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Consumers’ ability to identify a surplus when
returns to attributes are nonlinear

Peter D. Lunn∗ Jason Somerville†

Abstract

Previous research in multiple judgment domains has found that nonlinear functions
are typically processed less accurately than linear ones. This empirical regularity
has potential implications for consumer choice, given that nonlinear functions (e.g.,
diminishing returns) are commonplace. In two experimental studies we measured
precision and bias in consumers’ ability to identify surpluses when returns to product
attributes were nonlinear. We hypothesized that nonlinear functions would reduce
precision and induce bias toward linearization of nonlinear relationships. Neither
hypothesis was supported formonotonic nonlinearities. However, precisionwas greatly
reduced for products with nonmonotonic attributes. Moreover, assessments of surplus
were systematically and strongly biased, regardless of the shape of returns and despite
feedback and incentives. The findings imply that consumers use a flexible but coarse
mechanism to compare attributes against prices, with implications for the prevalence
of costly mistakes.
Keywords: consumer choice, function learning, multiattribute decision making, non-
linear returns

1 Introduction
The first 16 gigabytes of memory in a mobile device are more essential than a further
16 gigabytes. An initial 500 square feet of floor space in an apartment matter more than
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an additional 500 square feet. The ubiquity of such preferences means that theories of
consumer decision making typically assume that preference functions have diminishing
marginal returns to attributes. Thus, if consumers develop such preferences, they must
process nonlinear functional forms to apply them.
Researchers in judgment and decision making have long been interested in nonlinear

functional forms. Hammond & Summers (1965) argued that while linear regression might
approximate the psychological process when an individual combines multiple cues to judge
a quantity or probability, it is important to investigate how judgment copes when faced with
a nonlinear relationship. Multiple experimental tasks have since compared performance
when individuals try to combine linear and/or nonlinear cues to guess a quantity or category.
These include inductive inference, multiple cue probability learning, function learning, and
categorization. The evidence shows that individuals can take account of nonlinearity in
functional relationships (Hammond & Summers, 1965; Summers & Hammond, 1966), but
that judgments based on nonlinear functions are less accurate than those based on linear
functions (Brehmer, 1971; Deane et al., 1972; Brehmer & Qvarnström, 1976; Brehmer &
Svensson, 1976; Brehmer, 1979; Karelaia & Hogarth, 2008).
This previous work addressed settings where people aim to match real-world functional

relationships, such as those between clinical results and medical diagnoses. However,
inaccurate processing of nonlinear functions also has implications also for consumer deci-
sion making. Standard economic models of consumer choice assume that individuals can
perfectly apply nonlinear preferences when judging product attributes. Yet the previous
findings suggest that judgment accuracy may be sacrificed when trying to apply econom-
ically desirable preferences. Moreover, limitations on processing may vary with the form
of nonlinearity. For instance, while consumers’ preference functions may be mostly mono-
tonic, because more is better, this is not always the case. Facing a risk-return trade-off,
financial consumers may seek an investment product that entails some risk but not too
much. A texture or pattern on furniture can be attractive but can be “over the top”. Desir-
able preference functions often entail turning points, which may, or may not, have additional
implications for judgment accuracy.
Does the finding that nonlinear judgment is less accurate apply when consumers process

nonlinear product attributes? Does this vary with the specific nonlinearity? These issues
have not been explored and motivate the present paper.
We first define terms. The paper deploys two distinct concepts of accuracy. As is

standard in the study of psychophysical detection and discrimination, we distinguish between
“imprecision” and “bias” (Macmillan & Creelman, 2004). Imprecision refers to random
noise. In the consumer context this implies a reduced ability to determine whether a product
has good or bad value relative to a price. Precision can be measured empirically via the
just noticeable difference (JND), which is the change in quantity required for that difference
to be discriminated reliably, i.e., with a given (high) probability. Bias refers to systematic
underestimation or overestimation once random noise is averaged away. For consumers,
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bias implies a tendency to underestimate or overestimate the value of a product or attribute.
We also define “surplus” as the difference between the private value of a product and its
price. Positive surplus corresponds to a good deal, where the product is worth more than
its price; negative surplus implies a poor deal, where the product is not worth its price.
Whether nonlinear preferences affect precision and bias is an important empirical issue

with implications for theory. Following Bettman et al. (1998), consumer researchers recog-
nize that decision strategies adopted by consumers may reflect a trade-off between accuracy
and speed. The centrality of this trade-off has been challenged by evidence of heuristic
strategies that can be faster and more accurate than trying to integrate multiple pieces of
information (Gigerenzer & Todd, 1999). Either way, the potential trade-off between accu-
racy and the shape of preferences remains unexplored. Similarly, microeconomic models
of consumer decision making assume that one utility function can be applied as accurately
as another — the linearity of the function does not alter the distribution of the error term.
We know of no attempt to measure this empirically, as we do here.
As the complexity of a preference function increases, the accuracy with which it can be

applied must, at some point, diminish. The present paper builds on recent work that used a
new experimental method to measure how accurately preference functions can be applied
as the number of product attributes increases (Lunn et al., 2020). This method, the surplus
identification (S-ID) task, gives experiment participants incentives to adopt and apply a
predefined preference function for a novel product. It then deploys methods adapted from
detection theory (Macmillan & Creelman, 2004) to isolate and measure precision and bias.
Thus, the task allows multiple aspects of a product to be manipulated. While Lunn et al.
(2020) tested only linear preference functions, here we use the S-ID task to test multiple
nonlinear functional forms.
The tests are motivated by previous findings, briefly overviewed in the following sec-

tion. A first study involved products with a single monotonic attribute (in addition to
price). A second study increased the number of attributes and manipulated the shape of the
nonlinearity.

2 Previous Literature
The link we make between the psychology of judgment and consumer choice blurs the
distinction between decisions that are preferential, motivational, or value-based, and those
that are inferential, perceptual, or informational. Other recent studies actively blur these
distinctions to explore mechanisms common to both types of decision (Dutilh & Rieskamp,
2016; Summerfield & Tsetsos, 2012; Trueblood et al., 2013; Tsetsos et al., 2012). The
literature that motivates our experiments similarly spans both objective and subjective
domains.
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2.1 Objective Judgment of Nonlinear Functional Forms

Many experimental tasks present cues that predict a category or quantity, then require the
participant to guess this outcome (or “criterion”). In categorization studies the response
variable is often just two categories, while in function learning and multiple cue probability
studies, it is often continuous. Studies vary in cues (perceptual, numeric, categorical),
domains (from perceptual categorization to deliberative medical diagnosis), and focus (ra-
pidity of learning rules, integration of cues, cue properties, extrapolation, etc.). Busemeyer
et al. (1997) andKarelaia&Hogarth (2008) provide helpful reviews. Within this large litera-
ture, some studies directly compare performance between linear and nonlinear cue-criterion
relationships. Judgment-criterion correlations are higher when a single cue conforms to
a linear functional form rather than U-shaped function (Brehmer, 1971). U-shaped func-
tions also produce lower correlations when integrating multiple cues (Deane et al., 1972;
Brehmer & Qvarnström, 1976). Even following substantial practice, correlations do not
reach levels recorded for linear functions (Brehmer & Svensson, 1976; Brehmer, 1979). A
meta-analysis confirms superior performance with linear functions (Karelaia & Hogarth,
2008).
Because the nonlinear functions tested have typically been nonmonotonic, it is unclear

