PLANAR SUBLATTICES OF A FREE LATTICE. II

IVAN RIVAL AND BILL SANDS

In Planar sublattices of a free lattice, I [8] we verify Jónsson's conjecture for finite planar lattices; in particular we obtain a characterization of finite planar sublattices of a free lattice among all finite lattices. In the present paper we use arguments of a quite different flavour to obtain another characterization. Let

$$
\mathscr{F}=\left\{C_{2}{ }^{3}\right\} \cup\left\{S_{n} \mid n \geqq 0\right\} \cup\left\{L_{1}, L_{2}, L_{2}{ }^{d}, L_{3}, L_{3}{ }^{d}, L_{4}\right\} \cup\left\{L_{5}, L_{6}\right\}
$$

be the family of lattices illustrated in Figures 1, 2, 3, and 4. Our goal is to prove the following theorem: a finite lattice is a planar sublattice of a free lattice if and only if it does not have a member of \mathscr{F} as a sublattice.

$C_{2}{ }^{3}$
Figure 1

1. Introduction, and plan of the proof. A lattice L is semidistributive if it satisfies the two conditions

$$
(\mathbf{S D} \vee) \quad a \vee b=a \vee c \text { implies } a \vee b=a \vee(b \wedge c)
$$

and
$\left(\mathbf{S D}_{\wedge}\right) \quad a \wedge b=a \wedge c$ implies $a \wedge b=a \wedge(b \vee c)$.
Jonsson [3] has demonstrated that sublattices of a free lattice are semidistributive. Some years earlier, Whitman [9] showed that sublattices of a free lattice

[^0]

Figure 2

L_{1}

L_{3}

L_{2}

$L_{2}{ }^{d}$

$L_{3}{ }^{d}$

L_{4}

Figure 3

Figure 4
satisfy the condition
(W) $a \wedge b \leqq c \vee d$ implies $a \wedge b \leqq c, a \wedge b \leqq d, a \leqq c \vee d$,

$$
\text { or } b \leqq c \vee d
$$

The celebrated conjecture of Jónsson (see [4]), alluded to at the beginning of this paper, asserts that a finite lattice is a sublattice of a free lattice if and only if it is semidistributive and satisfies (\mathbf{W}). For the history of this conjecture we refer the reader to [8].

Figure 5
Let A_{3} be the partially ordered set of Figure 5 , let $\mathscr{R}=\left\{R_{n} \mid n \geqq 0\right\}$ be the family of partially ordered sets illustrated in Figure 6, and let $\mathscr{S}=\left\{S_{n} \mid n \geqq 0\right\}$ be the family of lattices illustrated in Figure 2. Most of the rest of this paper is devoted to the proof of the following two results.

Theorem 1.1. A finite semidistributive lattice is planar if and only if it does not contain a member of $\left\{A_{3}\right\} \cup \mathscr{R}$ as a subset.

Theorem 1.2. Let L be a finite semidistributive lattice satisfying (W). Then L contains a member of $\left\{A_{3}\right\} \cup \mathscr{R}$ as a subset if and only if L contains a member of $\left\{C_{2}{ }^{3}\right\} \cup \mathscr{S}$ as a sublattice.

We recall two theorems in the spirit of Theorem 1.6 below. The first is due to B. Davey, W. Poguntke, and I. Rival [2], and the second to R. Antonius and I. Rival [1].

Theorem'1.3. A finite lattice is semidistributive if and only if it does not contain one of the lattices of Figure 3 as a sublattice.

Theorem 1.4. A finite semidistributive lattice satisfies (W) if and only if it does not contain one of the lattices of Figure 4 as a sublattice.

Finally we quote the main result from [8].
Theorem 1.5. A finite planar lattice is a sublattice of a free lattice if and only if it is semidistributive and satisfies (W).

Combining the preceding five theorems yields the promised characterization of finite planar sublattices of a free lattice.

Theorem 1.6. A finite lattice is a planar sublattice of a free lattice if and only if it does not contain a member of \mathscr{F} as a sublattice.

Observe that no member of \mathscr{F} is a sublattice of another member of \mathscr{F}. It follows that Theorem 1.6 is best possible, in the sense that no lattice in \mathscr{F} may be omitted. Also, while it is true that the lattices S_{n} are all sublattices of a free lattice, this observation is not essential either to the statement or the proof of the theorem.

Theorem 1.6 provides an unexpected dividend.

Figure 6
Corollary 1.7. Let L be a finite semidistributive lattice satisfying (W) and of breadth at most two. If L is subdirectly irreducible then L is planar.

Combining Corollary 1.7 with Theorem 1.5 yields

Corollary 1.8. Let L be a finite subdirectly irreducible lattice of breadth at most two. Then L is a sublattice of a free lattice if and only if L is semidistributive and satisfies (W).
2. Preliminaries. The breadth $b(L)$ of a finite lattice L is the smallest integer b such that every join $\bigvee_{i=1}^{b+1} x_{i}$ of elements of L is equal to a join of b of the x_{i} 's. For any integer $n \geqq 3$, a crown of order $2 n$ (Figure 7) is a partially ordered set $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right\}$ in which

$$
x_{1}<y_{1}, y_{1}>x_{2}, x_{2}<y_{2}, y_{2}>x_{3}, \ldots, y_{n-1}>x_{n}, x_{n}<y_{n}, \text { and } y_{n}>x_{1}
$$ are the only comparability relations.

Figure 7. A crown of order $2 n$
Lemma 2.1. Let L be a finite semidistributive lattice. The following are equivalent:
(i) L contains no crown of order six;
(ii) $b(L) \leqq 2$;
(iii) L contains no crown.

Proof. (i) \Leftrightarrow (ii) is Lemma 3.4 of [5], while (ii) \Leftrightarrow (iii) is Lemma 2.4 of [$\mathbf{8}]$ together with Theorem 3.1 of [5].

Lemma 2.2. Let L be a finite semidistributive lattice of breadth at most two, and let $a, b, c \in L$.
(i) If $a \vee b=a \vee c=b \vee c$, then $\{a, b, c\}$ is not an antichain.
(ii) Either $a \vee b \geqq c$ or $a \vee c \geqq b$ or $b \vee c \geqq a$; in particular,
$\{a \vee b, a \vee c, b \vee c\}$ is not an antichain.
Proof. (i) is the dual of Lemma 2.7 (ii) of [8]. To prove (ii), suppose that $a \vee b \nexists c, a \vee c \not \equiv b$, and $b \vee c \not \equiv a$. Then $\{a \vee b, a \vee c, b \vee c\}$ is an antichain, and the join of any pair equals $a \vee b \vee c$, contradicting (i).

