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Abstract. Explicit models are constructed for irreducible �-representations of the quantised universal
enveloping algebra Uq(gl(n)). The irreducible decomposition of these modules with respect to the
subalgebra Uq(gl(n�1)) is given, and the corresponding spherical and associated spherical elements
are determined in terms of little q-Jacobi polynomials. This leads to a proof of an addition theorem
for the spherical elements, the so-called q-disk polynomials.
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1. Introduction

Over the past few years quantum groups have shown to be powerful tools in the
study of q-hypergeometric functions. They enabled proofs of identities which would
have been hard to guess without quantum group theoretic motivation. We mention
for instance the papers [10], [16], [18] and [22]. See also [11], [12], [15], [20]
and [29], and references therein, for surveys on the connection between quantum
groups and basic hypergeometric functions.

The purpose of this paper is to present an addition theorem for so-called q-
disk polynomials, using quantum group theory. This result is a q-analogue of
a result which was proved around 1970 by S̆apiro [25] and Koornwinder [13],
[14] independently. They considered the homogeneous space U(n)=U(n � 1),
were U(n) denotes the group of unitary transformations of the vector space C

n ,
and identified the corresponding zonal spherical functions as polynomials in two
variables z and �z, whose orthogonality measure is supported by the closed unit disk
D in the complex plane. These so-called disk polynomials are denoted R(�)

l;m(z)
(l;m 2 Z+ ;� > �1) and they can be expressed in terms of the normalised Jacobi
polynomials R(�;�)

n (x) = P
(�;�)
n (x)=P

(�;�)
n (1), cf. [5, Sect. 10.8]. Explicitly;

R
(�)
l;m(z) =

8<
: zl�mR

(�;l�m)
m (2jzj2 � 1) (l > m)

�zm�lR
(�;m�l)
l (2jzj2 � 1) (l 6 m):

(1.1)
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The orthogonality readsZ Z
D
R
(�)
l;m(r ei�)R(�)

l0;m0
(r ei�)r(1� r2)�dr d� = 0

if (l;m) 6= (l0;m0): (1.2)

The zonal spherical functions on U(n)=U(n � 1) are then the constant multiples

of the polynomialsR(n�2)
l;m (z). The associated spherical functions were also shown

to be expressible in terms of disk polynomials, and from this an addition formula
was derived for disk polynomials with positive integer values of �. By an easy
argument this identity is then extended to all complex values of �. With this result
Koornwinder was able to prove an addition formula for general Jacobi polynomials;
see [14]. In fact the line of arguing and the results in this paper are very similar to
(part of) the ones in [14].
q-Disk polynomials (quantum disk polynomials in the terminology of [17]) are

polynomials in two non-commuting variables which are expressed by means of
little q-Jacobi polynomials, and which can be understood as a q-analogue of disk
polynomials. They appeared in [23] where the authors studied a quantum analogue
of U(n)=U(n � 1), or rather the coordinate ring of this quantum homogeneous
space. They investigated its Uq(gl(n))-module structure, where Uq(gl(n)) denotes
the quantised universal enveloping algebra corresponding to the Lie algebra gl(n),
using the theory of highest weight representations, and ended with identifying the
zonal spherical functions as q-disk polynomials. These polynomials are defined as
follows (cf. [17]): let Z be the complex unital �-algebra generated by the elements
z and z�, subject to the relation z�z = qzz�+1� q and with involution (z)� = z�.

Then the q-disk polynomials R(�)
l;m(z; z

�; q), with � > �1 and l;m 2 Z+, are
defined as

R
(�)
l;m(z; z

�; q) =

8<
: zl�mp

(�;l�m)
m (1� zz�; q) (l > m)

p
(�;m�l)
l (1� zz�; q)(z�)m�l (l 6 m):

(1.3)

Here pl(x; a; b; q) = 2�1(q
�l; abql+1; aq; q; qx) is the little q-Jacobi polynomial

[8], and p(�;�)l (x; q) = pl(x; q�; q� ; q).
This paper is organised as follows. In Chapter 2 we recall the definition and

some of the properties of a CQG algebra, and we prove some results on quan-
tum homogeneous spaces needed later on. In the third chapter we introduce a
q-deformation Zn of the algebra of polynomials on C

n and we study its structure
as a Uq(gl(n))-module. Chapter 4 then deals with eZn, the q-deformed algebra of
polynomials on the sphere in C

n (this algebra is the same as the algebra A(KnG)
of [23], Sect. 4.1). In Section 4.1 we introduce invariant integration on eZn and
we realise this algebra as a �-subalgebra of Aq(U(n)). In the subsequent section
we describe the irreducible decomposition of eZn as a Uq(gl(n))-module. In Sec-
tion 4.3 the zonal spherical elements are recovered as q-disk polynomials. Next
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we treat the irreducible decomposition of eZn as a Uq(gl(n � 1))-module and we
identify the associated spherical elements; they turn out to be expressible through
q-disk polynomials as well. Finally, in Section 4.5 the addition theorem for q-disk
polynomials is proved. So, although we follow another path, the main results of
Sections 3.1 up till 4.3 of this paper are essentially already contained in [23].

It should be noted that the definition of q-disk polynomials as polynomials in
two non-commuting variables accounts for the fact that the addition formula is
an identity in several non-commuting variables as well. However, in a subsequent
paper [7] we present an addition theorem in commuting variables which is in fact
equivalent to the one stated here.

The notation in this paper is taken from [8]. Throughout we fix a real parameter
0 < q < 1 and we write Z+ = f0; 1; 2; : : :g.

2. CQG algebras

In this chapter we establish some notation and we recall some facts on compact
quantum groups and quantum homogeneous spaces. Our language will be that of
[3]; see also [4] and [19]. The ground field for the vector spaces under consideration
will always be the field C of complex numbers.

2.1. DEFINITIONS AND GENERALITIES

Let A be a Hopf algebra with comultiplication � : A! A
A, counit " : A! C

and antipode S : A ! A (for the theory of Hopf algebras we refer the reader
to [27]). A is called a Hopf �-algebra if there exists an anti-linear involution
� : A ! A which turns A into a �-algebra and which is such that � and " are
�-homomorphisms. It is not difficult to show that if A is a Hopf �-algebra, the
antipode S is invertible and satisfies S � � �S � � = id. A right corepresentation of
A is a pair (V; �) of a complex vector space V and a linear map � : V ! V 
A,
satisfying

(� 
 id) � � = (id 
�) � �; (id
 ") � � = id: (2.1)

We also say that (V; �), or simply V , is a right comodule for A. If V is finite
dimensional with basis feigNi=1 and if we write �(ei) =

PN
k=1 ek 
 �ki, then

(2.1) is equivalent to saying that the �ij satisfy �(�ij) =
PN

k=1 �ik 
 �kj and
"(�ij) = �ij . The elements �ij of A are called the matrix coefficients of this
corepresentation. Furthermore, an element v of V is said to be (right) A-invariant
if �(v) = v 
 1. When V = Z is a (�-)algebra, the corepresentation � is called
a (�-)coaction if it is a homomorphism of (�-)algebras. A particular example of a
right corepresentation is given whenV is a subspace ofA such that�(V ) � V 
A,
and � = �. In this case V is said to be a (right) coideal of A.

Assume that A is a Hopf �-algebra. A right corepresentation � : V ! V 
 A

is called unitarisable if there exists a hermitean inner product h�; �i on V such that
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h�(v); �(w)i = hv; wi1A for all v; w 2 V . Here we extended the inner product
h�; �i to a map from V 
 A to A by setting hv 
 a;w 
 bi = hv; wib�a: If V is
endowed with this inner product, the corepresentation (V; �) is called unitary and
the inner product is called A-invariant.

Now suppose that (V; �) is a finite dimensional right comodule for A, with
orthonormal basis feigNi=1 with respect to a given inner product. Denote by f�ijg
the collection of matrix coefficients of this corepresentation. Then the following
statements are equivalent:

(1) (V; �) is a unitary corepresentation
(2)

PN
k=1 �

�
ki�kj = �ij1A for all 1 6 i; j 6 N;

(3) S(�ij) = ��ji for all 1 6 i; j 6 N;

(4)
PN

k=1 �ik�
�
jk = �ij1A for all 1 6 i; j 6 N .

Let us write � = �(A) for the set of equivalence classes of finite dimensional
irreducible unitary corepresentations of the Hopf �-algebra A. Furthermore, for a
given � = (�ij)

d�
i;j=1 2 � we put A� = spanf�ijg

d�
i;j=1 andA�(r) = spanf�rjg

d�
j=1

(1 6 r 6 d�). Then one can prove that the f�ijg (� 2 �; 1 6 i; j 6 d�) are linearly
independent and

P
�2�A� is a direct sum (see e.g. [4], [19]; this is actually true

in the more general situation of coalgebras).