whether accuracy is lower for monotonic nonlinear functions. Koh&Meyer (1991) reported
relatively accurate matching across perceptual continua related by a power function – a
somewhat different function learning task. DeLosh et al. (1997) recorded slower learning
but convergent accuracy for an exponential function relative to a linear one, but tested a
single numeric cue.
We emphasize three aspects of this large literature. First, while nonlinear functions

generally result in less accurate judgment than linear functions, whether and how this
translates to consumer decisions has not been directly studied. Second, monotonic functions
matter for consumer decisions, because preference functions are often monotonic. Third,
previous studies focus mainly on judgment-criterion correlations. Few have asked whether
nonlinear functions induce bias, perhaps through linearization. Brehmer & Slovic (1980)
found no evidence that U-shaped relationships are linearized in multiple-cue judgments,
but did not test monotonic nonlinear relationships, for which linearization is arguably
more likely. DeLosh et al. (1997) reported that nonlinear functions are linearized when
extrapolated, but noted distortion of linear relationships too. Linearization is consistent
with theories of subjective scaling. Range-frequency theory (Parducci, 1965; Parducci &
Perrett, 1971) and, more recently, decision by sampling (Stewart et al., 2005) predict that
nonlinear mappings between scales will generate partial linearization if the range is sampled
evenly. Indirect experimental support comes from Cooke & Mellers (1998), who showed
that attractiveness ratings of multi-attribute products are influenced by both the attribute
range and spacing of instances. Hence, nonlinear relationships may induce systematic bias,
which for consumer decisions is costly.
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2.2 Nonlinear Functional Forms and Consumer Choice

Consumers make errors when faced with products that have nonlinear relationships between
attributes and value. For instance, they fail to choose the cheapest among nonlinear price
plans in telecommunications (Grubb, 2009; Lambrecht & Skiera, 2006) and domestic
electricity (Wilson & Waddams Price, 2010). Direct evidence links decision errors to the
linearization of monotonic nonlinearities associated with fuel efficiency (Larrick & Soll,
2008) and interest compounding (Stango & Zinman, 2009; McKenzie & Liersch, 2011).
However, in these studies it is not certain that linearization reflects an inability to apply a
nonlinear function or failure to realize that that the relationship is not linear. In inferential
judgment, this is a vital contributor to performance (Deane et al., 1972; Hammond &
Summers, 1972). Thus, although suggestive, these studies do not imply inherent processing
limitations of the kind we test for below.

2.3 Application to Economic Decision Making

Given the long-standing literature on nonlinear judgment and the more recent evidence
documenting consumer mistakes, we hypothesized that consumers would identify surpluses
less accurately when products possessed attributes with nonlinear returns. Specifically,
we hypothesized greater imprecision, bias toward linearization, and possible divergence
between monotonic and nonmonotonic nonlinearities. These hypotheses have implications
for standard models of consumer choice, since they associate the distribution of error with
the shape of preferences.
There are, however, differences between judgment tasks and consumer decisions. Con-

sumers do not typically value products by assigning them numbers or marks on a scale, but
rather they compare one or more products with prices. In the language of experimental
tasks, consumers mostly undertake discrimination not judgment; they decide whether a
product is worth its price, or which product offers the best value (generates the most sur-
plus). Therefore, testing the hypotheses experimentally required a task that more closely
mimicked consumer decisions while maintaining the experimental control of a judgment
task.

2.4 The Surplus Identification (S-ID) Task

In the S-ID task (Lunn et al., 2020), participants encounter a novel, computerized product
with a specified number of attributes. We refer to these products as “hyperproducts” because
they permit complete experimental control over the attribute-price hyperspace. Participants
have the incentive to adopt a predetermined preference function, demonstrated through
explained examples, practice and feedback. Their ability to apply this preference function is
then tested using methods adapted from studies of perceptual detection and discrimination.
Participants view the same hyperproduct in a series of forced-choice trials, with attribute

1190
https://doi.org/10.1017/S1930297500008391 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500008391


Judgment and Decision Making, Vol. 16, No. 5, September 2021 Surplus Identification

magnitudes and prices (and hence surpluses) varying over a range. Each time, they decide
whether the product is worth more or less than its price – is the surplus positive or negative?
The S-ID task quantifies how precision and bias vary with properties of the product.

For instance, Lunn et al. (2020) varied the number of visual attributes, where the value of
the product was an additive linear combination with equal weights. Participants learned the
preference functions quickly and easily, but performance was constrained. When a single
visual attribute determined surplus, precision paralleled performance in studies of absolute
identification (Miller, 1956; Stewart et al., 2005): the magnitude of surplus necessary to
allow reliable discrimination equated to approximately seven discriminable levels of value
across the price range. Precision declined rapidly themore attributeswere in play. Decisions
displayed a systematic bias across the price range, with surplus underestimated near the
bottom of the range and overestimated near the top – the opposite of the bias toward the
central tendency observed in magnitude estimation and repeated judgments (Laming, 1997;
Matthews & Stewart, 2009). The pattern of results implied a trade-off between precision
and bias: better discrimination near the middle of the range comes at the cost of bias away
from the middle.
Lunn et al. (2020) varied the number of attributes for a single product with linear

preference functions. In our study, we vary the presence and strength of nonlinearity in
attribute returns, recording the effect on precision and bias.

3 Study 1
Study 1 tested consumers’ ability to identify a surplus for a product with a single attribute
and a price. The preference function relating attribute magnitudes to prices was monotonic
but varied between conditions in the strength of diminishing returns. We hypothezised
that nonlinear returns would generate imprecision and bias due to linearization. In search
of generalizable findings, we employed multiple hyperproducts and attributes. Testing
simultaneous manipulations in one experiment is possible because the S-ID task generates
rich within-subject data.
We initially tested visual attributes because we wanted participants to make a judgment

on each trial, rather than to learn associations between pairs of numbers or to deploy
arithmetic. There are some potential downsides to using visual attributes. Imprecision
might be caused by noise in visual processing. Sensory continua may also be subject to
nonlinear transformations in early stage processing, which in theory could interfere with the
manipulation of nonlinearity in the preference functions. We circumvented these problems
in several ways. First, we tested six different visual attributes (two for each of three
hyperproducts with different price ranges). Given known differences in visual processing
of these stimuli, consistent findings must reflect mapping of magnitudes to prices, not
specificities in visual representations. Second, we measured pure visual discrimination for
the same stimuli using a separate sample of participants. This allowed direct comparison
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of the precision of visual processing and surplus identification. Third, we varied the range
of the attribute magnitudes by a factor of two across conditions, which by definition halved
visual discriminability. Last, we tested both a moderate and a strong nonlinearity, where
the latter was stronger than the nonlinearities recorded in early visual processing.

3.1 Method

Two parallel experiments were labeled 1a and 1b. Participants in 1a undertook the S-ID
task, comparing a product with a price. Those in 1b performed a standard perceptual
discrimination with two products placed side-by-side.