Let n be a positive integer. A down-down fence [6] of length $2 n+1$ is a partially ordered set $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, x_{n+1}\right\}$ in which

$$
x_{1}<y_{1}, y_{1}>x_{2}, x_{2}<y_{2}, y_{2}>x_{3}, \ldots, x_{n}<y_{n}, y_{n}>x_{n+1}
$$

are the only comparability relations (see Figure 8).
Lemma 2.3. Let L be a finite semidistributive lattice of breadth at most two. Let n be an integer $\geqq 2$ and let $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, x_{n+1}\right\}$ be a down-down fence in L. Then

Figure 8. A down-down fence of length $2 n+1$
(i) $x_{1} \vee x_{n+1}>x_{i}$ for each $i \in\{1, \ldots, n+1\}$: and
(ii) there exists $i \in\{2, \ldots, n\}$ such that $x_{1} \vee x_{i}<x_{1} \vee x_{n+1}$ and $x_{i} \vee x_{n+1}$ $<x_{1} \vee x_{n+1}$.

Proof. (i) First let $n=2$. Since $x_{1} \vee x_{2} \leqq y_{1}$ and $x_{2} \vee x_{3} \leqq y_{2}$, we have that $x_{1} \vee x_{2} \not ⿻ x_{3}$ and $x_{2} \vee x_{3} \not ⿻ x_{1}$, and therefore $x_{1} \vee x_{3}>x_{2}$ by Lemma 2.2 (ii). Proceeding by induction, assume the result is true for all integers k such that $2 \leqq k \leqq n-1$. We certainly have that $x_{1} \vee x_{n+1} \not y_{i}$ for any $i \in\{1, \ldots, n\}$. Therefore, if $x_{1} \vee x_{n+1} \neq x_{i}$ for any $i \in\{2, \ldots, n\}$, the subset $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, x_{n+1}, x_{1} \vee x_{n+1}\right\}$ of L is a crown, contradicting Lemma 2.1. Hence we can find $i \in\{2, \ldots, n\}$ such that $x_{1} \vee x_{n+1}>x_{i}$. Now by induction we have $x_{1} \vee x_{n+1} \geqq x_{1} \vee x_{i}>x_{j}$ for all $j \in\{1, \ldots, i\}$, and $x_{1} \vee x_{n+1} \geqq x_{i} \vee x_{n+1}>x_{k}$ for all $k \in\{i, \ldots, n+1\}$, as claimed.
(ii) When $n=2, x_{1} \vee x_{2} \leqq x_{1} \vee x_{3}$ and $x_{2} \vee x_{3} \leqq x_{1} \vee x_{3}$ follow from (i). Also, since $x_{1} \vee x_{2} \leqq y_{1}$ and $x_{2} \vee x_{3} \leqq y_{2}$ we have $x_{1} \vee x_{2}<x_{1} \vee x_{3}$ and $x_{2} \vee x_{3}<x_{1} \vee x_{3}$, as desired. Ther efore let $n>2$. As above, $x_{n} \vee x_{n+1}<$ $x_{1} \vee x_{n+1}$; it follows that if $x_{1} \vee x_{n}<x_{1} \vee x_{n+1}$ we are done. Hence, since $x_{n}<x_{1} \vee x_{n+1}$ by part (i), we assume $x_{1} \vee x_{n}=x_{1} \vee x_{n+1}$. By induction we choose $j \in\{2, \ldots, n-1\}$ such that $x_{1} \vee x_{j}<x_{1} \vee x_{n}=x_{1} \vee x_{n+1}$ and $x_{j} \vee x_{n}<x_{1} \vee x_{n+1}$. If $x_{n} \vee x_{n+1} \leqq x_{j} \vee x_{n}$, then $x_{j} \vee x_{n}=x_{j} \vee x_{n+1}$ by (i), establishing (ii). Therefore let $x_{n} \vee x_{n+1}$ be noncomparable to $x_{j} \vee x_{n}$. We now have that $\left\{x_{1} \vee x_{j}, x_{j} \vee x_{n}, x_{n} \vee x_{n+1}\right\}$ is an antichain, and ($x_{1} \vee x_{j}$) $\vee\left(x_{j} \vee x_{n}\right)=x_{1} \vee x_{n+1}=\left(x_{1} \vee x_{j}\right) \vee\left(x_{n} \vee x_{n+1}\right)$; from Lemma $2.2(\mathrm{i})$, $x_{j} \vee x_{n+1}=\left(x_{j} \vee x_{n}\right) \vee\left(x_{n} \vee x_{n+1}\right)<x_{1} \vee x_{n+1}$, and (ii) follows.
3. The proof of Theorem 1.1. By the completion $\mathbf{L}(P)$ of a partially ordered set P to a lattice we shall mean the construction known variously as the "normal completion", "completion by cuts", or "MacNeille completion"; recall that a partially ordered set P is a subset of a lattice L exactly when $\mathbf{L}(P)$ is a subset of L. In [6], D. Kelly and I. Rival defined a family \mathscr{L} of lattices with the property that a finite lattice L is planar if and only if L does not contain a member of \mathscr{L} as a subset. The family

$$
\mathscr{P}=\left\{A_{n} \mid n \geqq 0\right\} \cup\left\{B, B^{d}, C, C^{d}, D, D^{d}\right\} \cup\left\{E_{n}, E_{n}{ }^{d}, F_{n}, G_{n}, H_{n} \mid n \geqq 0\right\}
$$

of partially ordered sets, which (up to duality) is illustrated in Figure 9,

B

C

G_{n}

H_{n}

Figure 9
satisfies $\{\mathbf{L}(P) \mid P \in \mathscr{P}\}=\mathscr{L}$ (see [7]). Hence the following is an alternate formulation of the Kelly-Rival result.

Theorem 3.1. A finite lattice is planar if and only if it does not contain a member of \mathscr{P} as a subset.

To begin the proof of Theorem 1.1, we first observe that if L is a finite planar lattice, L cannot contain a member of $\left\{A_{3}\right\} \cup \mathscr{R}$ as a subset. Certainly $A_{3} \nsubseteq L$ by Theorem 3.1. If $R_{0}=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c\right\}$ is contained in L, then so is $\left\{a_{2}, a_{3}, b_{2}, b_{3}, c, a_{1}\right\}$, which is isomorphic to the partially ordered set B, contrary to Theorem 3.1. Finally if some

$$
R_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n+3}, b_{1}, b_{2}, \ldots, b_{n+3}, c\right\}
$$

$n \geqq 1$, is contained in L, then so is $\left\{a_{1}, a_{2}, \ldots, a_{n+2}, b_{2}, b_{3}, \ldots, b_{n+3}, c\right\}$, which is isomorphic to G_{n-1}, again a contradiction. We have proven the "only if" direction of Theorem 1.1.