DEFINITION. A Hopf �-algebra A is called a CQG algebra if A is spanned by
the matrix coefficients of all its finite dimensional (irreducible) unitary corepresen-
tations, i.e. if A =

P
�2�A�.

The direct sum decomposition A =
P

�2�A� is usually referred to as the Peter–
Weyl decomposition. We also remark that, with respect to�, we have the following
irreducible decomposition of A as a right comodule: A =

L
�2�

Ld�
r=1A�(r):

THEOREM 2.1 ([19, Sect. 2.2], [3, Sect. 2.1]). LetA be a CQG algebra. Then there
exists a unique linear functional h : A ! C , called normalised Haar functional,
that satisfies

(1) h(1A) = 1;
(2) (h
 id)�(a) = h(a)1A = (id
 h)�(a) (a 2 A);
(3) h(a�a) > 0 (a 2 A; a 6= 0).

An important ingredient in the proof of this theorem is the following Schur type
orthogonality result.

THEOREM 2.2 ([19, Prop. 2.6], [3, Prop. 2.1.14]). If A is a CQG algebra, then
every finite dimensional corepresentation of A is unitarisable. Moreover, for all
� 2 � there exists a positive-definite constant matrix F� such that the equalities

h(�ij�
�
kl) = ����ik

(F�)jl
tr(F�)

; h(��ij�kl) = ����jl
(F�1

� )ki

tr(F�1
� )
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hold for all �; � 2 �. Here ‘tr’ denotes the matrix trace.

A particular class of CQG algebras is given by the finitely generated ones, called
CMQG algebras. A CQG algebraA is a CMQG algebra if and only if there exists a
single finite dimensional unitary corepresentation t = (tij) of A such that A, as an
algebra, is generated by the matrix elements tij . This corepresentation is usually
referred to as the fundamental (or natural) corepresentation. As an example of a
CMQG algebra we will meet the algebra Aq(n) = Aq(U(n)) of regular functions
on the quantum unitary group.

2.2. TRANSITIVE COACTIONS

In this section we recall and establish some results on quantum homogeneous
spaces. Our language will be that of [3, Sect. 4.1].

Let a CQG algebra A, with Haar functional h, and a �-algebra Z be given.
Furthermore, let us assume that there exists a �-coaction � : Z ! Z 
 A of A on
Z . Suppose that this coaction is transitive, i.e. suppose that there exists an injective
�-algebra homomorphism 	 : Z ! A which intertwines the coactions � on Z
and � on A. Then we know from [3, Thm. 4.1.5] that Z possesses a normalised
positive definiteA-invariant linear functional hZ : Z ! C , by which we mean that
hZ satisfies (hZ 
 id) � �(z) = hZ(z)1A for all z 2 Z , that hZ(1Z) = 1 and
hZ(z

�z) > 0 if z 6= 0. Moreover, the coaction � is unitary with respect to the inner
product given by

hz; wi = h(w�z) (z; w 2 Z): (2.2)

Upon identifying Z with 	(Z), we may assume that Z is a �-subalgebra and right
coideal of A, and that � = � and hZ = h.

Assume that there exists a Hopf �-algebra C with unital Hopf �-algebra epi-
morphism � : A! C such that for all z 2 Z there holds

�(z) = "(z)1C : (2.3)

By means of �we define a �-coaction �C fromC onZ by putting �C = (id
�)��.

PROPOSITION 2.3. Suppose V is a subcomodule of Z of finite dimensionN > 1,
so � : V ! V 
A. Then V contains a nonzero C-invariant vector. That is, there
exists an element �0 6= 0 in V with the property �C(�0) = �0 
 1C .

Proof. Let feigNi=1 be an orthonormal basis for V with respect to the inner
product (2.2). Write �(ei) =

PN
k=1 ek 
 �ki. Unitarity of � will imply that

��� := (id
 id
mA) � �23 � (�
�) : Z 
Z ! Z 
Z 
A is also a unitary
coaction with respect to the inner product hv1 
 w1; v2 
 w2i = hv1; v2ihw1; w2i.
Here mA : A 
 A ! A denotes multiplication in A and �23 is the flip operator
interchanging the second and third tensor factors. Furthermore, we have

� �mA = (mA 
 id) � (� ��): (2.4)
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128 PAUL G. A. FLORIS

Now consider the element � :=
PN

i=1 ei
 e
�
i in Z 
Z . Unitarity of � implies (cf.

Sect. 2.1)

(� ��)(�) =
NX

i;j;k=1

ej 
 e�k 
 �ji�
�
ki

=
NX

j;k=1

�jkej 
 e�k 
 1A = � 
 1A; (2.5)

i.e. � is A-invariant. If we put ~� := m(�) =
PN

i=1 eie
�
i 2 Z , then it follows from

(2.4) and (2.5) that�(~�) = (��mA)(�) = (mA
 id)�(���)(�) = ~�
1A, and
hence ~� = (id
h)��(~�). By the invariance of the Haar functional (Theorem 2.1(2))
we find ~� = h(~�)1A, and from this we obtain "(~�) = h(~�) =

PN
i=1 h(eie

�
i ) =PN

i=1he
�
i ; e

�
i i > 0: Finally, put �0 := (id 
 ")(�) =

PN
i=1 "(e

�
i )ei. Then obviously

�0 2 V . Also �0 6= 0, since "(�0) = "(~�) > 0. The last thing to show is that �0 is
C-invariant. Writing mC for the multiplication in C , one has

�C(�0) = (id 
 �) ��(�0) = (id
mC) �
�
(id
 �) ��(�0)
 1C

�
= (id 
mC) �

�
(id
 �) � (�
 ")(�)
 1C

�
= (id 
mC) � (id
 � 
 id) � (�
 ("
 �) ��)(�)

= (id 
mC) � (id
 � 
 "
 �) � (�
�)(�)

= (id 
mC) � (id
 "
 � 
 �) � �23 � (�
�)(�)

= (id 
 "
 �) � (id 
 id
mA) � �23 � (�
�)(�)

= (id 
 "
 �) � (� ��)(�) = (id 
 "
 �) � (� 
 1A)

= (id 
 ")(�)
 1C = �0 
 1C ;

where in the fourth equality we used (2.3) to find that for all z 2 Z there holds
"(z)1C = �(z) = ("
 �) ��(z). This proves the proposition. 2

Remark 2.4. Observe that the element � does not depend on the choice of
the orthonormal basis of V . Suppose that C is also a CQG-algebra and suppose
moreover that the pair (A;C) forms a quantum Gel’fand pair, meaning that in
each A� there is an at most one-dimensional subspace of C-invariant elements. If
the comodule structure on V is unitary and irreducible, and if we consider V as
a subspace of A as before, then V can be realised as some A�(r), say A�(1), for
certain � 2 � (cf. Sect. 2.1). The invariant subspace will then be spanned by �11.
From Proposition 2.2 we know that the elements ei =

�
tr(F�1

� )=(F�1
� )11

�1=2
�1i

form an orthonormal basis of V . Thus we obtain, again by Proposition 2.2, that
"(�0) =

PN
i=1 h(eie

�
i ) = tr(F�1

� )=(F�1
� )11 = 1=h(��11�11).
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Remark 2.5. The element � plays a role similar to the kernel function on a
compact homogeneous space: let T� : Z ! Z be the mapping T�(z) = (id 

hZ)

�
�:(1 
 z)

�
. Then it is easily seen that T�(v) = v for all v 2 V and that

T�(w) = 0 if w is orthogonal to V . Indeed, if v =
PN

j=1 �jej then T�(v) =PN
i;j=1 �jeihZ(e

�
i ej) =

PN
i;j=1 �jeihei; eji =

PN
j=1 �jej = v. In the same way it

follows that T�(w) = 0 whenever hw; V i = 0.

We end this section with a small lemma, needed later on.

LEMMA 2.6. Suppose A;C are two CQG-algebras with normalised Haar func-
tionals hA; hC respectively, and such that there exists a unital Hopf �-algebra
epimorphism � : A ! C (so C is a so-called quantum subgroup of A). Suppose
furthermore that � : Z ! Z 
 A is a right �-coaction of A on some �-algebra Z ,
which is unitary with respect to a given inner product h�; �i.

Let V � Z be a subcomodule for the corepresentation �C = (id 
 �) � �, and
let a C-invariant element � in Z be given.

Now, if � is orthogonal with respect to h�; �i to all C-invariant elements in V ,
then � is orthogonal to the whole of V .