3.1.1 Participants

A representative sample of local consumers was recruited by a market research company.
Experiment 1a involved 36 consumers (19 female; mean age = 36, SD = 13; 22 employed).
Experiment 1b involved 26 consumers (14 female; mean age = 35, SD = 14; 17 employed).
Participants received a fee of €20. They were informed in advance and on arrival that the
most accurate performer in every ten would win a €50 shopping voucher.1

3.1.2 Materials and Stimuli

Three hyperproducts were created and displayed using Matlab and Psychtoolbox (Brainard
& Vision, 1997; Pelli, 1997; Kleiner et al., 2007): Golden Eggs, Victorian Lanterns and
Mayan Pyramids.2 They were designed to be pleasant to view and intuitively valuable,
although participants would have been highly unlikely previously to have valued or traded
anything like them. Each hyperproduct could vary on two attributes (see Figure 1). For the
Golden Egg, the overall size and the fineness of the surface texture (highest spatial frequency
component) varied. For the Victorian Lantern, the ratio of inner to outer flame and the
number of sparks emitted from the base varied. For the Mayan Pyramid, the width of the
staircase and the moldiness of the bricks varied. In fact, attributes corresponded to standard
visual stimuli used in previous discrimination tasks: size, texture, ratio, numerosity, interval,
and colour saturation.
It is important to distinguish the objectively defined value of the product, which we

simply term the “value”, from the number on the price tag, which we term the “price”.
The difference between the two defined the surplus. Value depended on a single attribute
magnitude, based on what we term the “value function”:

𝑉ℎ𝑐𝑡 = 𝛽ℎ0 + 𝛽ℎ1𝑥
𝛼(𝑐)
𝑡 , 𝑥𝑡 ∈ [0, 1], 𝛼(𝑐) ∈

{
1,
2
3
,
1
3

}
(1)

1In Experiment 1a, four won vouchers; in Experiment 1b, three won vouchers.
2For additional information, consult the supplementary material, which contains a description sufficiently

detailed to permit replication, including information, consent, demographic and debriefing forms, screenshots
of the task, experimenter script and instructions.
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Figure 1: “Hyperproducts” used in Study 1.

where 𝑉ℎ𝑐𝑡 is the value of hyperproduct ℎ on trial 𝑡 for condition 𝑐 in Euro, 𝛽ℎ0 is the
minimum value in the range, 𝛽ℎ1 scales attribute magnitudes onto the price range, 𝑥𝑡 is the
normalised magnitude of the relevant attribute on trial 𝑡, and 𝛼(𝑐) defines the degree of
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diminishing returns. The value of 𝛼(𝑐) was therefore the primary manipulation. It was
defined as 𝛼(𝑐) = (4 − 𝑐)/3 and took one of three values: 𝛼(1) = 1 (linear), 𝛼(2) = 2/3
(moderately diminishing returns), and 𝛼(3) = 1/3 (severely diminishing returns). Figure 2
depicts these three cases.

Figure 2: Three value functions defining main conditions in Experiment 1

The price range varied by product: €180–420 for the Golden Egg; €7–35 for the
Lantern; and €23,000–172,000 for the pyramid. The three main conditions, 𝑐 ∈ {1,2,3},
corresponded to levels of 𝛼(𝑐). These were pseudo-randomized across participants and
attributes, with the proviso that the two attributes of each hyperproduct had different 𝑐.
When the range, 𝑟 ∈ {high,low}, of attribute magnitudes was “high”, close to the maximum
feasible range was used. When it was “low”, this was halved. Overall, therefore, there
were three main conditions, 𝑐, counterbalanced over three hyper-products, ℎ, and two
range conditions, 𝑟. The 18 possible combinations were pseudo-randomized across the 36
subjects.

3.1.3 Procedure

While multiple factors were manipulated and counterbalanced, the task was essentially
simple. For Experiment 1a, participants saw a hyperproduct and a price tag. Their job was
to decide whether the product was worth more or less than its price. Participants had little
or no difficulty understanding the task. Responses were collected via a response box.
Participants received intensive one-to-one instruction from the experimenter and could

ask questions at any time. They completed six experimental runs. Before each run they
were introduced to the single relevant attribute and its relationship to the price. The
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experimenter first showed the average magnitude and the amount it was worth. This was
followed by an evenly spaced ascending sequence of examples across the range, designed to
demonstrate how value increased with the attribute magnitude. The aim was to demonstrate
the nonlinearity as clearly as possible, as we were interested in the application of the
function, not its acquisition (Hammond & Summers, 1972). Systematic rising sequences
quicken learning (Busemeyer et al., 1997).
Participants then undertook eight practice trials. Pilot work suggested that using se-

quential examples followed by eight practice trials was sufficient for consistent estimation
across a test run. Nevertheless, an advantage of the S-ID task is that performance over trials
can be tracked and adjustments to measures made if performance improves across the run,
although based on the pilot, this was not anticipated. Following the example sequence and
practice trials, participants undertook 72 trials at their own speed, with breaks between runs
and a longer refreshment break after three runs. Sessions typically lasted just under an hour.
The surplus, Δ𝑡 , on each trial was selected using an adaptive method of constant stimuli

(MCS) — a standard procedure for improving the accuracy of measures of discrimination.
Figure 3 depicts how the procedure worked for a typical run. The trials consisted of nine
blocks of eight, which each contained symmetric positive and negative surpluses spanning
degrees of difficulty, presented in a random order. Within a block, Δ𝑡 corresponded to four
positive and four negative surpluses, Δ𝑡 ∈ {7𝛿, 5𝛿, 3𝛿, 𝛿, -𝛿, -3𝛿, -5𝛿, -7𝛿}, where 𝛿 was
a proportion of the mean price. If the participant responded correctly on seven or eight
of the trials, 𝛿 was reduced for the next block; if six were correct, 𝛿 remained unchanged;
if less than six, 𝛿 was increased.3 On each trial, the price and value were selected by
drawing a price, 𝑃ℎ𝑡 , from a uniform distribution, adding the surplus to obtain the value,
i.e. 𝑉ℎ𝑡 = 𝑃ℎ𝑡 + Δ𝑡 , then calculating the relevant attribute magnitude, 𝑥𝑡 , according to (1).
Hence, at all prices the probability of a positive surplus was always 0.5. The nonrelevant
attribute magnitude was selected randomly.
The hyperproduct and price were displayed until the participant responded. Responses

triggered feedback. A green tick or a red cross indicated whether the response was correct,
together with an auditory beep for an incorrect answer. The true value, 𝑉ℎ𝑡 , was presented
and remained onscreen until the participant pressed a “Next” button.
Experiment 1b was identical to 1a except that two hyperproducts appeared alongside

each other. One had an attribute magnitude calculated as for 𝑉ℎ𝑡 , the other as for 𝑃ℎ𝑡 . For
example, participants were simply asked to decide which of the two eggs was the largest
(a size discrimination), or which of the two lanterns produced fewer sparks (a numerosity
discrimination), and so on. No numbers were shown onscreen in experiment 1b. Feedback
in this task consisted merely of a tick or cross (and beep).

3Note that participants were aware that an adaptive procedure was being followed but unaware of how
it worked and, hence, not able to make inferences based on the sequence of presentations. They were also
aware that performance was being measured by the overall accuracy obtained, not by the proportion of correct
responses — there was no gain to be had from temporarily responding incorrectly to obtain easier trials.
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Figure 3: Example implementation of the adaptive method of constant stimuli. The experi-
mental run consisted of 9 blocks of 8 trials as shown. Green dots denote a correct response;
red dots, an incorrect one. When the participant achieved 7 or 8 correct responses within
a block, the surplus sizes were reduced for the subsequent block. Less than 6 correct re-
sponses resulted in an increase in the subsequent block; 6 correct responses meant that
the surplus was left unchanged. By ensuring sufficient correct and incorrect responses, the
adaptive procedure improves estimation of the participant’s JND.