The converse is a little more complicated, and will be established gradually.
Theorem 3.2. Let L be a finite semidistributive lattice of breadth at most two.
(a) If L contains a member of $\left\{C, C^{d}, D, D^{d}\right\} \cup\left\{E_{n}, E_{n}{ }^{d}, F_{n} \mid n \geqq 0\right\}$ as a subset then L contains B or B^{d} as a subset.
(b) If L contains H_{n} as a subset then L contains B, B^{d}, or G_{m} as a subset for some $m \leqq n$.

Proof. (a) We proceed through the list of partially ordered sets in (a) in the order given; at each stage we will establish the existence of B or B^{d} in L, or (what is sufficient) we will exhibit in L a partially ordered set already considered. A similar strategy will be adopted elsewhere in this paper.

Case (i): C.
Choose $C=\{a, b, c, d, e, f, g\} \subseteq L$; observe that we may assume $e \wedge f=c$, $f \wedge g=d$, and $c \wedge d=a$. By the dual of Lemma 2.3 (i), $e \wedge g=e \wedge f \wedge g$ $=c \wedge d=a$. Next, if $b \wedge c \neq d$ then $\{b, b \wedge c, e, a, d, f\}$ is a subset of L isomorphic to B^{d}, as desired; hence we now let $b \wedge c \leqq d$ and similarly $b \wedge d \leqq c$, which implies $b \wedge c=b \wedge d$. Thus $b \wedge g=b \wedge f \wedge g=$ $b \wedge d=b \wedge c=b \wedge f \wedge e=b \wedge e$, and $b y\left(\mathbf{S D}_{\wedge}\right) b \wedge g=b \wedge(e \vee g)$. It follows that $e \vee g \nexists b$, and so $e \vee g \nexists f$. Hence $\{e, c, f, d, g, e \vee g\} \cong B^{d}$. Of course, a dual argument handles C^{d}.

Case (ii): D.
This one is easy. Let $D=\{a, b, c, d, e, f, g\} \subseteq L$; by Lemma $2.2(\mathrm{i})$ and the symmetry of D we may assume that $e \vee f<e \vee f \vee g$, that is, $e \vee f \neq g$. Hence $\{e \vee f, g, e, f, a, d, b\} \cong C^{d}$, and by the previous case we are done.

Case (iii): $\left\{E_{n} \mid n \geqq 0\right\}$.
Let $n \geqq 0$ be minimal such that there is a subset of L isomorphic to either E_{n} or $E_{n}{ }^{d}$. We first consider the case $n=0$.

Without loss of generality, let $E_{0}=\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, c, d\right\} \subseteq L$. We may assume that $b_{1} \wedge b_{2}=a_{1}, b_{2} \wedge b_{3}=a_{2}, a_{1} \vee a_{2}=b_{2}, b_{2} \vee c=d$, and (from the dual of Lemma 2.3(i)) $b_{1} \wedge b_{3}=a_{1} \wedge a_{2}$. If $a_{1} \wedge a_{2} \neq c$ then

$$
\left\{a_{1} \wedge a_{2}, c, a_{1}, a_{2}, b_{1}, d, b_{3}\right\} \cong C
$$

hence we let $a_{1} \wedge a_{2}<c$. If $a_{1} \vee c>a_{2}$ and $a_{2} \vee c>a_{1}$ then $a_{1} \vee c=$ $a_{2} \vee c$, and by $(\mathbf{S D} \vee) a_{1} \vee c=\left(a_{1} \wedge a_{2}\right) \vee c=c$, a contradiction. By symmetry we may let $a_{1} \neq a_{2} \vee c$. If $a_{1} \wedge c \neq a_{2}$ then

$$
\left\{a_{1}, b_{2}, a_{2}, a_{2} \vee c, c, a_{1} \wedge c\right\} \cong B
$$

hence we assume $a_{1} \wedge c<a_{2}$ whereupon $a_{1} \wedge c=a_{1} \wedge a_{2}=a_{1} \wedge b_{2} \wedge b_{3}=$ $a_{1} \wedge b_{3} . \operatorname{By}\left(\mathbf{S D}_{\wedge}\right) a_{1} \wedge c=a_{1} \wedge\left(c \vee b_{3}\right)$, and it follows that $a_{1} \neq c \vee b_{3}$. Hence $b_{2} \nsubseteq c \vee b_{3}$, and we have $\left\{b_{2}, d, c, c \vee b_{3}, b_{3}, a_{2}\right\} \cong B$.

Next assume $n=1$, and let $E_{1}=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, b_{4}, c, d\right\} \subseteq L$. We know immediately that $c<b_{2} \vee b_{3}$, for otherwise

$$
\left\{a_{1}, a_{3}, b_{1}, b_{2} \vee b_{3}, b_{4}, c, d\right\} \cong E_{0}
$$

contradicting the choice of n. By Lemma 2.2 (i) and the symmetry of E_{1}, we may assume that $b_{3} \vee c<b_{2} \vee b_{3}$, and hence $b_{3} \vee c \not \equiv b_{2}$. But now $\left\{a_{2}, a_{3}, b_{2}, b_{3}, b_{4}, c, b_{3} \vee c\right\} \cong E_{0}$, again contradicting the choice of n.

Finally suppose that $n>1$, and let $\left\{a_{1}, \ldots, a_{n+2}, b_{1}, \ldots, b_{n+3}, c, d\right\}$ be a subset of L isomorphic to E_{n}. We may assume that $a_{j} \vee a_{j+1}=b_{j+1}$ for each $j \in\{1, \ldots, n+1\}$. Since $\left\{a_{1}, b_{2}, a_{2}, b_{3}, \ldots, b_{n+2}, a_{n+2}\right\}$ is a down-down fence, by Lemma 2.3 (ii) we may choose $i \in\{2, \ldots, n+1\}$ such that $a_{1} \vee a_{i}<$ $a_{1} \vee a_{n+2}$ and $a_{i} \vee a_{n+2}<a_{1} \vee a_{n+2}$. If $c \neq a_{1} \vee a_{i}$ and $c \neq a_{i} \vee a_{n+2}$, then $\left\{a_{1}, a_{i}, a_{n+2}, b_{1}, a_{1} \vee a_{i}, a_{i} \vee a_{n+2}, b_{n+3}, c, d\right\} \cong E_{1}$, which is a contradiction; therefore by symmetry let $c<a_{1} \vee a_{i}$. Since $a_{1} \vee a_{2}=b_{2}$, in particular we have $i>2$. Now set

$$
k=\max \left\{j \mid 2 \leqq j \leqq n+1, a_{1} \vee a_{j}<a_{1} \vee a_{n+2}, a_{j} \vee a_{n+2}<a_{1} \vee a_{n+2}\right\}
$$