Proof. By assumption we have that �C(�) = � 
 1C . Define the linear map
TC : Z ! Z by TC = (id
 hC) � �C . Since � is C-invariant, one has TC(�) = �.
Furthermore, if  2 V is arbitrary, then TC( ) is C-invariant and contained
in V . Now note that the A-invariant inner product h�; �i is also C-invariant:
h�C(�); �C( )i = h�;  i1C for all �;  2 Z . Consequently, if � 2 Z is C-
invariant and orthogonal to all C-invariant elements in V , and if  2 V is arbitrary
then

h�;  i = hC(h�;  i1C ) = hC(h�C(�); �C ( )i)

= hC(h�
 1C ; �C( )i) = h�; TC( )i = 0

since TC( ) is C-invariant. This proves the lemma. 2

3. The quantised algebra of polynomials on C
n

In this chapter we introduce the algebra Zn, which is a q-deformation of the
involutive algebra of polynomials on C

n . On this algebra we define a �-action of
Uq(n), the quantised universal enveloping algebra of the unitary group U(n), as
the ‘differential’ of a certain �-coaction of Aq(n), the quantised algebra of regular
functions on U(n).

3.1. DEFINITION AND STRUCTURE OF Zn

Write Zn for the complex �-algebra generated by the elements zi; wi (1 6 i 6 n)
subject to the relations
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zizj = qzjzi (1 6 i < j 6 n)

wjwi = qwiwj (1 6 i < j 6 n)

wizj = qzjwi (1 6 i; j 6 n; i 6= j)

wizi = ziwi + (1 � q2)
P

k<i zkwk (1 6 i 6 n)

(3.1)

and with involution � : Zn ! Zn; z
�
i = wi (1 6 i 6 n). For q = 1 this algebra

can be viewed as the commutative involutive algebra of polynomials in the n
coordinates z1; : : : ; zn on C n and their conjugates. Using [2] one proves

PROPOSITION 3.1. Zn has as a C -linear basis the set fz�w� := z�1
1 : : :

z�nn w�n
n : : : w

�1
1 g where the multi-indices �; � run over Zn+.

Remark 3.2. In the same way one can prove that the set fw�z� := w
�1
1 : : :

w�n
n z�nn : : : z�1

1 g, with �; � 2 Z
n
+, constitutes a C -basis for Zn. This also follows

from Proposition 3.1 by applying the algebra isomorphism which interchanges zi
and wi (1 6 i 6 n) and sends q to q�1.

LEMMA 3.3. For 1 6 i; k 6 n;m 2 Z+ and with Qk =
Pk

j=1 zjwj there holds

Q�
i = Qi; QiQk = QkQi;

zkwk = Qk �Qk�1; wkzk = Qk � q2Qk�1;

zkQi = q�2Qizk and wkQi = q2Qiwk if k > i;

zkQi = Qizk and wkQi = Qiwk if k 6 i;

zmk w
m
k = Qm

k (
Qk�1
Qk

; q�2)m; wm
k z

m
k = Qm

k (q
2Qk�1

Qk
; q2)m:

Here (a; q)m =
Qm�1

j=0 (1 � aqj) denotes the q-shifted factorial. The proof of this
lemma is straightforward from (3.1). As for the centre ofZn, we have the following
result.

PROPOSITION 3.4. The centre Cent(Zn) ofZn is equal to the polynomial algebra
in the element Qn: Cent(Zn) = C [Qn ].

Proof. It is easy to check that Qn commutes with all the zi and wi, and there-
fore that C [Qn ] � Cent(Zn). To prove the reverse inclusion, we introduce a total
ordering on the basis of Zn as follows: with a basis element z�w� we associate the
sequence f�; �g = (j�j + j�j; �n; : : : ; �1; �1; : : : ; �n); here j�j = �1 + � � � + �n.
We declare z�w� � z�w� if f�; �g > f�; �g with respect to the lexicographic
ordering of elements inZ2n+1

+ . Now an induction argument, similar to the one given
in [26, Prop. 2.2], finishes the proof. 2

Remark 3.5. What we actually constantly use is the following fact. If � 2 Zn is
a monomial which contains zi andwi exactly �i respectively �i times (1 6 i 6 n),
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and if \(�) denotes the highest order term of � with respect to �, then � can be
written in such a way that \(�) = cz�w� with c 6= 0 and � = (�1; : : : ; �n); � =
(�1; : : : ; �n).

3.2. A Uq(gl(n))-MODULE STRUCTURE ON Zn

Let us write Aq(n) = Aq(U(n)), with generators tij(1 6 i; j 6 n); det�1
q and

Uq(n) = Uq(gl(n)), with generators qh(h 2 P � =
Pn

i=1 Z"i); ek; fk(1 6 k 6

n � 1), for the quantised coordinate ring of U(n) and the quantised universal
enveloping algebra of gl(n) respectively. Both algebras are Hopf �-algebras. For
their definition we refer the reader to [21] and [23]; the structural maps are taken
as in [21]. So in particular we define the coproduct � on the generators qh; ek; fk
of Uq(n) by

�(qh) = qh 
 qh;

�(ek) = q"k�"k+1 
 ek + ek 
 1;

�(fk) = 1
 fk + fk 
 q�("k�"k+1):

(3.2)

Furthermore,Aq(n) andUq(n) become Hopf �-algebra in duality (see [21, Sect. 1.3])
if we define the pairing on the generators as

hqh; tiji = �ijq
hh;"ii; hek; tiji = �ki�k+1;j; hfk; tiji = �k+1;i�kj : (3.3)

Next we define � : Zn ! Zn 
Aq(n) on the generators of Zn by

zi 7!
nX

k=1

zk 
 tki; wi 7!

nX
k=1

wk 
 t�ki (3.4)

and extend this map linearly in both factors.

LEMMA 3.6. The map � as defined in (3:4) extends to a �-algebra homomorphism
on Zn and satisfies (2:1). In other words, � extends to a right �-coaction of Aq(n)
on Zn.

Proof. Extending � as a �-algebra homomorphism, we only need to verify that
it respects the relations (3.1). One can readily check that this is implied by the
relations [9, (2.1), (2.13–16)], which are valid in Aq(n). It is also immediate that
� satisfies (2.1). 2

‘Differentiating’ this right �-coaction one obtains a left �-action of the quantised
universal enveloping algebra Uq(n) on Zn;

X � � = (id 
X) � �(�); (X 2 Uq(n);� 2 Zn): (3.5)

The element X on the right of (3.5) is identified with the linear functional on
Aq(n) which is induced by the pairing between Uq(n) and Aq(n). Following [27]
we symbolically write �(X) =

P
(X)X(1) 
X(2) for X 2 Uq(n).
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LEMMA 3.7. (3:5) defines an algebra action of Uq(n) on Zn, and it satisfies
X � (� ) =

P
(X)

�
X(1) � �

��
X(2) �  

�
. Moreover, X � �� = (S(X)� � �)� for all

X 2 Uq(n) and all �;  2 Zn.

Note that if � 2 Zn is Aq(n)-invariant this will imply that X � � = "(X)� for all
X 2 Uq(n), i.e. � is Uq(n)-invariant.

LEMMA 3.8. The elementQn isAq(n)-invariant, and hence alsoUq(n)-invariant.
Proof. This follows immediately from (3.4), the fact that � is an algebra homo-

morphism and the relation
Pn

k=1 tikt
�
jk = �ij1Aq(n) (see [9, (2.12)]). 2

The �-action of Uq(n) corresponding to � is given in the following proposition.

PROPOSITION 3.9. For h 2 P �; 1 6 k 6 n� 1 and �; � 2 Z
n
+ there holds

qh � z�w� = qhh;���iz�w�

fk � z
�w� = �q�k+1[�k+1]q�2z�w��"k+1+"k

+q�k+1+�k��k+1 [�k]q�2z��"k+"k+1w�;

ek � z
�w� = �q�1q�k+1+�k��k+1[�k]q�2z�w�+"k+1�"k

+q�k [�k+1]q�2z�+"k�"k+1w�;

where [m]q = (1 � qm)=(1 � q) is the q-number and � + "i = (�1; : : : ; �i +
1; : : : ; �n).

Proof. Combine (3.5) and Lemma 3.7 with (3.2), and use the relations (3.1). 2

Remark 3.10. One can rewrite this result a little when using that for allm 2 Z+

one has the identity [m]q�2 = q�2(m�1)[m]q2 .

It is actually the left action of Uq(n) given by Proposition 3.9 that we will consider,
rather than the Aq(n)-coaction, since it is easier to handle.

Observe that we have the following decomposition of Zn;

Zn =
M

l;m2Z+

Zn(l;m);

where Zn(l;m) is the subspace of Zn spanned by all elements which are homo-
geneous of degree l in the zk and homogeneous of degree m in the wk. Note that
it makes sense to speak of homogeneous elements, since the relations (3.1) are
homogeneous. Also note that 0 is homogeneous of any degree (l;m). It follows
from Proposition 3.1 that Zn(l;m) has a linear basis consisting of all elements
z�w� with the property that j�j = l and j�j = m; here j�j = �1 + � � � + �n.
Hence theZn(l;m) (l;m 2 Z+) are finite dimensional. It is easy to check that they
are subcomodules of Zn under � (and hence submodules for the action of Uq(n)).
Observe also that QnZn(l � 1;m� 1) � Zn(l;m) and Zn(l;m)

� = Zn(m; l):
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PROPOSITION 3.11. Suppose � 2 Zn(l;m) is Uq(n)-invariant. Then;

(i) if l 6= m, then � = 0,
(ii) if l = m, then � = cQl

n (c 2 C ).