3.1.4 Analysis and Main Measures

In the S-ID task, bias and precision are quantified via standard measures used in detection
theory: the point of subjective equality (PSE) and the just noticeable difference (JND).
Both correspond to parameters of the best fitting logistic psychometric function (Figure 4).
The dependent variable is whether the participant responded that the surplus was positive.
The surplus magnitude is a continuous explanatory variable. When surplus is very high,
participants respond that it is positive; when it is very low they respond that it is negative,
but intervening levels produce probabilistic responses. The PSE equates to the surplus
at which participants are equally likely to decide that it is positive or negative. Hence, a
negative PSE indicates overestimation of surplus; a positive PSE indicates underestimation.
The JND is determined by the slope of the psychometric function. It is the difference in
surplus required for the probability that the participant detected a positive (or negative,
since the psychometric function is symmetric) surplus to rise from 0.5 to 0.86, equivalent to
one standard deviation of the logistic distribution. Thus, for an unbiased subject, the JND
measures the amount of surplus needed for 86% correct identification.
Figure 4 illustrates a psychometric function for a single run in Experiment 1a. The

surplus magnitude is expressed as a proportion of the overall price range (results to follow
provide the rationale for this). More formally, we model the probability of a positive
response by the logistic formula,

Pr(“Yes”) = exp(\0 + \1𝑆𝑢𝑟 𝑝𝑙𝑢𝑠)
1 + exp(\0 + \1𝑆𝑢𝑟 𝑝𝑙𝑢𝑠)

. (2)
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For the example data in Figure 4, the coefficients are \̂0 = 0.77 and \̂1 = 9.50. From
the standard properties of the logistic function it is straightforward to derive the PSE,
−\̂0/\̂1 = −8.1%, and JND, 𝜋/(\̂1

√
3) = 19.1%. These numbers imply that the example

participant overestimated surplus by 8.1% of the price range and required a 19.1% higher
or lower surplus to increase the probability of a correct response from 50% to 86%.
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Figure 4: Sample psychometric function from Experiment 1a

Our main hypotheses straightforwardly translate into changes in the slope and location
of the psychometric function. If a participant is less precise when the value function is
nonlinear, the slope of the psychometric function that relates surplus to the likelihood
of assessing it to be positive becomes shallower, increasing the JND. If nonlinear value
functions induce bias, the psychometric function shifts location. Specifically, linearization
of a concave function implies a shift to the right for products valued near the middle of the
range, as value would be underestimated relative to products at either end (see Figure 2).
For ease of interpretation, we present mostly mean PSEs and JNDs. For significance

testing, we employ a generalized linear mixed model (GLMM), which increases statistical
power relative to a comparison of individual means (Moscatelli et al., 2012), although in
practice results are closely similar. The model simultaneously fits a logistic function to
the data for all participants and trials. Individual differences are accounted for via random
effects that assume normally distributed variation in bias and precision across individuals,
with a correlation between the two. Surplus, condition, and price are specified as covariates.
A significant change in PSE is indicated by a significant coefficient on a condition (or price),
which implies that the location of the logistic curve shifts for the given condition (or price).
A change in JND is indicated by a significant interaction between the surplus and a condition
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(or price). A positive interaction implies higher precision — the slope of the psychometric
function steepens for the given condition (or price). A negative interaction indicates loss of
precision — the slope is more shallow. A more detailed description and full model output
is provided in the Appendix. In the following subsection we report relevant coefficients,
standard errors, and p-values.

3.2 Results
3.2.1 Comparing Precision in Experiments 1a and 1b

Figure 5 reports the JNDs by linearity condition. The choice of units for the vertical
axis is important. Surplus can be expressed in various ways: absolute monetary amount,
proportion of the price, proportion of the price range, etc. In fact, across the three different
hyperproducts (and associated price ranges) and six attributes, Experiment 1a produced
striking consistency when surplus was expressed as a proportion of the price range. To
identify surplus reliably, participants required it to exceed 20-25% of the price range. As
Figure 5 shows, this was three to four times greater than the mean JND in Experiment 1b,
in which participants instead discriminated between two visual attribute magnitudes, with
no prices.4 This high level of precision in Experiment 1b confirms the effectiveness of
the stimuli: attribute magnitudes were easily perceived and participants could discriminate
between them with expected levels of precision based on previous measures of visual
discrimination for similar perceptual stimuli (Morgan, 1991). However, this did not translate
into similarly precise surplus discrimination when trying to compare the same attributes
against prices.

3.2.2 Comparing Precision by Condition

The hypothesis that nonlinear value functions reduce precision was not confirmed. Column
(2) of Table 3 (Appendix) presents the full GLMM output underlying our significance
tests. We find no evidence that precision was impaired by nonlinearity, whether severe
(𝛽 = −0.05 (0.58), 𝑝 > 0.25) or moderate (𝛽 = 1.53 (0.55), 𝑝 > 0.99). As suggested
by Figure 5 and confirmed by the latter positive coefficient and high 𝑝-value, when the
attribute had moderately diminishing returns there was in fact a slight advantage. Further
investigation (Table 3, column (5)) shows that this effect, which was the opposite of that
hypothesised, occurred only when the attribute range was low and was not statistically
significant when the range was high (𝛽 = 0.69 (0.62), 𝑝 > 0.25). Overall, halving the
attribute range produced a significant reduction in precision: 𝛽 = −1.66 (0.48), 𝑝 < 0.01
(Table 3, column (3)). The implication is that reducing the perceptual discriminability of
attributes did affect precision when trying to determine surplus. However, in addition to
the abovementioned inconsistency across conditions, this effect was relatively small: mean
JND climbed from 20.7% (high) to 25.8% (low).

4Twelve runs for the mold condition were excluded due to a data recording error.
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Figure 5: JND by attribute return condition. Visual comparison based on Experiment 1b
data. Error bars computed using the delta method

The more striking result is that precision was in no way diminished by the presence of
a strong nonlinearity. The JND for the high range in all three conditions was close to that
previously recorded in an experiment that used only linear attribute returns (Lunn et al.,
2020), implying performance in the nonlinear conditions that was better than expected.

3.2.3 Bias

Our second main hypothesis was that nonlinearity would induce bias, specifically lineariza-
tion. For a concave function, this implies underestimation near the middle of the range.
In Experiment 1a, overall, there was a slight overestimation of 1.7% of the price range —
see column (1) of Table 3 for the underlying parameter bias estimates. This small bias
was driven by the Golden Egg hyperproduct, as shown in the left panel of Figure 6 and in
column (4) of Table 3. However, variation in bias across the price range was much larger
and followed a different pattern from the one implied by linearization. Participants underes-
timated surplus substantially near the bottom of the range and overestimated it substantially
toward the top (Figure 6, right). Splitting the range into quartiles reveals that for half of all
trials (1st and 4th quartiles), surplus was misjudged by more than 10% of the price range.
Most important for present purposes, this bias was consistent across the main conditions
and, thus, unaffected by strong nonlinearities in the value function. Furthermore, this bias
was consistent across all attributes, price ranges, and value functions. Contrary to our
hypothesis, therefore, participants had no tendency to linearize the function. A similar bias
across the range for a single product with linear returns was reported by Lunn et al. (2020).
Here, unexpectedly, it generalized to nonlinear functions.
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Figure 6: The left panel depicts the PSE by hyperproduct. The right panel depicts the PSE
by price quartile. Error bars computed using the delta method.