By Lemma 2.3 (i), $a_{j}<a_{1} \vee a_{k}$ for all $j \in\{1, \ldots, k\}$, which implies that $b_{j}=a_{j-1} \vee a_{j}<a_{1} \vee a_{k}$ for each $j \in\{2, \ldots, k\}$; also, since $i \leqq k$ we have $c<a_{1} \vee a_{i} \leqq a_{1} \vee a_{k}$. If $b_{k+1}<a_{1} \vee a_{k}$, then $a_{1} \vee a_{k+1} \leqq a_{1} \vee b_{k+1} \leqq$ $a_{1} \vee a_{k}<a_{1} \vee a_{n+2}$, and $a_{k+1} \vee a_{n+2} \leqq a_{k} \vee a_{n+2}<a_{1} \vee a_{n+2}$ by Lemma 2.3 (i), contradicting the maximality of k. Hence $b_{k+1} \neq a_{1} \vee a_{k}$, and so $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k+1}, c, a_{1} \vee a_{k}\right\} \cong E_{k-2}$. Since $k-2<n$, this contradicts the choice of n.

Case (iv): $\left\{F_{n} \mid n \geqq 0\right\}$.
Let $n \geqq 0$ be minimal such that there is a subset of L isomorphic to F_{n}.
First suppose $n=0$, and let $F_{0}=\left\{a_{1}, a_{2}, b_{1}, b_{2}, c, d, e\right\} \subseteq L$. We may assume that $a_{1} \wedge d=c, b_{2} \vee d=e, a_{1} \vee a_{2}=b_{2}$, and $b_{1} \wedge b_{2}=a_{1}$. If $b_{1} \vee a_{2} \nexists d$ then $\left\{b_{1}, b_{1} \vee a_{2}, a_{2}, e, d, c\right\} \cong B$; hence let $b_{1} \vee a_{2}>d$, and dually $b_{1} \wedge a_{2}<d$. If $b_{1} \vee d \nexists b_{2}$ then $\left\{b_{1}, b_{1} \vee d, d, e, b_{2}, a_{1}\right\} \cong B$; hence
we may let $b_{1} \vee d>b_{2} \vee d=e$ ，and dually $a_{2} \wedge d<c$ ．But now $b_{1} \vee d=$ $b_{1} \vee d \vee a_{2}=b_{1} \vee a_{2}$ ，and by（ $\mathbf{S D} \vee$ ）we have $b_{1} \vee d=b_{1} \vee\left(a_{2} \wedge d\right)=b_{1}$ ， a contradiction．

Next suppose $n=1$ ，and let $F_{1}=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c, d, e\right\} \subseteq L$ ．We may assume that $b_{1} \wedge b_{2}=a_{1}, a_{1} \vee a_{2}=b_{2}, b_{2} \wedge b_{3}=a_{2}$ ，and $a_{2} \vee a_{3}=b_{3}$ ．If $b_{2} \vee d \nexists b_{3}$ then $\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, d, b_{2} \vee d\right\} \cong E_{0}$ ；hence we let $b_{2} \vee d>b_{3}$ ． If $b_{3} \vee d$ 丰 b_{2} then $\left\{a_{2}, a_{3}, b_{2}, b_{3}, c, d, b_{3} \vee d\right\} \cong F_{0}$ ，contradicting the choice of n ；hence $b_{3} \vee d>b_{2}$ ，and so $b_{2} \vee d=b_{3} \vee d$ ．From Lemma 2．2（i）， $b_{2} \vee b_{3} \not ⿻ 肀$ ．But now $\left\{a_{1}, a_{3}, b_{1}, b_{2} \vee b_{3}, c, d, e\right\} \cong F_{0}$ ，contradicting the choice of n ．

Finally suppose $n>1$ ，and let $\left\{a_{1}, \ldots, a_{n+2}, b_{1}, \ldots, b_{n+2}, c, d, e\right\}$ be a subset of L isomorphic to F_{n} ．We may assume that $a_{j} \vee a_{j+1}=b_{j+1}$ for each $j \in\{1, \ldots, n+1\}$ ．Since $\left\{a_{1}, b_{2}, a_{2}, b_{3}, \ldots, b_{n+2}, a_{n+2}\right\}$ is a down－down fence， by Lemma 2.3 （ii）we may choose $i \in\{2, \ldots, n+1\}$ such that $a_{1} \vee a_{1}<$ $a_{1} \vee a_{n+2}$ and $a_{i} \vee a_{n+2}<a_{1} \vee a_{n+2}$ ．If $d \neq a_{1} \vee a_{i}$ and $d \neq a_{i} \vee a_{n+2}$ ，then $\left\{a_{1}, a_{i}, a_{n+2}, b_{1}, a_{1} \vee a_{i}, a_{i} \vee a_{n+2}, c, d, e\right\} \cong F_{1}$ ，which is a contradiction； therefore either $d<a_{1} \vee a_{i}$ or $d<a_{i} \vee a_{n+2}$ ．Suppose that $d<a_{1} \vee a_{i}$ ．Set

$$
k=\max \left\{j \mid 2 \leqq j \leqq n+1, a_{1} \vee a_{j}<a_{1} \vee a_{n+2}, a_{j} \vee a_{n+2}<a_{1} \vee a_{n+2}\right\} ;
$$

as in Case（iii），$b_{j}<a_{1} \vee a_{k}$ for each $j \in\{2, \ldots, k\}$ ，and $i \leqq k$ implies that $d<a_{1} \vee a_{i} \leqq a_{1} \vee a_{k}$ ．By the maximality of k ，we again conclude $b_{k+1} \neq$ $a_{1} \vee a_{k}$ ，and so $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k+1}, d, a_{1} \vee a_{k}\right\} \cong E_{k-2}$ ．We now suppose $d<a_{i} \vee a_{n+2}$ ．Set

$$
k^{\prime}=\min \left\{j \mid 2 \leqq j \leqq n+1, a_{1} \vee a_{j}<a_{1} \vee a_{n+2}, a_{j} \vee a_{n+2}<a_{1} \vee a_{n+2}\right\} .
$$

As before，$b_{j}<a_{k^{\prime}} \vee a_{n+2}$ for $j \in\left\{k^{\prime}+1, \ldots, n+2\right\}$ ，and since $k^{\prime} \leqq i$ we have $d<a_{i} \vee a_{n+2} \leqq a_{k^{\prime}} \vee a_{n+2}$ ．From the minimality of k^{\prime} ，it follows that $b_{k^{\prime}}$ 丰 $a_{k^{\prime}} \vee a_{n+2}$ ，and hence

$$
\left\{a_{k^{\prime}}, \ldots, a_{n+2}, b_{k^{\prime}}, \ldots, b_{n+2}, c, d, a_{k^{\prime}} \vee a_{n+2}\right\} \cong F_{n+1-k^{\prime}}
$$

