yo1a,
XiXo = qX2X7, Y'Y, = qYoYy,
X3X, = ¢?XoX5 + (1- ¢?)Q, 1Yy = Y'Y, (4.20)
XiX1=¢?X1X{, D=YY]+ YoV} = ?Y{ Y1+ Y;Yo,
+(1 - ¢®)(Q — X2X3), Q central.

Remark 4.25. Centrality of  in X does not follow automatically from the first
four relationsabove, but isimposed onthealgebra X'. However, D isclearly central.

Write B = X ® Y and identify X; with X1 ® 1, Y3 with 1 ® Y3 and so on. We
will provethat the relationsin Lemma4.24 are in fact the only nontrivial relations
between the generators of 5.

LEMMA 4.26. Write Q' = Q — X1 X7 — X2 X5. Alinear basisfor X is given by
the set of monomials { X7 X3 (X3)"(X5)“(Q")"|r, s, t,u,v € Z1}.
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Proof. Rewritetherelationsin X intermsof X1, Xo, X7, X5 and Q';

X1Xp = qXoX1,  X3Xo=XpX5+ (1— Q' + X1X7)
Xi X, = qXoX3, XiX1=X1X;+(1-¢5)Q".

Fromthisit readily followsthat X is spanned by the monomialsgiveninthelemma.
Hence we only need to show linear independence of this set. For thisit sufficesto
show linear independence of the highest order terms, which, as elements of Z,,,

equal
BXTX3(X3)H(XD)™MQ)") = bz _1zmwpwy_1(Qn)")
= 2z, _1Z,W

By virtue of Proposition 3.1 these highest order terms are linearly independent as
elementsof Z,,, hence also as elements of X'. O

PROPOSITION 4.27. Alinear basisfor 5 is given by the set of monomials of the
form

(X190 1)"( X, ®1)5(X5 @ 1)H(X; @ 1)“(Q' ® 1)V
(1o Y1) (1o Y1) (1o Y2)"(1e Yy,

wherer, s, t,u, v, k,l,m,p € Z.
Thisfollowsdirectly from Lemma4.26 and Proposition 3.1. Now are able to prove

PROPOSITION 4.28. Therelations (4.20) are the only nontrivial relations among
the generatorsof 3.

Proof. Write £ for the x-algebra with abstract generators X1, X7, Xo, X5, Q)
and Y1, Y7, Y2, YS', D and with relations (4.20). Furthermore, impose that all of
the first five generators commute with all of the last five ones. The x-structure
on & is given by (4.19). From (4.20) we see that £ is spanned by the elements
XIX5(X5)HXHMQ) YFY )Y (Yy)P with 7, s,t,u,v,k,l,m,p € Z,; as
beforewewrite Q' = Q — X1 X7 — X»X5. Thereis aunique surjective x-algebra
homomorphism © : £ — B sending X1, X», X5, X7, Q', Y1, Y, Y, and Y5 to
Z-1® L2, @ Lw, ® Lw,_1©1,0,®1,137,19,1®0and1® 0"
respectively. It now easily follows from Proposition 4.27 that this is actualy an
isomorphism. i

With the notation asin (4.18), and with the aid of Lemma4.21 and Corollary 4.23,
we can write down the effect of the mapping id ® p(™2) on (4.16). It reads;
(n—2)

l,m

R (X10V1+ X2 ®Y2,?Xi @Yy + X3 ®Y5,Q® D;¢°)
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[ m
-2 —2+7r+ * .
= Z Z ng;Ln;T,)sRl(fr,m—rs ®) (X27 X27 Qa q2)
r=0s=0

xR\ (X1, X7, Q — X2X3: ¢%)

SR 2 (Y, Y5, Dy )Y (YY)® (4.21)
in which, for o = n — 2,
(@)
B e 1— q2(a+r+s+1) o
A = Comar (7)) = ’ (4.22)

1— q2(a+l) cl(gj,;::sz gfvsfl)

and Cz((;)z isasin (4.12). Here we employed the following

NOTATION 4.29. For « > —1and!l,m € Z we put
CrmAl-mp(t= (S4B ) (1> m

R(a)
Cnga,mfl) (CchB;q) Bm-l (1< m)

1m (A, B,C1q) = (4.23)

in terms of the little g-Jacobi polynomials (cf. Sect. 1). We use (4.23) for non-
commuting variables A, B, C, with BA = ¢AB + (1 — ¢q)C wherewe assumethat
C commuteswith A and B, so that (4.23) is polynomial in A, B and C.

Observethat R\

I,m

(A,B,1;¢%) = R{%) (A, B 2).
Let us have acloser look at the ponnomiaIsR(a) (A, B,C;q);

l,m

—mom (@)l Y c-aB\F
(A,B,C;q) = oA " 2k . (qai)lkilg()]k(WI)kq)k (q c )

C! de—o (q_l;Q)k(.qa+m.+l;Q)k (q C—AB)k Bl

=0 (¢ Lk (@D)k c

in the respective cases | > m and [ < m. So these polynomials are rational in
¢®. Hence (see aso (4.12)) both sides of (4.21) are rational functions of ¢°*.
Multiplying with a suitable factor we will obtain from (4.21) an identity which
is polynomial in ¢°* and which holds for o« = 1,2,.... But then obviously the
identity istruefor al o > O.

Finaly, let o : Y — Y be the automorphism that sends Y7 to —qY7", Y* to
—q1y3, and that fixes Y, and Y5 (this comes down to interchanging 8 and v in
Z5). If wenow apply id® o to (4.21) we end up with the final form of the addition
formula.

R(a)

I,m

THEOREM 4.30. Suppose we are given the abstract complex x-algebras X and
Y with generators X1, X», X7, X5, Q, respectively Y1,Y>, Y7", Y5, D, relations
(4.20) and x-structures (4.19).
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Then, for arbitrary « > 0 and arbitrary [,m € Z_, we have the following
addition formula for ¢-disk polynomials;

R (—qX1® Y] + Xo® Y2, —¢Xi ® Y1+ X3 © Y5, Q ® Di ¢?)

[ m
+rt ,
= 3N A R (X2, X3, Qi)
r=0s=0

xRV (X1, X5, Q — XoX3;6°)

(=) R (Yo, Y5, DAY (YT (4.24)

[—r,m—s

where we use the notations (4.22) and (4.23).

Remark 4.31. For a = n — 2 thisisin fact an identity in Z,, ® Z,, which we
can rewrite as an identity in Z,, ® Z» by putting Q = D = 1in (4.24). For general
«a > 0 we can do something similar; the relations among the generators are then
given by (4.20) but with Q and D equal to 1.

Remark 4.32. Itispossibleto generalizethefindingsinthispaper by considering
a one-parameter extension of the algebra Z,,. The zonal and associated spherical
functions are expressed in that case in terms of certain big g-Jacobi polynomials,
which are one-parameter extensions of the little g-Jacobi polynomials found here.
Conseguently we obtain a generalization by one parameter of the addition formula
Theorem 4.30 and of the main results in [7]. Details are written down in an as of
yet unpublished paper [6].
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