Proof. We already know from Lemma 3.8 that Qn is Uq(n)-invariant. Suppose

now that � 2 Zn(l;m) is Uq(n)-invariant, and write � = cz�w� +
P

i ciz
�(i)w�(i)

where c 6= 0 and for all i there holds z�w�
� z�

(i)

w�(i) with respect to the total
ordering on monomials in Zn (cf. Proposition 3.4 and Remark 3.5). As before let
\(�) be the highest order part of � (so \(�) = cz�w�). Since "(qh) = 1 for all
h 2 P �, we must have \(q"i � �) = \(�). But from Proposition 3.9 we find that
\(q"i ��) = cq�i��iz�w�. This implies that �i = �i for all 1 6 i 6 n, and therefore
l = j�j = j�j = m if � 6= 0. This proves part (i). Arguing by contradiction, one
proves part (ii) in a similar way (see [6, Prop. 3.15]). 2

LEMMA 3.12. One has wm
i zi = q2mziw

m
i + (1� q2m)wm�1

i Qi for all 1 6 i 6 n
and each m 2 Z+.

Proof. Observe that wizi = q2ziwi + (1 � q2)Qi. Now proceed by induction
with respect to m. 2

COROLLARY 3.13. For all 1 6 i 6 n and each m 2 Z+ one has the identity
(ziwi)

m =
Pm

k=0 ckz
k
i w

k
i Q

m�k
i for certain coefficients ck 2 Z[q2].

Suppose we are given the two algebras Zn and Zs with generators zi; wi (1 6
i 6 n) and zi0; wi

0 (1 6 i 6 s) respectively, and assume s < n. Then we have the
canonical embedding �(s;n) : Zs ,! Zn which sends the generators zi0; wi

0 ofZs to
the first s pairs of generators zi; wi (1 6 i 6 s) of Zn. We also have a restriction
map �(n;s) : Zn ! Zs which puts zi and wi equal to zero for i = 1; : : : ; n� s and
maps zi and wi to z0i�n+s and w0

i�n+s respectively for i = n� s+ 1; : : : ; n. Both
maps are �-algebra homomorphisms. So in particular we can view Zn�1(l;m) as
sitting in Zn(l;m), by means of �(n�1;n).

Furthermore, observe that for 1 6 p 6 n � 1 we have a natural embedding
Uq(n � p) ,! Uq(n) by identifying Uq(n � p) with the subalgebra of Uq(n)
generated by the elements q"i (1 6 i 6 n� p); ek; fk (1 6 k 6 n� p� 1). In this
way it is possible to speak of Uq(n� p)-invariant elements in Zn.

PROPOSITION 3.14. Suppose � 2 Zn(l;m) is Uq(n� 1)-invariant. Then � is of
the form � =

Pl^m
j=0 cjz

l�j
n wm�j

n Qj
n, where l ^m = min(l;m). Conversely, any �

of this form is Uq(n � 1)-invariant. Hence the dimension of Uq(n � 1)-invariant
elements in Zn(l;m) equals l ^m+ 1.

Proof. Using Proposition 3.1 and the commutation relations for the zi; wi, we
see that � can be written uniquely as � =

Pl
i=0
Pm

j=0 z
l�i
n wm�j

n pij(z1; : : : ; zn�1;

w1; : : : ; wn�1) for certain pij 2 Zn�1(i; j). Then the action of Uq(n � 1) is
on the elements pij (cf. Proposition 3.9). From Proposition 3.11 we obtain that
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pij = �ijdjQ
j
n�1, and thus � =

Pl^m
j=0 djz

l�j
n wm�j

n Q
j
n�1 which already yields

the stated dimension. Since Qn is central we can write Qj
n�1 = (Qn � znwn)

j =Pj
k=0(�1)kak;j(znwn)

kQj�k
n , where the ak;j are ordinary binomial coefficients.

If we substitute this in � we obtain

� =
l^mX
j=0

jX
k=0

djak;jz
l�j
n wm�j

n (znwn)
kQj�k

n :

Now, after applying Corollary 3.13 and changing the summations we obtain that �
is of the asserted form. The converse statement in the proposition is obvious. 2

Similarly one proves

PROPOSITION 3.15. Suppose � 2 Zn(l;m). Then � is Uq(n�2)-invariant if and
only if � is of the form � =

Pl^m
j=0

Pl�j
r=0

Pm�j
s=0 aj;r;sz

l�j�r
n wm�j�s

n zrn�1w
s
n�1Q

j
n:

4. The quantised algebra of polynomials on the sphere in C
n

In this last chapter we construct the quantised algebra of polynomials on the sphere
S2n�1 from the algebra Zn by putting the invariant central element Qn equal
to 1. Furthermore we construct an invariant functional on this algebra, we give
its irreducible decomposition into Uq(n)-modules and we recover the Uq(n � 1)-
invariant elements, the so-called zonal spherical functions, as q-disk polynomials.
Finally we prove an addition theorem for these q-disk polynomials.

4.1. DEFINITION OF eZn AND INVARIANT FUNCTIONAL

We know (Proposition 3.4) that Qn is a central element of Zn. So it makes sense
to consider the following projection map

� : Zn ! Zn=(Qn � 1) =: eZn: (4.1)

We denote the images of the generators zi; wi of Zn under � by the same symbols
and we define the map � on those images as in (3.4). This gives a well-defined
�-coaction of Aq(n) on eZn, since Qn is a trivial element for the Aq(n)-coaction
(Lemma 3.8). In other words, � factors through the projection �. The algebraeZn plays the role of quantised polynomial algebra on the (2n � 1)-sphere S2n�1

within C
n , and was introduced in [24]. It is the same as the algebra A(KnG) of

[23, Sect. 4.1].
We recall that a linear functional h : eZn ! C is said to be Aq(n)-invariant if

the identity (h 
 id) � �(�) = h(�)1Aq(n) holds for all � 2 eZn. This will imply

(see (3.5)) that h(X � �) = "(X)h(�) for � 2 eZn and X 2 Uq(n). In other words,
h will be Uq(n)-invariant. The functional is called positive definite if h(���) > 0
whenever � 6= 0.
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PROPOSITION 4.1. On eZn there exists a unique normalised, positive definite,
Uq(n)-invariant functional hn : eZn ! C . It is given on the basis elements by

hn(z
�w�) = ���q

�2((n�1)�1+(n�2)�2+���+�n�1)

�
(q�2; q�2)�1 : : : (q

�2; q�2)�n(q
�2; q�2)n�1

(q�2; q�2)j�j+n�1
; (4.2)

where (a; q)m is the q-shifted factorial (Lemma 3:3) and j�j = �1 + � � �+ �n.

The proof of this proposition is analogous to [23, Prop. 4.5], and uses Proposi-
tion 3.9.

Remark 4.2. One can write (4.2) equivalently as

hn(z
�w�) = ���q

j�j2+
Pn

i=1
(2(i�1)�i��2

i)

�
(q2; q2)�1 : : : (q

2; q2)�n(q
2; q2)n�1

(q2; q2)j�j+n�1
; (4.3)

when using that (a�1; q�1)m = (�1)ma�mq�
1
2m(m�1)(a; q)m.

Recall the q-integral for functions on [0; c] (see [8]);

Z c

0
f(x)dqx = c(1 � q)

1X
k=0

f(cqk)qk:

It satisfiesZ c

0
f

�
x

c

�
dqx = c

Z 1

0
f(x)dqx: (4.4)

The next lemma now follows from a direct calculation.