3.2.4 Individual Differences

Given these surprising results, we examined variation across participants (Figure 7). One
standard deviation in JND equated to approximately 6 percentage points. No participant
in any condition generated a JND below 12% of the price range. Thus, the JNDs of even
the best performers were double the mean JND recorded in Experiment 1b. There was no
evidence of bimodality in the data, which might have suggested that some participants did
not properly understand the task. The box-plot hints that perhaps a small minority found the
strong nonlinearity more difficult. But not only was any overall difference short of statistical
significance, the point estimate for median precision was better than in the linear condition.
There was modest variation in bias across individuals too, but the most striking result was
the consistency of the pattern across the price range. All participants overestimated surplus
at the top and almost all underestimated it at the bottom, with a clear shift in the entire
distribution as the price increased. No participant linearized even the strongly nonlinear
value function.

3.2.5 Learning

As described above, the experiment was not designed to investigate the learning process.
Rather, one-to-one instruction, example sequences, and practice trials were developed
to make learning the value functions as easy as possible. We nevertheless checked for
variation in performance across experimental runs. Figure 8 shows the consistency of the
JND following initial practice trials. We generated this graph by adding interaction terms
for each trial block added to the baseline model in column (1) of Table 3. Participants were
significantly less precise in the practice trials relative to the trials that followed (𝛽 = −1.63,
𝑧 = −5.18, 𝑝 < 0.001), but there was no improvement thereafter, in keeping with the
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Figure 7: The left panel depicts the distribution of JNDs by condition. The right panel plots
the distribution of PSEs by price quartile. Error bars computed using the delta method.

experimental design and our pilot work. Similarly, there was no change in the pattern of
bias across trials, despite strong feedback.

Table 1: Value Function Estimates.

(1) (2) (3)
Value function: Linear DRS (Moderate) DRS (Severe)

𝛽0 −0.35 −0.17 −0.10
[−0.62,−0.19] [−0.31,−0.08] [−0.22,−0.01]

𝛽1 1.99 1.74 1.68
[1.63,2.67] [1.54,2.05] [1.44,2.07]

�̂� 1.24 0.93 0.53
[1.08,1.42] [0.82,1.03] [0.47,0.60]

_̂ 0.30 0.21 0.25
[0.21,0.47] [0.17,0.25] [0.20,0.33]

Number of Individuals 36 36 36
Number of Observations 5,184 5,184 5,184

Individual-cluster-robust bootstrapped 95% confidence intervals in brackets.

3.2.6 Estimated Value Functions

The overall null result means that it is important to be sure that participants internalized the
different value functions across themain conditions. In theory, participant confusion or high
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Figure 8: JND across trial blocks. Block 0 refers to the practice trials. Error bars computed
using the delta method.

imprecision due to task complexity could have masked true differences across condition,
although participants were given one-to-one instruction and reported no difficulty under-
standing the task in the debriefing sessions. Empirically, we can test whether participants’
responses indicate that they had learned different functions.
To test whether participants learned and applied different value functions, we can

compare their responses for a given attribute magnitude and price across conditions. Figure
9 plots the raw response data, with attribute magnitude, 𝑥, on the horizontal axis and price,
𝑃, on the vertical axis. Red dots indicate “no” responses (no surplus) and green dots indicate
“yes” responses (surplus). Dashed lines correspond to the true value function. There are
clear differences in the curvature of participants’ responses across treatments, indicating
that they internalized and applied three separate functions of varying linearity. The solid
lines represent our best-fitting estimate of the average internal value function implied by
participants’ responses. To generate these functions, for individual 𝑖 on trial 𝑡 we estimated,

𝑉𝑖𝑡 = 𝛽0 + 𝛽1𝑥
𝛼
𝑖𝑡 + _Y (3)

where Y is a logit error with scale parameter _, and 𝑥𝑖𝑡 is the normalized attribute. 𝛽0 and 𝛽1
determine the location and overall slope of the applied value function, while 𝛼 determines
the curvature. Given this functional form, we estimated (𝛽0, 𝛽1, 𝛼, _) separately for each
experimental condition using maximum likelihood estimation.
Table 1 presents estimated parameters. Across the three conditions the intercept, slope,

and error parameters are similar, with 𝛽1 exceeding one, consistent with the strong bias
across the price range. By contrast, the curvature, 𝛼, differs markedly. A likelihood ratio
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Figure 9: Dots represent observations at a given attribute magnitude and price. Red dots
denote a “No” response, green dots, a “Yes”. Dashed lines depict true value functions. Ob-
servations below dashed lines had a positive surplus and observations above had a negative
surplus. Solid lines depict best-fitting value functions based on the parameters estimates in
Table 1.

test provides a strong rejection of the null hypothesis that �̂� is constant across conditions
(𝑝 < 0.001). Of course, these estimated functions based on the response data are far
from veridical, and the estimation assumes a functional form that matches the true value
functions. We make no claim that the relevant cognitive mechanism operates by applying
such a function. Nevertheless, the results demonstrate that participants absorbed and
attempted to apply value functions of substantially different curvature.
A key point is that while the strong bias in responses shows that the functions applied by

participants did not match the true functions, the consistency of this bias across conditions in
Figure 7 (right) indicates that their internalized value functions differed strongly in linearity.
If confusion or general imprecision had driven our results, wewould not see this consistency,
which is matched by the consistency of the difference between the solid and dashed lines
across the conditions in Figure 9. Hence, participants applied different degrees of curvature
to assess surplus, but this was not a limiting factor in the precision and bias of responses.
Overall, the data indicate that participants learned and applied different functional forms
across our experimental treatments, with the null finding stemming from a legitimate lack
of performance differences across the shape of the value functions.

3.3 Discussion

Our primary hypotheses did not hold. For single-attribute products, a strong nonlinearity
in the functional relationship between the attribute magnitude and the product’s value had
no significant impact on the precision with which surplus could be assessed. Moreover, we
observed a substantial bias across the price range that was not consistent with a tendency
to linearize nonlinear relationships. Participants demonstrably adopted and attempted to
apply different functions with different degrees of curvature. The severity of monotonic
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nonlinearity was large relative to estimates of early perceptual nonlinearities (Stevens,
1975). Yet participants accomplished nonlinear internal mappings of scales with the same
accuracy as linear ones. This rapid learning of openly demonstrated linear mappings
matches previous work on acquisition versus application of functions (Deane et al., 1972;
Hammond & Summers, 1972), but the equivalent accuracy for nonlinear functions does
not.
This is an important null result. A systematic impact on precision or bias when trying

to apply nonlinear preferences would need to be reflected in models of consumer decision
making. Previous empirical findings concerning judgment of nonlinear functions implied
that such an impact was likely in a simple setting where individuals compared a single
attribute against a price. Having set out to confirm this, we instead found that accuracy
was unaffected by a strong nonlinearities in monotonic, concave functions, across a variety
of attributes and numeric price ranges. The experimental design involved over 15,500
observations, which is high compared to the typical function learning studies that motivated
our investigation (Koh & Meyer, 1991; DeLosh et al., 1997; Karelaia & Hogarth, 2008).
Statistical power was sufficient to detect a 5 percentage point improvement in JND between
the high and low range conditions with 𝑝 = 0.002 and between practice and test trials at
𝑝 < 0.001. Similarly reliable differences by linearity would also have been detected, but
simply did not arise. In fact, point estimates of median JNDs were marginally lower in the
nonlinear conditions, with a lower mean also in the 𝛼 = 2/3 condition.
In the context of consumer decisions, the JND in Experiment 1a of 20–25% of the