Since $n+1-k^{\prime}<n$ ，this contradicts the choice of n ．
（b）Let $n \geqq 0$ be minimal such that there is a subset of L isomorphic to H_{n} ． First assume $n=0$ ，and let $H_{0}=\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, c, d\right\} \subseteq L$ ．If $c \wedge a_{2} \neq b_{3}$ then $\left\{c \wedge a_{2}, a_{2}, a_{1}, b_{3}, b_{2}, b_{1}\right\} \cong B$ ；hence we let $c \wedge a_{2}<b_{3}$ ．Since $a_{2} \wedge b_{3}$ $\geqq a_{1}$ ，we have $a_{2} \wedge b_{3} \neq$ ．If $c \wedge b_{3} \nless a_{2}$ then

$$
\left\{b_{1}, d, a_{2} \wedge b_{3}, c \wedge b_{3}, a_{2}, b_{3}, c\right\} \cong C
$$

hence assume $c \wedge b_{3}<a_{2}$ ．If $b_{2} \neq c \vee a_{1}$ then $\left\{c, c \vee a_{1}, a_{1}, b_{3}, b_{2}, b_{1}\right\} \cong B$ ； hence assume $b_{2}<c \vee a_{1} \leqq c \vee a_{2}$ and dually $b_{2}>d \wedge a_{2}$ ．If $c>a_{2} \wedge b_{2}$ then $c \wedge b_{2}=\left(c \wedge b_{3}\right) \wedge b_{2} \leqq a_{2} \wedge b_{2} \leqq c \wedge b_{2}$ ，implying that $c \wedge b_{2}=$ $a_{2} \wedge b_{2}$ ．Since $c \vee a_{2}>b_{2}$ this is a violation of $\left(\mathbf{S D}_{\wedge}\right)$ ，and so $c \neq a_{2} \wedge b_{2}$ ．If $c \vee d \neq b_{2}$ then $\left\{c, c \vee d, d, b_{3}, b_{2}, b_{1}\right\} \cong B$ ；hence assume $c \vee d>b_{2}$ ．From $b_{2} \vee d \leqq b_{3}$ it follows that $b_{2} \vee d$ 丰 c and $b_{2} \vee d$ 丰 a_{2} ．If $c \vee d \nexists a_{2}$ then
$\left\{a_{2} \wedge b_{2}, d, a_{2}, b_{2} \vee d, b_{1}, c, c \vee d\right\} \cong F_{0}$; hence assume $c \vee d>a_{2}$. If $c \vee a_{2} \not ⿻ b_{3}$ then $\left\{b_{1}, b_{2}, b_{3}, a_{1}, a_{2}, c \vee a_{2}, c\right\} \cong G_{0}$ as desired; hence assume $c \vee a_{2}>b_{3}$. Now $c \vee a_{2} \geqq c \vee b_{3} \geqq c \vee d \geqq c \vee a_{2}$, implying $c \vee a_{2}=$ $c \vee d$. By ($\mathbf{S D} \vee$) and the above results, $d<c \vee d=c \vee\left(d \wedge a_{2}\right) \leqq$ $c \vee b_{2} \leqq c \vee a_{1}$. But a dual argument shows that $d \wedge a_{2}<c$, and hence $c \vee d=c \vee\left(d \wedge a_{2}\right)=c$, a contradiction.

Therefore $n>0$. Let $H_{n}=\left\{a_{1}, \ldots, a_{n+2}, b_{1}, \ldots, b_{n+3}, c, d\right\} \subseteq L$. If $c \vee d>a_{n+1}$ then $\left\{c, c \vee d, d, b_{n+3}, a_{n+1}, b_{1}\right\} \cong B$; hence we let $c \vee d>a_{n+1}$. If $c \vee d \gg b_{n+2}$ then $\left\{c, c \vee d, d, b_{n+3}, b_{n+2}, b_{1}\right\} \cong B$; hence we let $c \vee d \geqq$ $d \vee b_{n+2}$. If $d \vee b_{n+2} \not ⿻ a_{n+1}$ then

$$
\left\{a_{1}, \ldots, a_{n+1}, b_{1}, \ldots, b_{n+1}, d \vee b_{n+2}, c, d\right\} \cong H_{n-1}
$$

contradicting the choice of n; hence $d \vee b_{n+2}>a_{n+1}$. Next, we may assume $c \vee a_{n+2}>b_{n+2}$, for otherwise $\left\{b_{1}, \ldots, b_{n+2}, a_{1}, \ldots, a_{n+1}, c \vee a_{n+2}, c\right\} \cong G_{n-1}$, as desired. Further, we assume $c \vee a_{n+2}>b_{n+3}$, for otherwise

$$
\left\{b_{1}, \ldots, b_{n+3}, a_{1}, \ldots, a_{n+2}, c \vee a_{n+2}, c\right\} \cong G_{n}
$$

thus we have that $c \vee a_{n+2} \geqq c \vee b_{n+3} \geqq c \vee d$. We may assume $b_{n+3} \vee c>$ a_{n+2}, for otherwise $\left\{a_{2}, d, a_{n+2}, b_{n+3}, b_{1}, c, b_{n+3} \vee c\right\} \cong F_{0}$. It follows that $b_{n+3} \vee c=a_{n+2} \vee c$, and by $(\mathbf{S D} \vee) b_{n+3} \vee c=\left(b_{n+3} \wedge a_{n+2}\right) \vee c$. We may assume $b_{n+3} \wedge a_{n+2}<c \vee d$, for otherwise

$$
\left\{b_{n+3} \wedge a_{n+2}, b_{n+3}, d, c \vee d, c, b_{1}\right\} \cong B
$$

Thus $c \vee\left(b_{n+3} \wedge a_{n+2}\right)=c \vee d$, and by $(\mathbf{S D} \vee) c \vee d=c \vee\left(b_{n+3} \wedge a_{n+2} \wedge d\right)$ $=c \vee\left(a_{n+2} \wedge d\right)$, implying $c \nexists a_{n+2} \wedge d$. However, $d \wedge a_{n+2}<b_{n+3}$; therefore, letting k be minimal such that $d \wedge a_{n+2}<b_{k}$, we have $2 \leqq k \leqq n+3$. If $k=n+3$, then $d \wedge a_{n+2} \nless b_{n+2}$, and

$$
\left\{b_{n+2}, b_{n+1}, a_{n+2}, d \wedge a_{n+2}, d, b_{n+3}\right\} \cong B^{d}
$$

hence we assume $k<n+3$. If $d \wedge a_{n+2}<a_{k-1}$, then

$$
\left\{d \wedge a_{n+2}, a_{k-1}, a_{k}, \ldots, a_{n+2}, b_{k-1}, b_{k}, \ldots, b_{n+3}, d\right\} \cong G_{n-k+2}
$$

hence we assume $d \wedge a_{n+2} \nless a_{k-1}$. If $k=2$ we have

$$
\left\{b_{1}, d \wedge a_{n+2}, c, b_{2}, d, a_{1}, b_{3}\right\} \cong E_{0}
$$

thus we let $k>2$. But now $\left\{a_{1}, \ldots, a_{k-1}, b_{1}, \ldots, b_{k}, c, d \wedge a_{n+2}\right\} \cong H_{k-3}$ where $0 \leqq k-3<n$, contradicting the choice of n.

