Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies Proceedings IAU Symposium No. 193, ©1999 IAU K.A. van der Hucht, G. Koenigsberger & P.R.J. Eenens, eds.

M1-67, nebula ejected from the $200 \,\mathrm{km \, s^{-1}}$ runaway WN8 star WR 124: constraints from HST imagery and complementary CFHT Fabry-Pérot interferometry

Yves Grosdidier¹, Anthony F.J. Moffat, and Sébastien Blais-Ouellette

Université de Montréal, Département de Physique, C.P. 6128, Succursale Centre-Ville, Montréal (Québec), H3C 3J7, Canada

Gilles Joncas Université Laval, Département de Physique, Pavillon Alexandre-Vachon, Sainte-Foy (Québec), G1K 7P4, Canada

Agnès Acker

Observatoire Astronomique de Strasbourg, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg, France

Discussion

First results concerning the HST-H α imaging of M1-67 are found in Grosdidier et al. (1998). With the *étalon* of the Université Laval (Québec), we have obtained complementary Fabry-Pérot H α data using CFHT-OSIS (August 1996, seeing $\simeq 0.6^{\circ}$, FSR $\simeq 392$ km s⁻¹, 5.9 km s⁻¹ velocity sampling, see Figure 1). From these data, M1-67 appears more-or-less as a spherical shell seen almost exactly along its direction of rapid spatial motion in the ISM (Moffat et al. 1982). The radial velocity of the center of expansion is $\sim 137 \,\mathrm{km \, s^{-1}}$ (Sirianni et al. 1998). Instead of appearing as a nice hollow-type shell projected on the sky, we probably see the cap of the bow-shock nearly straight on from behind. The far side is greatly intensity-enhanced compared to the near side, probably as a result of raming with the ISM. This was already claimed by Solf & Carsenty (1982). The bright bullets (see Grosdidier et al. 1998) are possibly, after all, Rayleigh-Taylor instabilities seen along the line of sight at or near the bow-shock head, as they slightly 'fall' back towards the star. More details will be found in Grosdidier et al. (1999 in preparation).

References

Grosdidier, Y., Moffat, A.F.J., Joncas, G., Acker, A. 1998, ApJ 506, L127
Moffat, A.F.J., Lamontagne, R., Seggewiss, W. 1982, A&A 114, 135
Sirianni, M., Nota, A., Pasquali, A., Clampin, M. 1998, A&A 335, 1029
Solf, J., Carsenty, U. 1982, A&A 116, 54

¹Also affiliated to the Observatoire Astronomique de Strasbourg, UMR 7550, France.

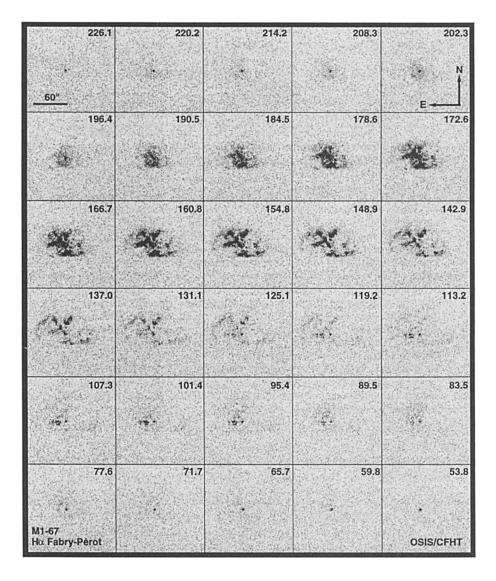


Figure 1. Maps of the *CFHT*-OSIS-H α intensity in M1-67 for the heliocentric radial velocities (RV, in km s⁻¹) indicated in the upper righthand corners. Everywhere in the nebula except near the edges, a clear splitting of the H α line into two components is detected; the high-velocity component is generally brighter (by a factor 8 or more) than the low-velocity component.