range for 86% reliability may seem intuitively high. Yet it is in keeping with other work.
Lunn et al. (2020) (Experiment 1) recorded a median JND of 20% using an attribute range
similar to the “high” condition used here. That study employed only linear relationships
and compared the performance of a sample of consumers against a sample of quantitative
professional researchers competing in a tournament (Experiment 2). Performance in this
present study was closely similar. This undercuts the possibility that an underlying effect
of nonlinearity was somehow masked, perhaps by participants being asked to apply value
functions of different linearity to different attributes within the same experimental session.
The overall level of precision in any case tallies with some related tasks. JNDs were
broadly constant across manipulations when expressed as a proportion of the range, with
most participants requiring a difference of between one-quarter to one-ninth of the range to
identify a surplus reliably (in the high range condition). This limit on precision echoes the
constraints in absolute identification tasks first emphasized by Miller (1956) and reviewed
by Cowan (2010). Together with the striking consistency in the pattern of bias across value
functions, it suggests a process that adjusts perceptual stimuli to internal scale values before
mapping them to another scale (Anderson, 1974), in this case a representation of numeric
prices.
This ability to assess surplus is an important skill for consumers. The implication of

the present results is that the cognitive mechanism involved is flexible but coarse. New
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relationships can be processed rapidly, including transforming nonlinear scale values, but
Experiment 1a shows that the mechanism is subject to substantial imprecision and bias.
Across multiple products, attributes, price ranges, and value functions, when mapping a
single attribute to a price, precision in Experiment 1a was greatly diminished relative to
Experiment 1b, when discriminating between relative attribute magnitudes using the same
stimuli. Meanwhile, the mapping was oversensitive to attribute magnitudes relative to
prices, such that the top and bottom quartiles of the range were strongly overestimated and
underestimated, respectively.

4 Study 2
Given that our initial hypotheses turned out not to hold, Study 2 was more exploratory
in its aims. Attribute-price relationships are usually more elaborate than unidimensional
monotonic functions. Our rationalewas to introducemultiple realistic properties of products
and to test whether they generated a change in relative performance between linear and
nonlinear functional forms. This was achieved in four ways.
First, products typically have multiple attributes. Having to consider multiple attributes

is likely to increase cognitive load. As argued by Brehmer & Slovic (1980), if adjusting
internal scale values to match a nonlinear function does likewise, nonlinearities might not
affect performance in a unidimensional context but may do so in a multidimensional one.
In our case, nonlinear returns embedded in multiattribute products may be more disruptive
than when embedded in single-attribute products.
Second, when products have multiple attributes, some are generally more important to

consumers than others. Sometimes the magnitude of one attribute can logically negate the
importance of the other, such as when a full guarantee removes worries about reliability.
More generally, the requirement to “weight” attributes could interact with the need to process
a nonlinearity. The initial adjustment of scale values could alter the decision weight given
to the adjusted attribute. Weight might increase because of additional attention given to the
specific attribute (Armel et al., 2008; Krajbich et al., 2010), or decrease because processing
of the attribute is less fluent (Shah & Oppenheimer, 2007).
Third, while diminishing returns are perhaps the most common nonlinearities in pref-

erences, other nonlinear functional forms also arise. Returns can be increasing. A city
worker who loves the countryside may get increasing returns from living further from the
city center. Returns can also be nonmonotonic. Some attributes can be too small or too
large. Consumers may seek a “happy medium”, for instance, when considering the alcohol
content of drinks, risk profiles of investments, or sizes of car engine. Cyclical attributes
with multiple peaks are also possible: portions may be too big for one, yet too small for
two; furniture may be less valuable as it ages, yet more valuable as it becomes antique;
puzzles may be too hard for a child, yet too easy for an adult. Attributes can “fall between
stools”. The introduction of nonmonotonic returns in a multiattribute product leads to an
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intriguing possibility. Lockhead (1970) and Monahan & Lockhead (1977) investigated ab-
solute identification of multidimensional perceptual stimuli when one attribute was mapped
to an ascending set of stimuli via a nonmonotonic, cyclical function. Participants identified
stimuli more accurately than when the same dimensions were monotonically related. The
implication was that participants integrated stimuli into a multidimensional representation,
with accuracy predicted by the distance between stimuli in multiattribute space. If surpluses
conferred by multiattribute products are processed similarly, accuracy may hold up, or even
improve, for nonmonotonic preference functions.
Fourth, many attributes are communicated to consumers numerically. By instead em-

ploying only visual attributes in Study 1, wemayhave underestimated potential performance.
The reason for not using single numeric attributes was that it would have allowed partici-
pants to memorize one-to-one pairs or deploy arithmetic rules, undermining the testing of
our main hypotheses. With a multiattribute product, however, the same problem does not
apply. Accuracy when products consist of one numeric attribute and one visual attribute
can be compared with accuracy when products consist of two visual attributes. Neither task
permits reliable numeric mappings or arithmetic.
One advantage of the S-ID task is that it generates rich data that allow multiple experi-

mental manipulations to be undertaken simultaneously. Given the common occurrence of
multiattribute products, differential attribute weighting, nonmonotonic returns and numeric
attributes, Study 2 explored the impact of each.

4.1 Method

Methods were as in Experiment 1a, except for the following modifications.

4.1.1 Participants

Twenty-four consumers were recruited through a market research company (14 female;
mean age = 34.7, SD = 13.0; 13 employed).

4.1.2 Materials and Stimuli

Six additional attributes were employed. Three, one for each hyperproduct, were visual
(see Figure 10). On the Golden Egg, we varied a quality hallmark, with magnitude defined
as the angle subtended by two intersecting lines. On the Victorian Lantern, we varied
“rustiness”, defined as the contrast between an orange-brown versus a black colored texture.
On the Mayan Pyramid, we varied the flatness of the bricks, defined as the rectangular
aspect ratio. These stimuli were selected on the basis of the human ability to discriminate
angles, contrasts, and shapes with high precision. The other three attributes were numeric
and appeared next to each hyperproduct. For the Golden Egg, we displayed purity in karats;
for the Victorian Lantern, fuel efficiency was given on a 25-point scale; for the Mayan
Pyramid, we gave the age in years.
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Figure 10: Additional visual attributes in Study 2

In the two-attribute case, equation (1) becomes

𝑉ℎ𝑣 = 𝛽ℎ0 + 𝛽ℎ1 𝑓𝑣 (𝑥1, 𝛼1, 𝑥2, 𝛼2), 𝑓𝑣 (·) ∈ [0, 1], 𝛼1 + 𝛼2 = 1 (4)

where 𝑣 denotes one of six value functions and the 𝛽 terms map the overall product
magnitude, 𝑓𝑣 (·), onto the price range for hyperproduct, ℎ. Table 2 shows the six functional
forms. Function (1)was linear, with perfectly separable attributes. Function (2) had constant
returns to scale overall, but diminishing returns (DRS) per attribute. This function is a Cobb-
Douglas preference function commonly deployed in microeconomic models. Function (3)
exhibited increasing returns (IRS). Function (4) was another standard preference function
(Leontief) with a logical relationship between attributes, which are perfect complements.
The product is only as good as its weakest attribute. Function (5) combined an attribute with
linear returns and a nonlinear, cyclical attribute. Finally, function (6) had nonmonotonic
returns to both attributes, such that the center of the attribute space defined a perfect product.
We called this the“goldilocks” value function, because the product price corresponded to
distance in attribute space from “just right”, (𝑥1, 𝑥2)=(12 ,

1
2 ), attribute levels.