As a corollary, we obtain an improvement of Theorem 3.1 for finite semidistributive lattices.

Corollary 3.3. A finite semidistributive lattice L is planar if and only if it does not contain A_{3}, B, B^{d}, or $G_{n}, n \geqq 0$, as a subset.

Proof. We need only prove the "if" direction. By Lemma 2.1, L contains
A_{n} for some $n \geqq 3$ if and only if it contains A_{3} ．By Theorems 3.1 and 3.2 the corollary follows．

Theorem 3．4．Let L be a finite semidistributive lattice of breadth at most two．
（a）If L contains B or B^{d} as a subset then L contains R_{0} as a subset．
（b）If L contains G_{n} as a subset for some $n \geqq 0$ then L contains R_{m} as a subset for some $m \leqq n+1$ ．

Proof．（a）Assume $B=\{a, b, c, d, e, f\} \subseteq L$ ．We first observe that we must have $a \vee e>c$ ，for otherwise $\{a \vee e, a \vee c, c \vee e\}$ is an antichain，contrary to Lemma $2.2(\mathrm{ii})$ ．If $c \wedge a \neq e$ ，then $\{f, a, b, c \wedge a, c, d, e\}$ is a subset of L isomorphic to R_{0} ，as desired．Thus we assume $c \wedge a \leqq e$ and simi－ larly $c \wedge e \leqq a$ ，which implies $c \wedge a=c \wedge e$ ．But since $c<a \vee e$ this is a violation of $\left(\mathbf{S D}_{\wedge}\right)$ ．Of course，a dual argument handles B^{d} ．
（b）Let $n \geqq 0$ be minimal such that there is a subset

$$
\left\{a_{1}, \ldots, a_{n+3}, b_{1}, \ldots, b_{n+3}, c\right\}
$$

of L isomorphic to G_{n} ．Since $b_{n+2} \wedge c \geqq a_{1}$ ，we have $b_{n+2} \wedge c \neq b_{1}$ ．Choose k minimal such that $b_{n+2} \wedge c<b_{k}$ ；then $2 \leqq k \leqq n+2$ ．First we assume $k>2$ ．If $b_{n+2} \wedge c \nless a_{k}$ ，then $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, b_{n+2} \wedge c\right\} \cong G_{k-3}$ where $0 \leqq k-3<n$ ；on the other hand，if $b_{n+2} \wedge c<a_{k}$ then

$$
\left\{b_{n+2} \wedge c, a_{k}, a_{k+1}, \ldots, a_{n+3}, b_{k-1}, b_{k}, \ldots, b_{n+3}, c\right\} \cong G_{n+2-k}
$$

where $0 \leqq n+2-k<n$ ．In either case we have a contradiction to the choice of n ．Hence $k=2$ ；that is，$b_{n+2} \wedge c<b_{2}$ ，which implies $b_{n+2} \wedge c=b_{2} \wedge c$ ．

We first consider the case $b_{2} \wedge c \nless a_{2}$ ．Assume that $b_{2} \wedge c \neq a_{2} \vee b_{1}$ ；then $\left\{a_{2}, a_{2} \vee b_{1}, b_{1}, b_{2}, b_{2} \wedge c, a_{1}\right\} \cong B$ ，and we are done by part（a）．Hence $b_{2} \wedge c \leqq a_{2} \vee b_{1}$ ．Now，if $a_{2} \wedge b_{2} \neq c$ we have

$$
\left\{a_{1}, b_{1}, a_{2} \wedge b_{2}, b_{2} \wedge c, a_{2}, b_{2}, c\right\} \cong C
$$

while if $a_{2} \wedge b_{2}<c$ we have

$$
\left\{b_{2} \wedge c, b_{1}, c,\left(b_{2} \wedge c\right) \vee b_{1}, a_{2} \wedge b_{2}, a_{2}, a_{2} \vee b_{1}\right\} \cong F_{0}
$$

In either case we are done by Theorem 3.2 and part（a）．
Therefore $b_{n+2} \wedge c=b_{2} \wedge c<a_{2}$ ，and by duality $a_{2} \vee c>b_{n+2}$ ．If $a_{2} \wedge b_{1} \leqq c$ then $a_{2} \wedge b_{1} \leqq c \wedge b_{1}=c \wedge b_{2} \wedge b_{1} \leqq a_{2} \wedge b_{1}$ ，implying $a_{2} \wedge$ $b_{1}=c \wedge b_{1}$ ，and by $\left(\mathbf{S D}_{\wedge}\right)$ we have $a_{2} \wedge b_{1}=\left(a_{2} \vee c\right) \wedge b_{1}=b_{1}$ ，a con－ tradiction．Thus $a_{2} \wedge b_{1} \neq c$ and by duality $a_{n+3} \vee b_{n+2} \not ⿻ ⿻ 一 𠃋 十 𠃌 丨 c$ ．Now

$$
\left\{a_{1}, \ldots, a_{n+3}, a_{n+3} \vee b_{n+2}, a_{2} \wedge b_{1}, b_{1}, \ldots, b_{n+3}, c\right\} \cong R_{n+1}
$$

and Theorem 3.4 is established．
The assumption that L has breadth at most two is necessaty．For example， the lattice of Figure 10 has breadth three，is semidistributive，and contains B as a subset（the shaded elements），but does not contain R_{0} as a subset．

Figure 10
Corollary (Theorem 1.1). A finite semidistributive lattice is planar if and only if it does not contain A_{3} or $R_{n}, n \geqq 0$, as a subset.

Proof. Immediate from Corollary 3.3 and Theorem 3.4.
4. The proof of Theorem 1.2. It is well-known and easy to prove that if L is an arbitrary lattice, A_{3} is a subset of L if and only if $C_{2}{ }^{3}$ is a sublattice of L. Also, it is evident from Figures 2 and 6 that R_{n} is a subset of S_{n} for each $n \geqq 0$; thus if S_{n} is a sublattice of a lattice L, certainly R_{n} is a subset of L. This completes the "if" direction of Theorem 1.2.