LEMMA 4.3. For all �; � 2 Z+ and any continuous function f there holdsZ 1

0
f(q��x)x�(x; q�1)�dqx = q�(�+1)

Z 1

0
f(x)x�(xq; q)�dqx:

Consequently we find that
R 1

0 x
�(x; q�1)�dqx = q�(�+1)(1 � q)(q; q)�(q; q)�=

(q; q)�+�+1 since the integral on the right-hand side in Lemma 4.3 is the q-beta
integral in case f = 1 (see [8, (1.11.7)]);Z 1

0
x�(xq; q)�dqx = (1 � q)

(q; q)�(q; q)�
(q; q)�+�+1

:

The following result was already found in [23, Thm. 4.6].
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PROPOSITION 4.4. In eZn we have that spanfz�w�
j� 2 Z+g = C [Q1 ; : : : ; Qn�1],

and for each � = �(Q1; : : : ; Qn�1) 2 C [Q1 ; : : : ; Qn�1] the value of the invariant
functional is given by the following multiple q-integral;

hn(�) =
(q2; q2)n�1

(1� q2)n�1 �

Z 1

0

Z Qn�1

0
: : :

Z Q2

0
�(Q1; : : : ; Qn�1)

�dq2Q1 : : : dq2Qn�2dq2Qn�1: (4.5)

Proof. The first statement follows from Lemma 3.3. Hence we only have to ver-
ify that (4.5) is true for any monomial z�w�. From Lemma 3.3 we obtain the identi-
ty z�w� = Q�1

1 Q
�2
2 : : : Q

�n�1
n�1 (Q1=Q2; q�2)�2(Q2=Q3; q�2)�3 : : : (Qn�1; q�2)�n :

Now substitute this into the right-hand side of (4.5) and use (4.4). Then, by
successive use of Lemma 4.3, one checks that for � = z�w� (4.5) agrees with
(4.3). 2

PROPOSITION 4.5. The �-algebra homomorphism 	 : eZn ! Aq(n); zk 7! tnk
is well-defined, intertwines � and � and is injective. So we can apply the results of
Section 2.2 with A = Aq(n) and Z = eZn.

Proof. It is straightforward to verify that	 is well-defined and intertwines � and
�. To show injectivity we first view	 as a map fromZn toA(Matq(n))
C [det�1

q ]

(we use the notation of [23, Sect. 1.1.]), where we assume det�1
q to be a central

element but we do not assume the identities detq det�1
q = 1 = det�1

q detq to hold.
Suppose � is a monomial in the elements tij (1 6 i; j 6 n) which contains aij
factors tij (1 6 i; j 6 n). We can arrange things in such a way that � has leading
term tA = ta11

11 : : : ta1n
1n t

a21
21 : : : t

a2n
2n : : : tannnn (so we use the following total ordering

on the generators tij: tij � tkl if i < k, or if i = k and j < l ). From [9, Thm. 3.1]
we know that monomials in the tij corresponding to different matrices A = (aij)
are linearly independent in A(Matq(n)). Hence, since we know a linear basis for
Zn, we must show that the matrix A(�; �) corresponding to 	(z�w�) is different
for different choices of the pair (�; �). This is straightforwardly checked (since it
suffices to look at the highest order term of 	(z�w�)). Finally, using the identityPn

k=1 tnk(�q)
k�nDbnbk = detq in A(Matq(n)) ([9, (2.10)], [23, (1.15.b)]), we find

that 	(Qn � 1) = detq det�1
q �1. This shows that 	 extends to an injective homo-

morphism from eZn to Aq(n). 2

Remark 4.6. From this it follows that the algebra A(KnG) of [23, Sect. 4.1]
has no relations additional to the relations (4.9.a–d) (loc. cit.). This was already
observed in [28, Thm. 4.4].
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4.2. IRREDUCIBLE DECOMPOSITION

With the invariant functionalhn of Proposition 4.1 one can define an invariant inner
product on eZn as follows

h�; �i : eZn �
eZn ! C

h�;  i := hn( 
��):

(4.6)

This non-degenerate bilinear form satisfies hX � �;  i = h�;X�
�  i for all X 2

Uq(n) and all �;  2 eZn. So in particular hqh � �;  i = h�; qh �  i for all h 2 P �

and all �;  2 eZn. Put eZn(l;m) := �(Zn(l;m)), with � the projection (4.1),
and let eHn(l;m) be the orthogonal complement of eZn(l � 1;m� 1) in eZn(l;m)
with respect to the inner product (4.6) (recall that we have QnZn(l� 1;m� 1) �
Zn(l;m), whence eZn(l� 1;m� 1) � eZn(l;m)). So there is the orthogonal direct
sum decomposition

eZn(l;m) = eZn(l � 1;m� 1)� eHn(l;m):

LEMMA 4.7. The projection map � : Zn(l;m)! eZn(l;m) is injective.
Proof. This is a consequence of Proposition 3.1 and the fact that the element

Qn � 1 is not homogeneous. 2

From this lemma it follows that � : Zn(l;m) ! eZn(l;m) is an isomorphism.
Hence we obtain from Proposition 3.1 that

dim eZn(l;m) = dimZn(l;m) =

 
l + n� 1

n� 1

! 
m+ n� 1

n� 1

!
(4.7)

and

dn(l;m) := dim eHn(l;m) = dim eZn(l;m)� dim eZn(l � 1;m� 1)

=
(l +m+ n� 1)(l + n� 2)!(m+ n� 2)!

l!m!(n� 1)!(n� 2)!
: (4.8)

Moreover, we have the decomposition

eZn =
X

l;m2Z+

eZn(l;m): (4.9)

If we write Hn(l;m) for the inverse image of eHn(l;m) under the projection
� : Zn(l;m)! eZn(l;m), then Zn(l;m) = QnZn(l � 1;m� 1)�Hn(l;m) as a
direct sum.
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PROPOSITION 4.8. There exists the following orthogonal decomposition into
inequivalent irreducible Uq(n)-modules;

eZn(l;m) =
l^mM
k=0

eHn(l � k;m� k): (4.10)

Here l ^m = min(l;m).
Proof. It is clear, by the definition of the spaces eHn(r; s), that eZn(l;m) allows

the orthogonal direct sum decomposition (4.10). Irreducibility of eHn(l�k;m�k)
follows from Proposition 2.3: each nontrivial Uq(n)-invariant subspace of a giveneHn(l�k;m�k) should contain at least oneUq(n�1)-invariant element. But there
are, according to Proposition 3.14, only l ^m + 1 linearly independent invariant
elements in the space eZn(l;m). Hence none of the spaces eHn(l�k;m�k) contains
a nontrivial invariant subspace.

To prove inequivalence, assume that eHn(l � k;m � k) ' eHn(l � k0;m� k0)
for k 6= k0. So in particular dn(l � k;m � k) = dn(l � k0;m � k0) =: N . Take
orthonormal bases feigNi=1 and ffjgNj=1 in the respective spaces and construct the

elements �0 =
PN

i=1 "(e
�
i )ei and �0

0 =
PN

j=1 "(f
�
j )fj as in the proof of Proposition

2.3. By linear independence it follows that not all of the "(e�i ) and "(f�j ) can be zero.

Furthermore, put � =
PN

k=1 ek
 fk. Again we will have that (���)(�) = �
 1
and �(e�) = e� 
 1 where e� =PN

k=1 ekfk (cf. the proof of Proposition 2.3). From
this and the orthogonality of the spaces eHn(l� k;m� k) and eHn(l� k

0;m� k0),
we obtain "(e�) = hn(e�) = 0. Finally, put �0 =

PN
k=1 "(f

�
k )ek 2

eHn(l�k;m�k).
Then �0 6= 0, since not all of the "(f�k ) are zero and the ei are linearly independent.
Moreover "(�0) = "(e�) = 0. But this means that we have two linearly independent
invariant elements within eHn(l�k;m�k), namely �0 and �0 (linearly independent
since "(�0) > 0 and "(�0) = 0). This gives a contradiction. Hence the two spaceseHn(l � k;m� k) and eHn(l � k0;m� k0) cannot be equivalent. 2

Remark 4.9. Using exactly the same argument as in the proof of the previous
proposition, one shows that the modules eHn(l;m) are inequivalent for different
choices of the pair (l;m). From the proof of Proposition 4.8 we immediately obtain
that each eHn(l;m) contains a unique, up to constants,Uq(n�1)-invariant element.
It is called a (zonal) spherical function, or spherical element.

LEMMA 4.10. If (l;m) 6= (l0;m0), then eHn(l;m) ? eHn(l
0;m0).