Table 2: Value function specifications in Study 2

(1) Perfect Substitutes (linear) 𝛼1𝑥1 + 𝛼2𝑥2

(2) Cobb–Douglas (constant returns to scale) 𝑥
𝛼1
1 𝑥

𝛼2
2

(3) Cobb–Douglas (increasing returns to scale) 𝑥
3𝛼1
1 𝑥

3𝛼2
2

(4) Leontief 𝑚𝑎𝑥(𝛼1, 𝛼2)𝑚𝑖𝑛
(
𝑥1
𝛼1
,
𝑥2
𝛼2

)
(5) Cyclical 𝛼1𝑥1 + 𝛼2

𝑠𝑖𝑛(2𝜋𝑥2)+1
2

(6) Goldilocks 1 − 4
1
𝛼21

+ 1
𝛼22

[(
𝑥1− 12
𝛼1

)2
+
(
𝑥2− 12
𝛼2

)2]
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4.1.3 Procedure

Participants completed one run per value function. Each began with a learning phase that
explained the value function and presented examples of hyperproducts and prices, designed
to facilitate rapid learning, as in Experiment 1a. Participants received intensive one-to-one
instruction. The value function was explained and demonstrated via a sequence of examples
that systematically varied each attribute in turn across its range. Participants then undertook
eight practice trials and 56 test trials (𝑡).
Given two attributes, any value, 𝑉ℎ𝑡𝑧, could be generated by infinite combinations of

𝑥1𝑡 and 𝑥2𝑡 . We selected these at random. To manipulate attribute weighting, while 𝛼1
and 𝛼2 always summed to one, they were balanced for half the runs (i.e. 1/2,1/2; 𝑏 = 1)
and unbalanced for the other half (2/3, 1/3 or 1/3, 2/3; 𝑏 = 2), such that one attribute had
twice the weight of the other. Value functions, products, combinations of attribute pairs,
and attribute balance were pseudo-randomized across participants and runs.

4.2 Results

As described above, Study 2 explored four additional aspects of the value function. We
describe the impact of each in turn.

4.2.1 Precision by Monotonic Nonlinearity with Multiple Attributes

JNDs by condition are shown in Figure 11. The first three categories offer a straightforward
comparison between the linear and nonlinear monotonic value functions. Overall, the
introduction of a second attribute decreased precision relative to Experiment 1a. Surplus
needed to be the equivalent of 36–46% of an attribute range for reliable detection. This
level of imprecision did not differ significantly between the linear and the CRS function.
Thus, even when participants were juggling multiple attributes, precision was unaffected
by diminishing returns to attributes. There was a small but statistically significant decrease
in precision for the IRS value function consistent with Figure 11 (𝛽 = −0.72, 𝑧 = −2.53,
𝑝 < 0.05; see column (1) of Table 4 in the Appendix).

4.2.2 Precision by Attribute Balance

Figure 11 also reveals that any impact of differential attribute weighting was minor. While
point estimates for JNDs were marginally higher, the overall difference was not statistically
significant. The one exception was for the Leontief value function, where unbalancing
the attribute weighting reduced precision (𝛽 = −2.95, 𝑧 = −3.35, 𝑝 < 0.001). With
balanced attributes, participants had little problem determining which one was weaker and
so the JND approached a level similar to that recorded for single attributes in Experiment
1a. With unbalanced attributes, participants found it more difficult to determine which
attribute was the weaker of the two, reducing precision. Aside from this difficulty, any
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Figure 11: JNDs by value function and attribute balance. Error bars computed using the
delta method.

additional cognitive load induced by differential balancing of attributes had little impact on
the processing of nonlinear value functions.

4.2.3 Precision with Nonmonotonic Nonlinearities

Precision was greatly reduced for nonmonotonic nonlinear value functions. For the com-
bination of linear and cyclical attributes, the JND rose to 60-70% of an attribute range,
while for the Goldilocks function it was as high as 80-100%. These increases are large and
statistically significant (cyclical, 𝛽 = −1.91, 𝑧 = −4.78, 𝑝 < 0.001; Goldilocks, 𝛽 = −2.70,
𝑧 = −9.05, 𝑝 < 0.001).

4.2.4 Precision with Numeric Attributes

There was a statistically significant improvement in precision when attributes were numeric
(𝛽 = 0.55, 𝑧 = 2.47, 𝑝 < 0.05; see column 2, of Table 4). However, the size of this
effect was small in comparison to the difference between monotonic and nonmonotonic
nonlinearities, equivalent to a decrease in JND for a monotonic value function from 42%
of an attribute range to 37%.

4.2.5 Bias by Value Function

Figure 12 plots bias across the price range by value function. Despite the great differences
in the shape of value functions and much lower precision for nonmonotonic functions, the
downward-sloping bias across the price range occurred in all conditions. The bias was
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again substantial, equating to differences in surplus between the lowest and highest quartile
of approximately one JND. The only difference specific to a value function was a general
tendency to overestimate surplus for the Goldilocks function, which nevertheless retained
the downward-sloping relationship.
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Figure 12: PSE across the price range by value function

4.2.6 Learning

We find that there was a moderate improvement in precision between the practice trials
and the main experimental trials (𝛽 = 0.42, 𝑧 = −1.65, 𝑝 < 0.1). However, we find
no evidence of further learning within the main experimental trials. Separating each
run into four blocks of trials, we find that compared to the first block of trials, surplus
detection was no more accurate in the second (𝛽 = 0.05, 𝑧 = 0.24, 𝑝 > 0.25), third
(𝛽 = 0.17, 𝑧 = 0.21, 𝑝 > 0.25), or fourth (𝛽 = −0.18, 𝑧 = 0.20, 𝑝 > 0.25) blocks.

4.2.7 Estimated Value Function

While there was a clear drop in precision associated with the nonmonotonic value functions,
Study 2 replicated the finding of Experiment 1a that surplus for a monotonic nonlinear
function with diminishing returns (CRS) can be assessed as accurately as that for a linear
function. As described above, the less common value function with increasing returns (IRS)
may have marginally reduced precision. Again, given a null result, it is important to confirm
that participants had absorbed and attempted to apply different functions, in this case also
incorporating the magnitudes of both attributes. As in Section 3.2.6 for Experiment 1a, we
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estimated the best-fitting value functions to responses. In the two-attribute case,

𝑉𝑖𝑡 = 𝛽0 + 𝛽1 𝑓 (𝑥1𝑖𝑡 , 𝑥2𝑖𝑡 , 𝛼1, 𝛼2) + _Y (5)

where Y is a logit error with scale parameter _, 𝑥1𝑖𝑡 and 𝑥2𝑖𝑡 are the normalized attribute
magnitudes, and 𝑓 is defined as in Table 2. From the fitted parameters we then generated
indifference curves for the linear, CRS, and IRS value functions. These are displayed in
Figure 13. The indifference curves are highly nonlinear in the CRS and IRS conditions. As
in Experiment 1a, participants had absorbed and applied the nonlinearity when faced with
both of the monotonic nonlinear value functions.