For each $n \geqq 0$, let $P_{n}=\mathbf{L}\left(R_{n}\right)$, the completion of R_{n} (see Figure 11); recall that if R_{n} is a subset of a lattice L, so is P_{n}. We require one more lemma.

Lemma 4.1. Let L be a lattice satisfying (\mathbf{W}), and let $R_{n} \backslash\{c\}$ be a subset of L for some $n \geqq 0$. Then $S_{n} \backslash\{c\}$ is a sublattice of L.

Proof. Let $R_{n} \backslash\{c\}=\left\{a_{1}, \ldots, a_{n+3}, b_{1}, \ldots, b_{n+3}\right\} \subseteq L$. Since $\mathbf{L}\left(R_{n} \backslash\{c\}\right)=$ $P_{n} \backslash\{c\}, P_{n} \backslash\{c\}$ is a subset of L, as indicated in Figure 11. Moreover we claim that the elements $\left\{a_{1}, \ldots, a_{n+2}, b_{2}, \ldots, b_{n+3}\right\}$ of $P_{n} \backslash\{c\}$ generate a sublattice of L isomorphic to $S_{n} \backslash\{c\}$. For simplicity, we will give the construction only in the case $n=0$; an induction based on similar arguments will handle the general case. If $n=0$, the required sublattice of L isomorphic to $S_{0} \backslash\{c\}$ is given in Figure 12. Notice that $a_{1} \vee\left(a_{2} \wedge b_{2}\right)<a_{2} \wedge\left(a_{1} \vee b_{2}\right),\left(a_{2} \wedge b_{3}\right) \vee$ $b_{2}<\left(a_{2} \vee b_{2}\right) \wedge b_{3}$, and $a_{2} \wedge b_{3} \neq a_{1} \vee b_{2}$ hold by virtue of (\mathbf{W}).

Now let L be a finite semidistributive lattice satisfying (W). We may assume that A_{3} is not a subset of L, which implies that $b(L) \leqq 2$ by Lemma 2.1. Let $n \geqq 0$ be minimal such that there exists a subset of L isomorphic to R_{n}. Choose

$$
R_{n}=\left\{a_{1}, \ldots, a_{n+3}, b_{1}, \ldots, b_{n+3}, c\right\} \subseteq\left[a_{1} \wedge b_{1}, a_{n+3} \vee b_{n+3}\right] \subseteq L
$$

Figure 11
such that there does not exist a subset of L isomorphic to R_{n} in any proper subinterval of [$a_{1} \wedge b_{1}, a_{n+3} \vee b_{n+3}$]. Then we have seen that we can find $S_{n} \subseteq L$, generated by $\left\{a_{1}, \ldots, a_{n+2}, b_{2}, \ldots, b_{n+3}, c\right\}$, such that $S_{n} \backslash\{c\}$ is a sublattice of L. Observe that we may assume that $a_{2} \wedge b_{2}=b_{1}$ and $a_{n+2} \vee$ $b_{n+2}=a_{n+3}$. To complete the proof of Theorem 1.2 we need only show that $a_{n+2} \vee c=a_{n+3} \vee b_{n+3}$ and $b_{1} \vee c=b_{n+3}$ (a dual argument handles the corresponding meets).

Figure 12

First, we may assume that $b_{n+3}=\left(a_{n+3} \wedge b_{n+3}\right) \vee c$. Hence, since

$$
\left\{a_{n+2}, a_{n+3}, a_{n+3} \wedge b_{n+3}, b_{n+3}, c\right\}
$$

is a down-down fence, Lemma 2.3 (i) implies that $a_{n+2} \vee c=a_{n+2} \vee$ $\left(a_{n+3} \wedge b_{n+3}\right) \vee c=a_{n+3} \vee b_{n+3}$, as desired.

Now suppose $n=0$. If $a_{2} \wedge b_{3} \neq b_{2} \vee c$ then

$$
\left\{a_{2} \wedge b_{3}, a_{3} \wedge b_{3}, b_{2}, b_{2} \vee c, c, a_{1}\right\}
$$

is a subset of L isomorphic to B, and is contained in [$a_{1} \wedge b_{2}, b_{3}$]. By Theorem 3.4 there is a subset of L isomorphic to R_{0} which is contained in [$a_{1} \wedge b_{2}, b_{3}$], a proper subinterval of $\left[a_{1} \wedge b_{1}, a_{3} \vee b_{3}\right]$, contrary to assumption. Therefore $a_{2} \wedge b_{3}<b_{2} \vee c$, and by (\mathbf{W}) we are forced to conclude that $b_{3}=b_{2} \vee c$. If $\left(a_{2} \wedge b_{3}\right) \vee c \neq b_{2}$ then $\left\{a_{2}, a_{3}, b_{2}, b_{3},\left(a_{2} \wedge b_{3}\right) \vee c, a_{2} \wedge b_{3}\right\}$ is a subset of L isomorphic to B, and is contained in $\left[b_{1}, a_{3} \vee b_{3}\right]$, a proper subset of $\left[a_{1} \wedge b_{1}, a_{3} \vee b_{3}\right.$]. By Theorem 3.4 we again have a contradiction. Thus $\left(a_{2} \wedge b_{3}\right) \vee c \geqq b_{2} \vee c$ which implies $\left(a_{2} \wedge b_{3}\right) \vee c=b_{3}=b_{2} \vee c$. By $(\mathbf{S D} \vee)$ we conclude that $b_{3}=\left(a_{2} \wedge b_{3} \wedge b_{2}\right) \vee c=b_{1} \vee c$, completing the case $n=0$.

