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Abstract. The effect of the C22 gravity field term on a particle is evaluated analytically over one 
orbit to find the change in orbit energy and angular momentum as an explicit function of the orbital 
inclination, argument of pericenter, longitude of the ascending node, orbit parameter and eccentricity. 
Changes in orbit energy and angular momentum are shown to be proportional to a family of integrals 
which can be parameterized in terms of eccentricity and non-dimensional pericenter radius. 

1. Introduction 

A hallmark effect of particle dynamics close to distended bodies in uniform rotation 
are the large changes in orbit energy and angular momentum which can occur over 
one pericenter passage. These changes can be large enough to eject the particle 
from the body onto a hyperbolic orbit, capture a passing hyperbolic orbit, or cause 
the particle to impact the surface. Previous studies have established that the C22 
gravity term of the body, commonly termed the ellipticity, is the main contributor to 
these effects (Scheeres, 1995; Scheeres etal., 1996; 1998b). This paper investigates 
the effect of this gravity term, taken in isolation, on an otherwise unperturbed orbit. 
In particular it investigates the change in orbit energy and angular momentum over 
one orbit about the central body. The problem of the C22 gravity term alone is highly 
idealistic, but an understanding of its effect is important and can be used to analyze 
the general and qualitative properties of motion about distended bodies in uniform 
rotation. This paper does not concern itself with a complete characterization of 
this problem - such as the computation of periodic orbits, equilibrium points, and 
zero-velocity curves - as such characterizations have already been performed in 
detail for a variety of specific bodies (Scheeres, 1994; 1995; Scheeres et at, 1996; 
1998a). 

2. Perturbation Model 

The perturbing function for a central body with C22 gravity coefficient acting on a 
particle is: 

U22 = ^R2
0C22cos26cos(2X) (1) 

where n is the gravitational parameter, r is the particle radius, 6 is the body-fixed 
latitude of the particle, A is the body-fixed longitude of the particle, and R0 is the 
normalizing radius for the body. We assume that the body is in uniform rotation 
about its largest moment of inertia with rotation rate wy, 
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The latitude and longitude of the particle in the body-fixed frame can be com
puted from the osculating orbit elements as: 

sin<5 = sin i sin u (2) 
_ sin(Q - wyi) cos tt + c o s ( f t - w r O s i n u c o s i 

cos(£2 - u>yi) cos u — sin(Q — u>rt) sin u cos i 

where t is the time, u = u + f and the orbit elements a, e, i, u, Q, and / all have 
their usual definitions. 

To make the problem dimensionless we introduce a new independent parameter, 
T, and a length scale, rs: 

T = U>Tt (4) 

/ \ 1/3 

" = (4) 
The parameter r corresponds to the rotational phase of the body and the length 
scale rs corresponds to the radius of a circular 1:1 synchronous orbit with no Cm 
coefficient present. Introducing these scale factors defines the non-dimensional 
perturbing function: 

3 
^22 = ^C22cosz<!icos(2A) (6) 

where all free parameters have been compressed into the one non-dimensional 
term: 

/ \ - 2 /3 

<?22 = f ^ J R2
0C22 (7) 

Values of the scaling parameter, rotation period and C22 for a few select asteroids 
are shown in Table I. 

TABLE I 
Scaling radius, rotation period, and normalized C22 for some select asteroids. 

Body 

Ida 
Eros 

Castalia 

(^/c2)1/3 T C22 

(km) (hours) (-) 
27.0 4.633 0.044 
18.4 5.27 0.052 
0.8 4.07 0.047 
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3. Jacobi Integral 

We note that this dynamical problem has a Jacobi integral defined in the body-fixed 
coordinate system. The derivation of this integral is analogous to the derivation 
of the integral in the restricted 3-body problem (see, for example, Brouwer and 
Clemence, 1961, pg 252) and is not developed here. The Jacobi integral for this 
dimensionless system has the form: 

* = ?*-¥••-\-v* (8) 

where v is the particle speed in the body-fixed frame and req is the particle radius 
projected into the equatorial plane. 

This integral can be re-expressed in terms of the Keplerian energy and angular 
momentum, as is commonly done when deriving the Tisserand criterion in the 
restricted 3-body problem (Brouwer and Clemence, 1961, pg 256). Doing so yields 
the simplified integral: 

J = C - H - U22 (9) 

where C is the energy of the particle as measured with respect to the central body 
(treated as a point mass) and H is the angular momentum of the particle, projected 
onto the rotation axis of the body. Equation 9 will play an important role later in 
our analysis. 