Proof. Suppose first that l0� l = m0�m, and say this is non-negative. This
means that l0 = l + k;m0 = m + k for some k > 0. But then eHn(l;m) andeHn(l

0;m0) are contained in the same space eZn(l
0;m0), and hence are orthogonal

by Proposition 4.8. If, on the other hand, l0� l 6= m0�m, choose � 2 eHn(l;m)

and  2 eHn(l
0;m0). By invariance of the inner product (4.6) we have

ql�mh�;  i = hq"1+���+"n � �;  i = h�; q"1+���+"n �  i = ql
0�m0

h�;  i. Since
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we assumed that l0� l 6= m0
�m, and since q is not a root of unity, this proves that

h�;  i = 0. 2

COROLLARY 4.11. There is the orthogonal, irreducible decomposition into inequiv-
alent Uq(n)-modules

eZn =
M

l;m2Z+

eHn(l;m):

Proof. This now follows from the decomposition (4.9) together with
Proposition 4.8, Lemma 4.10 and Remark 4.9. 2

4.3. ZONAL SPHERICAL FUNCTIONS

Let us write  (l;m) for a spherical element contained in eHn(l;m), which is
unique up to constants (see Remark 4.9). Now suppose that (l;m) 6= (l0;m0), and
assume that l �m = l0�m0 = � > 0. From Proposition 3.14 and Lemma 3.3 we
know that  (l;m) = zl�mn

Pm
j=0 cjz

m�j
n wm�j

n = z�npm(Qn�1) and  (l0;m0) =

zl
0�m0

n

Pm0

j=0 cjz
m0�j
n wm0�j

n = z�npm0(Qn�1) for certain polynomials pm; pm0 of
degreem andm0 respectively. As a consequence of the orthogonality of the spaceseHn(l;m) and eHn(l

0;m0) we find

0 = h (l0;m0);  (l;m)i = hn(pm(Qn�1)
�w�

nz
�
npm0(Qn�1))

= hn(pm(Qn�1)
�pm0(Qn�1)(q

2Qn�1; q2)�)

(cf. Lemma 3.3). Observe that

Z Qn�1

0
: : :

Z Q2

0
dq2Q1 : : : dq2Qn�2 =

(1� q2)n�2

(q2; q2)n�2
Qn�2
n�1: (4.11)

So we obtain from Proposition 4.4

0 =
Z 1

0
pm(Qn�1)pm0(Qn�1)Q

n�2
n�1(q

2Qn�1; q2)�dq2Qn�1 (m 6= m0):

But letting m and m0 run over Z+, these are exactly the orthogonality relations [8,
(7.3.3)] for the little q-Jacobi polynomials p(n�2;�)

m (Qn�1; q2). In other words, there

exist constants cm 2 C such that pm(Qn�1) = cmp
(n�2;�)
m (Qn�1; q2) (m 2 Z+):

Thus we obtain that in case l > m a general spherical element in eHn(l;m) is

given by a constant multiple of zl�mn p
(n�2;l�m)
m (Qn�1; q2). Similar calculations

are made in case m � l > 0. One finds, using (4.11), Lemma 3.3 and Lemma
4.3, that the spherical elements of eHn(l;m) for l 6 m are constant multiples of

p
(n�2;m�l)
l (Qn�1; q2)wm�l

n . Summarising we have
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THEOREM 4.12. For arbitrary l;m 2 Z+ the Uq(n� 1)-invariant elements (i.e.
the zonal spherical elements) in eHn(l;m) are constant multiples of the q-disk
polynomials

R
(n�2)
l;m (zn; wn; q2) =

8<
: zl�mn p

(n�2;l�m)
m (Qn�1; q2) (l > m)

p
(n�2;m�l)
l (Qn�1; q2)wm�l

n (l 6 m)
;

where p(�;�)k (x; q) = pk(x; q�; q�; q) is the little q-Jacobi polynomial [8; (7:3:1)].

This result was already obtained in [23, Thm. 4.7].
Finally we calculate the norms of these spherical elements, since we will need

them later on. First let us assume that l �m = � > 0. Recall thatZ 1

0
R
(n�2)
l;m (zn; wn; q2)�R

(n�2)
l;m (zn; wn; q2)Qn�2

n�1 dq2Qn�1

=

Z 1

0
p(n�2;�)
m (Qn�1; q2)p(n�2;�)

m (Qn�1; q2)Qn�2
n�1(q

2Qn�1; q2)�dq2Qn�1

=
(1� q2)q2m(�+1)

1� q2(�+�+2m+1)

(q2; q2)m(q
2; q2)�+m

(q2(�+1); q2)m(q2(�+1); q2)�+m
:

Thus, for l > m,

hR
(n�2)
l;m (zn; wn; q2); R

(n�2)
l;m (zn; wn; q2)i

=
(1� q2(n�1))q2m(n�1)

1� q2(n+l+m�1)

(q2; q2)l(q
2; q2)m

(q2(n�1); q2)l(q2(n�1); q2)m
:

The casem� l = � > 0 is treated similarly and gives the same answer. This proves
the following proposition.

PROPOSITION 4.13. For l;m 2 Z+ and � = n� 2 2 Z+, the square of the norm

of the q-disk polynomial R(�)
l;m(zn; wn; q2) is given by

kR
(�)
l;m(zn; wn; q2)k2 = hn(R

(�)
l;m(zn; wn; q2)�R

(�)
l;m(zn; wn; q2)) = c

(�)
l;m

in which

c
(�)
l;m =

(1 � q2(�+1))q2m(�+1)

1� q2(�+l+m+1)

(q2; q2)l(q
2; q2)m

(q2(�+1); q2)l(q2(�+1); q2)m
: (4.12)

Note that, unlike in the classical case, c(�)l;m is not symmetric in l and m.

4.4. ASSOCIATED SPHERICAL FUNCTIONS

Suppose we are given the �-algebra Zn�1 with generators zi0; wi
0 (1 6 i 6 n� 1)

and with corresponding projection �0 : Zn�1 !
eZn�1. Recall that for r; s 2 Z+
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we have the embedding �(n�1;n) : Zn�1(r; s) ,! Zn(r; s) (Sect. 3.2). Then, by use
of the map � � �(n�1;n)

� (�0)�1, one can identify � = �(z0; w0) 2 eZn�1(r; s) with

Q
(r+s)=2
n�1 �(zQ

�(1=2)
n�1 ; wQ

�(1=2)
n�1 ) 2 eZn(r; s).

Given l;m 2 Z+ and 0 6 r 6 l; 0 6 s 6 m, define the following elements in
Zn(l;m);

 (l;m; r; s) = Q(l�r+m�s)=2
n R

(n�2+r+s)
l�r;m�s (znQ

�(1=2)
n ; wnQ

�(1=2)
n ; q2)

�Q
(r+s)=2
n�1 R(n�3)

r;s (zn�1Q
�(1=2)
n�1 ; wn�1Q

�(1=2)
n�1 ; q2):

Denote their restrictions in eZn(l;m) via � by the same symbols.

PROPOSITION 4.14. In eZn there holds h (l0;m0; r0; s0);  (l;m; r; s)i = 0 when-
ever one has (l0;m0; r0; s0) 6= (l;m; r; s). Moreover,

k (l;m; r; s)k2 =
1� q2(�+1)

1� q2(�+r+s+1)
c
(�+r+s)
l�r;m�sc

(��1)
r;s

where � = n� 2.
Proof. This is done by direct calculation. 2

PROPOSITION 4.15. For fixed l;m 2 Z+,  (l;m; r; s) 2 eHn(l;m) for all 0 6
r 6 l and all 0 6 s 6 m. Moreover, an element F 2 eHn(l;m) is Uq(n � 2)-
invariant if and only if F 2 spanf (l;m; r; s)j0 6 r 6 l; 0 6 s 6 mg.

Proof. For 0 6 j 6 l^m; 0 6 r 6 l� j; 0 6 s 6 m� j consider the elements
Qj
n (l � j;m� j; r; s) in Zn(l;m). Their restrictions to eZn are mutually orthog-

onal by the previous proposition, hence they are linearly independent in Zn(l;m).
Since they are all Uq(n� 2)-invariant they will span the entire space of Uq(n� 2)-
invariant elements within Zn(l;m) because of their number, cf. Proposition 3.15.
In the same way all elements Qj

n (l � j;m � j; r; s) with 1 6 j 6 l ^m and
0 6 r 6 l�j; 0 6 s 6m�j will span the subspace ofUq(n�2)-invariant elements
in QnZn(l � 1;m� 1). Now, using the orthogonality of the  (l;m; r; s) together
with Lemma 2.6, we conclude that the  (l;m; r; s) with 0 6 r 6 l; 0 6 s 6 m are
orthogonal to the whole of eZn(l � 1;m� 1), hence belong to eHn(l;m). Because
of their number the second part of the proposition is also clear. 2

For given l;m 2 Z+ and 0 6 r 6 l; 0 6 s 6 m put

Hn(l;m; r; s) = Q(l�r�m+s)=2
n R

(n�2+r+s)
l�r;m�s � (znQ

�(1=2)
n ; wnQ

�(1=2)
n ; q2)

�Hn�1(r; s):

Then clearly Hn(l;m; r; s) � Zn(l;m) (0 6 r 6 l; 0 6 s 6 m). There even holds
the following result.
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LEMMA 4.16. For all 0 6 r 6 l and all 0 6 s 6m we have the inclusion

Hn(l;m; r; s) � Hn(l;m):

Proof. As Uq(n � 1)-modules there is the isomorphism Hn(l;m; r; s) �=
Hn�1(r; s). SinceHn�1(r; s) is irreducible as a Uq(n�1)-module, by the fact that
it is isomorphic to the module eHn�1(r; s), and since  (l;m; r; s) 2 Hn(l;m; r; s),
we getUq(n�1)� (l;m; r; s) = Hn(l;m; r; s) for all 0 6 r 6 l and all 0 6 s 6 m.
On the other hand we know that  (l;m; r; s) 2 Hn(l;m) (Proposition 4.15), hence
Uq(n� 1) �  (l;m; r; s) � Hn(l;m). Thus we see that Hn(l;m; r; s) � Hn(l;m)
for all 0 6 r 6 l and all 0 6 s 6 m. 2

PROPOSITION 4.17. We have the following direct sum decomposition into irre-
ducible, inequivalent Uq(n� 1)-modules;

Hn(l;m) =
lM

r=0

mM
s=0

Hn(l;m; r; s): (4.13)

Proof. From the previous lemma we obtain that the direct sum on the right-hand
side is contained in Hn(l;m). Counting dimensions gives the equality. 2

Write eHn(l;m; r; s) = �(Hn(l;m; r; s)) for the image of Hn(l;m; r; s) under the
projection � of (4.1).