We now assume $n>0$. As in the case $n=0$, our first goal will be to prove that $b_{2} \vee c=b_{n+3}$. Choose k maximal such that $b_{2} \vee c>a_{k}$; it is clear that $1 \leqq k \leqq n+1$. If $k=1$, then $\left\{a_{2}, a_{3}, b_{2} \vee c, c, a_{1}\right\} \cong B$, and by Theorem 3.4 L must contain a subset isomorphic to R_{0}. contrary to the choice of n. Assume $2 \leqq k \leqq n$. If $b_{2} \vee c>b_{k+1}$, then

$$
\left\{a_{1}, \ldots, a_{k+2}, b_{1}, \ldots, b_{k+1}, b_{2} \vee c, c\right\} \cong R_{k-1}
$$

and $k-1<n$, contradicting the choice of n. On the other hand, if $b_{2} \vee c \gg$ b_{k+1} then $\left\{a_{k}, \ldots, a_{n+2}, b_{k+1}, \ldots, b_{n+3}, b_{2} \vee c\right\} \cong G_{n-k}$; by Theorem 3.4 L must contain a subset isomorphic to R_{m} for some $m \leqq n-k+1$, and since $1 \leqq n-k+1 \leqq n-1$ this again contradicts the choice of n. Therefore $k=n+1$, and so $b_{2} \vee c>a_{n+1}$. If $b_{2} \vee c \not \equiv b_{n+2}$, then
$\left\{a_{n+2}, a_{n+3}, b_{n+2}, b_{n+3}, b_{2} \vee c, a_{n+1}\right\} \cong B$,
which is a contradiction; hence $b_{2} \vee c>b_{n+2}$. If $b_{2} \vee c \nexists a_{n+2} \wedge b_{n+3}$ then

$$
\left\{a_{1}, \ldots, a_{n+1}, a_{n+2} \wedge b_{n+3}, b_{2}, \ldots, b_{n+2}, b_{2} \vee c, c\right\}
$$

is a subset of L isomorphic to G_{n-1}, and is contained in [$a_{1} \wedge b_{2}, b_{n+3}$], a proper subinterval of $\left[a_{1} \wedge b_{1}, a_{n+3} \vee b_{n+3}\right.$]. By Theorem 3.4 [$a_{1} \wedge b_{2}, b_{n+3}$] contains a subset isomorphic to R_{m} for some $m \leqq n$. By the choice of n we must have $m=n$; but this contradicts the minimality of R_{n}. Thus $b_{2} \vee c \geqq a_{n+2} \wedge b_{n+3}$, and by (\mathbf{W}) we conclude $b_{2} \vee c=b_{n+3}$.

Now if $a_{2} \vee c$ 丰 b_{2}, we have $\left\{a_{2}, \ldots, a_{n+3}, b_{2}, \ldots, b_{n+3}, a_{2} \vee c\right\} \cong R_{n-1}$, contradicting the choice of n. Hence $a_{2} \vee c \geqq b_{2}$, and so $a_{2} \vee c=b_{n+3}=$ $b_{2} \vee c$. By $(\mathbf{S D} \vee), b_{n+3}=\left(a_{2} \wedge b_{2}\right) \vee c=b_{1} \vee c$, and the proof of Theorem 1.2 is complete.
5. The corollaries. With Theorem 1.6 in hand the proof of Corollary 1.7 is simple although not obvious. The principal observation is this:

Lemma 5.1. Let L be a finite lattice satisfying (W) and let a, b be elements of L with $a<b$, a join reducible and b join irreducible. Then there exist elements a^{\prime}, b^{\prime} of L such that $a \leqq a^{\prime}, b^{\prime} \leqq b, b^{\prime}$ is join irreducible, and b^{\prime} is the unique cover of a^{\prime}.

Proof. Let a^{\prime} be a maximal join reducible element in $\{x \in L \mid a \leqq x \leqq b\}$. Then $a^{\prime}<b$. Since L satisfies $(\mathbf{W}) a^{\prime}$ must have a unique cover b^{\prime}. Evidently, $b^{\prime} \leqq b$.

Let L be a finite, semidistributive lattice satisfying (\mathbf{W}) and of breadth at most two. In addition, let us suppose that L is nonplanar. Then according to Theorem 1.6 L contains a sublattice isomorphic to S_{n} for some $n \geqq 0$ (cf Figure 2). Then

$$
a_{1} \vee b_{1}<a_{2} \wedge\left(a_{1} \vee b_{2}\right)<b_{n+2} \vee\left(a_{n+2} \wedge b_{n+3}\right)<a_{n+3} \wedge b_{n+3}
$$

(cf. Figure 12). In view of Lemma 5.1 there exists elements $a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, a_{2}{ }^{\prime}, b_{2}{ }^{\prime}$ such that

$$
\begin{aligned}
& a_{1} \vee b_{1} \leqq a_{1}^{\prime}<b_{1}^{\prime} \leqq a_{2} \wedge\left(a_{1} \vee b_{2}\right) \\
& b_{n+2} \vee\left(a_{n+2} \wedge b_{n+3}\right) \leqq a_{2}^{\prime}<b_{2}^{\prime} \leqq a_{n+3} \wedge b_{n+3}
\end{aligned}
$$

$a_{1}{ }^{\prime}, a_{2}{ }^{\prime}$ are join reducible (whence meet irreducible), $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$ are join irreducible, and $b_{1}{ }^{\prime}$ covers $a_{1}{ }^{\prime}, b_{2}{ }^{\prime}$ covers $a_{2}{ }^{\prime}$. Let $\theta_{1}=\theta\left(a_{1}{ }^{\prime}, b_{1}{ }^{\prime}\right), \theta_{2}=\theta\left(a_{2}{ }^{\prime}, b_{2}{ }^{\prime}\right)$, be the smallest congruence relations identifying $a_{1}{ }^{\prime}$ with $b_{1}{ }^{\prime}$, and $a_{2}{ }^{\prime}$ with $b_{2}{ }^{\prime}$, respectively. Then evidently $\theta_{1} \neq \theta_{2}$ and any congruence relation θ smaller than
either is the equality relation. In particular, L cannot be subdirectly irreducible. This establishes Corollary 1.7.

Corollary 1.8 now follows at once from Theorem 1.5.
Acknowledgement. The authors thank G. Grätzer for his helpful suggestions regarding the organization of this paper.

References

1. R. Antonius and I. Rival, A note on Whitman's property for free lattices, Alg. Univ. 4 (1974), 271-272.
2. B. A. Davey, W. Poguntke, and I. Rival, A characterization of semidistributivity, Alg. Univ. 5 (1975), 72-75.
3. B. Jónsson, Sublattices of a free lattice, Can. J. Math. 13 (1961), 256-264.
4. B. Jónsson and J. Kiefer, Finite sublattices of a free lattice, Can. J. Math. 14 (1962), 487-497.
5. D. Kelly and I. Rival, Crowns, fences, and dismantlable lattices, Can. J. Math. 26 (1974), 1257-1271.
6. - Planar lattices, Can. J. Math. 27 (1975), 636-665.
7. - Certain partially ordered sets of dimension three, J. Combinatorial Theory 18 (1975), 239-242.
8. I. Rival and B. Sands, Planar sublattices of a free lattice I, Can. J. Math. (1978).
9. P. M. Whitman, Free lattices, Ann. of Math. 42 (1941), 325-330.

University of Calgary, Calgary, Alberta;
University of Manitoba, Winnipeg, Manitoba

[^0]: Received July 15, 1977 and in revised form, April 4, 1978. The work of both authors was supported in part by NRC operating grant 0557 .