4. Choice of Variables and Problem Restriction 

This paper concentrates on changes in orbit energy and angular momentum (i.e., 
orbit elements a, e and i) and does not consider secular changes in mean anomaly, 
argument of pericenter and longitude of the ascending node. This is justified in 
comparison to the C20 problem where the secular rates of these angles are quite 
large (relative to their change due to C22). Given this it is only necessary to focus 
on a subset of the classical canonical orbit elements and their attendant differential 
equations. The equations of motion of interest are then a modified set of canonical 
elements (Brouwer and Clemence, 1961, pg 290): 

C = - l / (2o) ; G = y/a(l - e2); H = Gcosi (10) 

where R is the perturbing function and the elements C, G, and H represent the Ke
plerian energy, angular momentum magnitude, and angular momentum projected 
onto the central body rotation axis, respectively. 
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5. Changes in C, G, and H over One Orbit 

5.1. METHOD OF EVALUATION 

To evaluate the change in these elements over one orbit we use the first iteration 
of Picard's method of successive approximations (for a rigorous discussion of this 
method see Moulton, 1958). Specifically, given a dynamical system of the form 
X' — F(X, T), the first iteration of Picard's method yields: 

Xt(T2) = X0+ P F(X0,r)di (12) 

where X0 is assumed constant over the interval (representing the unperturbed orbit 
elements), and the variation of F with r includes both the central body rotation and 
the true anomaly of the particle orbit. Noting that Xi(ri) = X0 we immediately 
derive the result: 

AXi = r F(X0,r)d7 (13) 

The limits of integration, T\ and r2, are t0 - T/2 and t0 + T/2, respectively, for 
elliptic orbits (t0 being the time of pericenter passage and T being the orbital 
period) and t0 - oo and t0 + oo, respectively, for parabolic or hyperbolic orbits. 
We take t0 = 0 in general. 

5.2. APPLICATION OF METHOD 

The perturbing function (Equation 6) can be re-expressed as: 

1 , 
- sinz i {cos 2Q, cos IT + sin 2Q sin IT } 

+ cos4(i/2) {cos2(o> + Q)cos2(/ - r) - sin2(o; + ft) sin2(/ - r)} 

+ sin4(z'/2) {cos2(a; - Q) cos2(/ + r) - sin2(a; - Q.) sin2(/ + r)} (14) 

which isolates the true anomaly (/) and time (r) terms together. Note that the 
pericenter passage occurs at / = r = 0, and thus the angles u> and Q. represent the 
argument of pericenter and the ascending node in the body-fixed coordinate frame 
at pericenter passage. 

Directly applying Equation 13 to C, G, and H yields: 

P3 

3e 
8 

s in 2 i s in2n( / f - /£ 1 ) 

+ cos4(i/2)sin2(u; + Q) ( / | + ^ {J3
2 - I?}) 

+ sin4(?72) sin2(u; - Q) (ll2 + ^ {l±3 - 1^}) (15) 
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AG = 
6C: 22 
,3/2 

cos4(i/2) sin2(o; + OL)I\ + sin4(i/2) sin2(u; - Sl)l\2 

AH = -
6C-22 

P 
3/2 

1 , , 
- sirr i sin2£ll(, 

+ cos4(i/2) sin2(w + a)l\ - sin4(i'/2) sin2(u; - Q)li2 

(16) 

(17) 

These formula allow for explicit computation of the expected change in orbit 
energy, angular momentum and inclination given the basic parameters of the orbit. 

The integrals J£ represent the interaction of the rotating body with the particle 
as it passes through one orbit. They are defined as: 

r, Z(e, q) = / °° (1 + e COS /)» COS (TO/ - 2r) df 

a?'2(E-esinE) 

(18) 

T = < 

e< 1 
tm(E/2) = JI=f tan(//2) 

v^g3/2[tan(//2)+itan3(//2)] e (19) 

|o|3/2(esinhF-F) 

tanh(F/2) = Jz£m(f/2) 
e > 1 

where 0^ = it if e < 1, and ^ = arccos(-l/e) if e > 1. Note that the 
independent variable of integration is the true anomaly. 

5.3. ALTERNATE DERIVATION OF AC 

An alternate derivation of AC exists which provides a simpler form for the expres
sion and reduces the number of /£ integrals that must be computed. This derivation 
uses the Jacobi integral as stated in Equation 9. Evaluating the integral at two sub
sequent apocenters (or infinities), allowing C and H to change but keeping the 
items in C/22 fixed (in accord with the assumptions in deriving Equations 15 - 17), 
and noting that the Jacobi integral remains constant, yields: 

AC = AH + AU22 

AU22 = u22(900) - M - M 
(20) 

(21) 
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Some simple algebraic manipulation will show that: 

-sin2isin2£2 (22) 

+ cos4(i'/2) sin2(w + Q) - sin4(i'/2) sin2(o; - Q)] 

(23) 

A TT 6C22 r 

IJmV2s-^^e<i 
0 e > 1 

which leads to a simplified form of AC: 

6C22 AC - sin2 i sin 2ft (i,)1 - j ) 
p 3 /2 

+ cos4(i/2) sin2(o; + Q) (j2
x - / ) 

- sin4(i/2) sin2(w - Q) (ll2 - / ) ] (24) 

6. Elementary Properties of / ^ 

The integrals i£ have a few simple properties that should be discussed. First, the 
integrals are completely independent of the central body properties, and thus need 
only be computed once as a function of non-dimensional q and e to cover all cases 
of the central body mass, rotation rate, and Cn. 