PROPOSITION 4.18. There exists the following orthogonal decomposition into
irreducible, inequivalent Uq(n� 1)-modules

eHn(l;m) =
lM

r=0

mM
s=0

eHn(l;m; r; s): (4.14)

This proposition follows from the previous proposition and the following one.

PROPOSITION 4.19. If the set f�0(gi(r; s))g, with i = 1; : : : ; dn�1(r; s), forms
an orthonormal basis for eHn�1(r; s) with respect to the inner product defined by
hn�1, then the set

f((1 � q2(n�1)) c
(n+r+s�2)
l�r;m�s =(1 � q2(n+r+s�1)))�(1=2)

R
(n�2+r+s)
l�r;m�s (zn; wn; q2)�(gi(r; s))g;

with 0 6 r 6 l; 0 6 s 6 m and i = 1; : : : ; dn�1(r; s), forms an orthonormal basis
for eHn(l;m) with respect to the inner product on eZn defined by hn.

Proof. The proof of this is along the same lines as the proof of Pro-
position 4.14. 2
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Remark 4.20. The elements in Proposition 4.19 are called associated spherical
elements in Hn(l;m).

4.5. ADDITION FORMULA FOR q-DISK POLYNOMIALS

We are now at the stage where we can prove the addition theorem for q-disk
polynomials. For this we use the concrete realisation of eZn as a �-subalgebra of
Aq(n) which was established in Proposition 4.5.

So let us identify zi = tni; wi = t�ni. Under this correspondence the coaction
� is merely the comultiplication � of Aq(n). Write � for the anti-linear and
involutive algebra automorphism � � S of Aq(n). We know that �(tij) = tji,
since t�ij = S(tji) = (�q)j�iDb{b| det�1

q ; where DIJ denotes the quantum minor-
determinant corresponding to the two subsets I; J � f1; : : : ; ng (see [23, (1.8)]).
So in particular we get �(zn) = zn. Moreover, recall from [23, (3.2)] that

(DIJ)
� = S(DJI) =

sgnq(J ;Jc)

sgnq(I; Ic)
DIcJc det�1

q (4.15)

in which Ic denotes the complement of I in f1; : : : ; ng, and

sgnq(I;J) =

(
0 I \ J 6= ;

(�q)l(I;J) I \ J = ;
;

where l(I;J) = #f(i; j) 2 I � J j i > jg. Using (4.15) we see that S(t�nn) = tnn,
whence �(wn) = wn. So we conclude that �(Qn�1) = Qn�1 in eZn.

As was observed in Remark 2.4 we can exhibit eHn(l;m) as the row space
A�(1) for some irreducible unitary matrix corepresentation � of Aq(n), such that

�11 = R
(n�2)
l;m (zn; wn; q2) (since it is easily seen that "(R(n�2)

l;m (zn; wn; q2)) =

1). The basis elements f�1ig of A�(1) then correspond to the elements given in
Proposition 4.19 with r + s 6= 0. Again by virtue of Remark 2.4, and by the fact
that (id 
 �) ��(�11) =

P
k �1k 
 �1k, one can write

(id 
 �) ��R
(n�2)
l;m (zn; wn; q2)

= hn(R
(n�2)
l;m (zn; wn; q2)�R

(n�2)
l;m (zn; wn; q2))

�

lX
r=0

mX
s=0

dn�1(r;s)X
i=1

(a
�(1=2)
l;m;r;sR

(n�2+r+s)
l�r;m�s (zn; wn; q2)�(gi(r; s)))


a
�(1=2)
l;m;r;sR

(n�2+r+s)
l�r;m�s (zn; wn; q2)�(gi(r; s));

where al;m;r;s = (1 � q2(n�1))(1 � q2(n+r+s�1))�1c
(n+r+s�2)
l�r;m�s . Here we choose

the bases fgi(r; s)g of Hn�1(r; s) in such a way that for all r; s 2 Z+ there holds

comp3806.tex; 28/07/1997; 11:32; v.7; p.21

https://doi.org/10.1023/A:1000179602766 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000179602766


144 PAUL G. A. FLORIS

g1(r; s) = (c
(n�3)
r;s )�(1=2)Q

(r+s)=2
n�1 R

(n�3)
r;s (zn�1Q

�(1=2)
n�1 ; wn�1Q

�(1=2)
n�1 ; q2). Let us

pull the above identity in eHn(l;m)
 eHn(l;m) back to Hn(l;m)
Hn(l;m). We
obtain

(Qn 
Qn)
(l+m)=2R

(n�2)
l;m

�
(id 
 �)�(zn)

(Qn 
Qn)1=2
;
(id 
 �)�(wn)

(Qn 
Qn)1=2
; q2
�

= c
(n�2)
l;m

lX
r=0

mX
s=0

dn�1(r;s)X
i=1

a�1
l;m;r;s

�Q(l�r+m�s)=2
n R

(n�2+r+s)
l�r;m�s (znQ

�(1=2)
n ; wnQ

�(1=2)
n ; q2)gi(r; s)


Q(l�r+m�s)=2
n R

(n�2+r+s)
l�r;m�s (znQ

�(1=2)
n ; wnQ

�(1=2)
n ; q2)gi(r; s): (4.16)

Now recall the projection �(n;2) : Zn ! Z2 which puts z1; : : : ; zn�2; w1; : : : ; wn�2

equal to zero (cf. Sect. 3.2). Let us write 
; �;�q�1�; � for the respective generators
z1
0; z2

0; w1
0 and w2

0 of Z2. We also write D for the generator of the centre of Z2:
D = ���+

� = ���q�1�
. Another way of writingD isD = ���+q2

� =
�� � q�
. Having this, we can write the projection �(n;2) as

�(n;2) : Zn ! Z2

zn�1 ! 
; wn�1 ! 
� = �q�1�;

zn ! �; wn ! �� = �:

zi; wi ! 0 (i = 1; : : : ; n� 2):

(4.17)

LEMMA 4.21. For 0 6 r 6 l; 0 6 s 6 m pick a basis fgi(r; s)g of Hn�1(r; s)

such that in each case g1(r; s) = (c
(n�3)
r;s )�(1=2)Q

(r+s)=2
n�1 R

(n�3)
r;s (zn�1Q

�(1=2)
n�1 ;

wn�1Q
�(1=2)
n�1 ; q2). Then �(n;2)(gi(r; s)) = �i1(c

(n�3)
r;s )�(1=2)
r(
�)s:

Proof. From Proposition 4.17 we obtain the decomposition

Hn�1(r; s) =
rM

u=0

sM
v=0

Hn�1(r; s;u; v):

This immediately yields that �(n;2)jHn�1(r;s;u;v) 6= 0 if and only if (u; v) = (0; 0).
SinceHn�1(r; s; 0; 0) is the one-dimensional space spanned by g1(r; s), the lemma
now follows from an easy computation. 2

LEMMA 4.22. The following equalities hold;

(id 
 �) ��(zn) =
nX

k=1

zk 
 zk; (id 
 �) ��(wn) =
nX

k=1

q2(n�k)wk 
 wk:
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Proof. The first equality follows directly from (3.4) and the fact that �(tij) =
tji. As for the second one, use (4.15) to obtain �(t�kn) = q2(n�k)wk. Together with
(3.4) this yields the stated result. 2

As an immediate consequence of this lemma and (4.17) we find

COROLLARY 4.23. The following identities are valid in Zn 
Z2;

(id
 �(n;2)) � (id 
 �) ��(zn) = zn�1 
 
 + zn 
 �

(id 
 �(n;2)) � (id 
 �) ��(wn) = q2wn�1 
 
� +wn 
 ��

= �qwn�1 
 � +wn 
 �:

Consider the �-algebras X and Y generated by the elements

X : Q = Qn; X1 = zn�1; X�
1 = wn�1; X2 = zn; X�

2 = wn

Y : D = D; Y1 = 
; Y �
1 = 
�; Y2 = �; Y �

2 = ��
(4.18)

and with �-structures

Q� = Q; (X1)
� = X�

1 ; (X2)
� = X�

2

D� = D; (Y1)
� = Y �

1 ; (Y2)
� = Y �

2

(4.19)

(so we merely changed notations). It is straightforward from (3.1) that the following
relations are satisfied.