Second, the integrals are finite and bounded. This is clear by inspection of 
Equation 18: 

|C(e,g)| < 2 M 1 + e ) " (25) 

Third, in Equations 16,17 and 24 we see that the integrals are defined for both 
positive and negative values of the integer m. There is a marked difference in the 
values of the integrals for these two cases, and in most situations of interest we 
find that: 

\I-J < ICI (26) 

Exceptions to this occur at some small values of q and e. This is a significant result 
as it clearly explains why particles in retrograde orbit about a uniformly rotating 
body experience relatively small fluctuations in energy and angular momentum, as 
compared to particles in direct orbits (see Scheeres, 1994; 1995, and Scheeres et 
al, 1996, for discussions of this effect). 

Inequality 26 is most easily understood by noting that at pericenter passage the 
argument of the cos( mf - 2r) term will remain small over a longer time interval if 
m is positive, allowing the integrand to contribute more to the integral while in the 
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neighborhood of its maximum value. This effect becomes largest when the angular 
rate at pericenter passage is equal to the body rotation rate, which occurs at: 

^ = (l + e ) ^ (27) 

Along the lines defined by this condition one sees that the integrals 1% take on a 
larger value. For negative m this condition has no special significance. 

Finally, the 1% integrals are computed by first recasting them as a differential 
equation: 

dTn 

—f = (l + ecos / ) n cos(m/-2r) (28) 

with initial condition evaluated at / = 0. The equation is then numerically inte
grated, with error control, from / = 0 to / = 9^, the full integral being obtained 
by doubling the integrated result (since the equation is even about pericenter). In all 
cases of conic motion this procedure is seen to work well. In the case of parabolic 
and hyperbolic orbits accurate results are obtained despite the infinite variations in 
the integrand as / approaches 9^. To understand this we note two items. First, that 
the contributions of the integrand decrease to zero with increasing true anomaly. 
Second, for true anomaly close to 9^ the contribution of the integrand to the total 
integral, taken over any finite interval of true anomaly, rapidly approaches a zero 
mean due to the swift oscillation of the time argument. These factors combine 
to allow the differential equation approach to computing the integrals to truncate 
the tails of the integration as appropriate. The accuracy of this integration method 
can be checked by comparing the computed value of AC using both Equations 15 
and 24, since we know independently that these combinations of integrals should 
be equal. Performing this comparison we find agreement to within the specified 
numerical error of the integration. 

7. Example Computation 

To illustrate the utility of this theory we present contour plots showing the normal
ized change in energy (C) and angular momentum projected onto the rotation axis 
(H) as a function of dimensionless pericenter radius and eccentricity. The specific 
results plotted in Figures 1 - 3 are -575- (I\ - I) and -^I^, which correspond to 
the terms that contribute the most to the change in C and H, respectively. To scale 
these results to a specific body, inclination, and argument of pericenter passage, 
multiply the contour values by -C22 cos4(i/2) sin2(cj + Q). 

In Figures 1 and 2 the contour values for the elliptic case (e < 1) are plotted for 
AC and AH, respectively. In Figure 3 the changes for the hyperbolic case (e > 1) 
are plotted, where we recall from Equation 20 that AC = AH when e > 1. 

The results found from this approach have been compared with numerical 
integrations. We find that agreement is good for high eccentricity elliptic orbits, 
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Normalized Energy Change per Orbit 
25 
10 

2.5 
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-1 — 

Eccentricity 

Normalized Periapsls Radius 

Fig. 1. Normalized AC per orbit for elliptic orbits (dominant terms only). Multiply contour 
values by -C,22C0S4(«/2) sin [2(w + Q)] to scale to an arbitrary flyby. 

Normalized Z-Angular Momentum Change per Orbit — 
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Fig. 2. Normalized AH per orbit for elliptic orbits (dominant terms only). Multiply contour 
values by -C,22COS4(e'/2) sin [2(w + Q)] to scale to an arbitrary flyby. 
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Normalized Energy and Z-Angular Momentum Change per Orbit 
25 — 

/ 

\ 

/ 

w. 
\ 

\ .1 

/ 
/ 
i 

i 

i 

! 
1 

i 
i 
i 
i 
i 
i 

-

i 
i 

i 
i 

: 

-

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

10 
2.5 

1 

1/Eccentricity 

0.5 1 1.5 2.5 

Normalized Periapsis Radius 

Fig. 3. Normalized AC and AH per orbit for hyperbolic orbits (dominant terms only). Note 
that 1/e is plotted. Multiply contour values by -Cn cos4(i/2) sin [2(w + Q)] to scale to 
an arbitrary flyby. 

parabolic orbits and hyperbolic orbits, but that accuracy begins to degrade sharply 
once the eccentricity of an elliptic orbit falls below a few tenths. Possible remedies 
to this will be investigated in the future. 

8. Conclusions 

The theory presented in this paper applies to all cases of uniformly rotating bodies 
with a C22 gravity term. There are many applications for the theory as derived here. 
These include the computation of capture and ejection radius about a body, mission 
design and trajectory planning considerations for a spacecraft mission about an 
asteroid or comet, and long-term investigations of particle and ejecta dynamics 
about asteroids and comets. These applications, and others, will be detailed in 
future papers and reports. 
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