LEMMA 4.24. In X and Y respectively, one has

X1X2 = qX2X1; Y1Y2 = qY2Y1;

X�
1X2 = qX2X

�
1 ; Y �

1 Y2 = qY2Y
�

1 ;

X�
2X2 = q2X2X

�
2 + (1� q2)Q; Y1Y

�
1 = Y �

1 Y1;

X�
1X1 = q2X1X

�
1 ; D = Y1Y

�
1 + Y2Y

�
2 = q2Y �

1 Y1 + Y �
2 Y2;

+(1� q2)(Q�X2X
�
2 ); Q central.

(4.20)

Remark 4.25. Centrality of Q in X does not follow automatically from the first
four relations above, but is imposed on the algebraX . However,D is clearly central.

Write B = X 
 Y and identify X1 with X1 
 1, Y1 with 1
 Y1 and so on. We
will prove that the relations in Lemma 4.24 are in fact the only nontrivial relations
between the generators of B.

LEMMA 4.26. Write Q0 = Q�X1X
�
1 �X2X

�
2 . A linear basis for X is given by

the set of monomials fXr
1X

s
2 (X

�
2 )

t(X�
1 )

u(Q0)v jr; s; t; u; v 2 Z+g.
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Proof. Rewrite the relations in X in terms of X1;X2;X
�
1 ;X

�
2 and Q0;

X1X2 = qX2X1; X�
2X2 = X2X

�
2 + (1� q2)(Q0 +X1X

�
1 )

X�
1X2 = qX2X

�
1 ; X�

1X1 = X1X
�
1 + (1� q2)Q0:

From this it readily follows thatX is spanned by the monomials given in the lemma.
Hence we only need to show linear independence of this set. For this it suffices to
show linear independence of the highest order terms, which, as elements of Zn,
equal

\(Xr
1X

s
2 (X

�
2 )

t(X�
1 )

u(Q0)v) = \(zrn�1z
s
nw

t
nw

u
n�1(Qn

0)v)

= zrn�1z
s
nw

t
nw

u
n�1z

v
n�2w

v
n�2:

By virtue of Proposition 3.1 these highest order terms are linearly independent as
elements of Zn, hence also as elements of X . 2

PROPOSITION 4.27. A linear basis for B is given by the set of monomials of the
form

(X1 
 1)r(X2 
 1)s(X�
2 
 1)t(X�

1 
 1)u(Q0 
 1)v

�(1
 Y1)
k(1
 Y �

1 )
l(1
 Y2)

m(1
 Y �
2 )

p;

where r; s; t; u; v; k; l;m; p 2 Z+.

This follows directly from Lemma 4.26 and Proposition 3.1. Now are able to prove

PROPOSITION 4.28. The relations (4.20) are the only nontrivial relations among
the generators of B.

Proof. Write E for the �-algebra with abstract generators X1;X
�
1 ;X2;X

�
2 ; Q

and Y1; Y
�

1 ; Y2; Y
�

2 ;D and with relations (4.20). Furthermore, impose that all of
the first five generators commute with all of the last five ones. The �-structure
on E is given by (4.19). From (4.20) we see that E is spanned by the elements
Xr

1X
s
2 (X

�
2 )

t(X�
1 )

u(Q0)vY k
1 (Y

�
1 )

lY m
2 (Y �

2 )
p with r; s; t; u; v; k; l;m; p 2 Z+; as

before we write Q0 = Q�X1X
�
1 �X2X

�
2 . There is a unique surjective �-algebra

homomorphism � : E ! B sending X1;X2;X
�
2 ;X

�
1 ; Q

0; Y1; Y
�

1 ; Y2 and Y �
2 to

zn�1 
 1; zn 
 1; wn 
 1; wn�1 
 1; Qn
0 
 1; 1 
 
; 1 
 
�; 1 
 � and 1 
 ��

respectively. It now easily follows from Proposition 4.27 that this is actually an
isomorphism. 2

With the notation as in (4.18), and with the aid of Lemma 4.21 and Corollary 4.23,
we can write down the effect of the mapping id 
 �(n;2) on (4.16). It reads;

R
(n�2)
l;m (X1 
 Y1 +X2 
 Y2; q

2X�
1 
 Y �

1 +X�
2 
 Y �

2 ; Q
D; q2)
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=
lX

r=0

mX
s=0

c
(n�2)
l;m;r;sR

(n�2+r+s)
l�r;m�s (X2;X

�
2 ; Q; q2)

�R(n�3)
r;s (X1;X

�
1 ; Q�X2X

�
2 ; q2)


R
(n�2+r+s)
l�r;m�s (Y2; Y

�
2 ;D; q2)Y r

1 (Y
�

1 )
s (4.21)

in which, for � = n� 2,

c
(�)
l;m;r;s = c

(�)
l;ma

�1
l;m;r;s(c

(��1)
r;s )�1 =

1� q2(�+r+s+1)

1� q2(�+1)

c
(�)
l;m

c
(�+r+s)
l�r;m�sc

(��1)
r;s

(4.22)

and c(�)l;m is as in (4.12). Here we employed the following

NOTATION 4.29. For � > �1 and l;m 2 Z+ we put

R
(�)
l;m(A;B;C; q) =

8><
>:
CmAl�mp

(�;l�m)
m

�
C�AB

C ; q
�
(l > m)

C lp
(�;m�l)
l

�
C�AB

C ; q
�
Bm�l (l 6 m)

(4.23)

in terms of the little q-Jacobi polynomials (cf. Sect. 1). We use (4:23) for non-
commuting variablesA,B,C , withBA = qAB+(1� q)C where we assume that
C commutes with A and B, so that (4:23) is polynomial in A, B and C .

Observe that R(�)
l;m(A;B; 1; q2) � R

(�)
l;m(A;B; q2).

Let us have a closer look at the polynomials R(�)
l;m(A;B;C; q);

R
(�)
l;m(A;B;C; q) =

8><
>:
CmAl�mPm

k=0
(q�m;q)k(q�+l+1;q)k

(q�+1;q)k(q;q)k

�
qC�ABC

�k
C l
Pl

k=0
(q�l;q)k(q�+m+1;q)k

(q�+1;q)k(q;q)k

�
qC�AB

C

�k
Bm�l

in the respective cases l > m and l 6 m. So these polynomials are rational in
q�. Hence (see also (4.12)) both sides of (4.21) are rational functions of q2�.
Multiplying with a suitable factor we will obtain from (4.21) an identity which
is polynomial in q2� and which holds for � = 1; 2; : : :. But then obviously the
identity is true for all � > 0.

Finally, let � : Y ! Y be the automorphism that sends Y1 to �qY �
1 , Y �

1 to
�q�1Y1, and that fixes Y2 and Y �

2 (this comes down to interchanging � and 
 in
Z2). If we now apply id
 � to (4.21) we end up with the final form of the addition
formula.

THEOREM 4.30. Suppose we are given the abstract complex �-algebras X and
Y with generators X1;X2;X

�
1 ;X

�
2 ; Q, respectively Y1; Y2; Y

�
1 ; Y

�
2 ;D, relations

(4:20) and �-structures (4:19).
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Then, for arbitrary � > 0 and arbitrary l;m 2 Z+, we have the following
addition formula for q-disk polynomials;

R
(�)
l;m(�qX1 
 Y �

1 +X2 
 Y2;�qX
�
1 
 Y1 +X�

2 
 Y �
2 ; Q
D; q2)

=
lX

r=0

mX
s=0

c
(�)
l;m;r;sR

(�+r+s)
l�r;m�s(X2;X

�
2 ; Q; q2)

�R(��1)
r;s (X1;X

�
1 ; Q�X2X

�
2 ; q2)


(�q)r�sR
(�+r+s)
l�r;m�s(Y2; Y

�
2 ;D; q2)Y s

1 (Y
�

1 )
r (4.24)

where we use the notations (4:22) and (4:23).

Remark 4.31. For � = n � 2 this is in fact an identity in Zn 
 Z2, which we
can rewrite as an identity in eZn


eZ2 by putting Q = D = 1 in (4.24). For general
� > 0 we can do something similar; the relations among the generators are then
given by (4.20) but with Q and D equal to 1.

Remark 4.32. It is possible to generalize the findings in this paper by considering
a one-parameter extension of the algebra Zn. The zonal and associated spherical
functions are expressed in that case in terms of certain big q-Jacobi polynomials,
which are one-parameter extensions of the little q-Jacobi polynomials found here.
Consequently we obtain a generalization by one parameter of the addition formula
Theorem 4.30 and of the main results in [7]. Details are written down in an as of
yet unpublished paper [6].
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