Figure 13: Estimated indifference curves

4.3 Discussion

Study 2 confirms the central findings of Study 1 and generates several new results. The
requirement to consider two attributes (in addition to price) resulted in a loss of precision
when identifying surplus, producing JNDs higher than in Experiment 1a. Nevertheless,
performance when attributes had diminishing returns was almost identical to that when
returns were linear, with no tendency to linearize the relationship. Participants had again
clearly internalized and applied different value functions, producing responses consistent
with strongly nonlinear indifference curves. Notwithstanding the marginal effect when
returns were increasing, the additional cognitive load associated with integrating the addi-
tional attribute did not alter the main finding of Study 1. The ability to identify a surplus
seems to be substantively unaffected by the need to process monotonic nonlinearities. Also
consistent with Study 1, perceptual error played only a small role in performance, given
the marginal improvement in JND induced by numeric attributes. The mapping of internal
scales, rather than their origin, primarily determined performance.
Nevertheless, in Study 2 we did observe clear variation in precision, which was impaired

when value functions had nonmonotonic returns. The need to compare attribute magnitudes
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against “just right” points retained in memory increased JNDs substantially. This contrasts
with the results from absolute identification tasks using multidimensional perceptual stimuli
(Lockhead, 1970;Monahan&Lockhead, 1977). While itmay be easier to identify a stimulus
as one of a learned set based on distance in multidimensional space, the same logic does not
apply to mapping multidimensional stimuli to another scale (in this case price). The strong
bias across the price range was also consistent with Study 1. Its prevalence across such a
wide variety of value functions is striking and we consider potential causes in the General
Discussion section. Study 2 allows us to rule out one possibility, however. When the value
function is monotonic, successive presentations of visual stimuli might generate contrast
effects that exaggerate differences, causing an upward adjustment of high-value products
and downward adjustment of low-value products. However, the same bias emerged for
nonmonotonic value functions, to which this logic does not apply. Furthermore, if this was
the cause, the bias should have weakened when one attribute was numeric, yet it did not.

5 General Discussion
Spotting when a product is good value is a fundamental skill of economic decision making.
Based on studies of judgment going back many decades, we hypothesized that, where
returns to attributes are nonlinear, people’s ability to identify good value would diminish
appreciably. This was our primary hypothesis, but it was not supported. Experimental
participants were able to cope with monotonic nonlinear mappings of attributes to prices
without additional bias or imprecision, relative to linearmappings, with both single-attribute
and multiattribute products. Moreover, the patterns of responses clearly indicated that
participants absorbed and applied value functions that, while not veridical, differed strongly
in linearity. We think it highly unlikely that our results constitute a Type 1 error. The
null results arose in two studies that employed large samples relative to previous work
and which detected relatively small differences in precision due to other factors (range,
practice versus test trials, numeric versus visual attributes). In all three direct comparisons
of linear value functions against functions exhibiting diminishing returns, point estimates
of median precision were marginally better in the nonlinear case, while point estimates
of mean precision were better in two out of three. We conclude that difficulty processing
nonlinear scales in one type of task does not necessarily transfer to another type of task, in
this case one designed to mimic consumer decisions.
Our findings imply that when a monotonic nonlinear relationship is described and

demonstrated to consumers, they are able to undertake the necessary mapping of internal
scales to process it. One should not infer, however, that monotonic nonlinearities cause
no problems, because consumers need to realize to begin with that the relationship is
nonlinear. We went to some length to show our participants the relevant nonlinearities,
through examples and feedback. In real-world settings, consumers are not so fortunate.
They may not grasp the shape of the relationship between say, interest rates and the financial
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cost of a loan, or miles-per-gallon and the cost of motoring. Hence some consumers may
linearize such relationships, even if our findings suggest that they could learn to process
them if given clear examples and a bit of practice.
Nevertheless, the null finding for monotonic nonlinearities is of some comfort from

the perspective of models of consumer choice, which typically assume that the shape of
preferences does not affect the distribution of error when applying preferences to a decision.
Of less comfort, and consistent with the hypothesis, when value depended on nonmonotonic
nonlinear functions, there was substantial loss of precision. This finding favors approaches
to internal scaling that, unlike standard microeconomic models, do not assume internal
representation of absolute stimulus values. For instance, in the relative judgment model
(RJM) (Laming, 1997; Stewart et al., 2005), a current stimulus is judged by comparison to
representations of only a subset of recently encountered or available stimuli. If attributes are
primarily scaled using a relative coding like this, one would anticipate that turning points in
preferences would lead to inaccuracy, as they require comparison with an absolute stimulus
level. An internal representation based on relative distance from a sparse subset of stimuli
would become unreliable.
More generally, despite being able to process monotonic nonlinearities, participants’

absolute levels of performance in the S-ID task imply severe limits to the granularity of
attribute coding, constraining consumers’ ability to identify surpluses. Whether linear or
nonlinear, themapping of attributes to prices is coarse and subject to systematic bias. Across
multiple products, attributes, and price ranges, when surpluswas determined by amonotonic
function applied to a large discriminable range, a surplus of 20% of that range was required
for most participants to detect it reliably, with a standard deviation across individuals of
around 6 percentage points. The implication is that, absent explicit arithmetic or memorized
one-to-one mappings, consumers can reliably discern about four to seven levels of value
across a range, perhaps up to nine for the top performers. These numbers correspond
closely to the seminal work of Miller (1956) and more recently Cowan (2010). Similar
constraints seem to apply to both the mapping of continuous product attributes to prices
and the mapping of perceptual stimuli to categories in absolute identification studies.
Interestingly, however, while participants displayed systematic biases in the S-ID task,

as they do in absolute identification and magnitude estimation tasks, the pattern of bias
was essentially reversed. Instead of a central tendency bias (Laming, 1997; Matthews &
Stewart, 2009), surpluses at the bottom of the range were underestimated and those at the
top overestimated. The difference is presumably related to the requirement in the S-ID task
to discriminate stimulus magnitude(s) against a numeric price — the defining element of
consumer choice. All participants displayed the bias and its magnitude was substantial.
The same bias was recorded for linear value functions by Lunn et al. (2020). In the present
paper, we hypothesized bias due to linearization, but found no evidence for it. Instead,
this systematic bias across the price range was consistent across all value functions: linear,
nonlinear, monotonic, or nonmonotonic. We are otherwise unaware of previous relevant
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reports in the judgment and decision-making literature or broader consumer research. Yet
the scale and scope of the effect are striking and imply that bias arises after internal scale
values are adjusted to reflect nonlinearities in value.
The bias could indicate a fundamental normalization process when scales must be

mapped and discriminated. We note that some studies of perceptual decision making have
sought to explain biases across a stimulus range that similarly persist despite practice and
feedback (De Gardelle & Summerfield, 2011; Michael et al., 2015). Building on Barlow
(1961), Summerfield & Tsetsos (2015) argue that precision and bias trade offwithin a neural
system that seeks to optimize decisions given constrained capacity. The logic is that the
limited range of neural signals requires normalisation to specific contexts, which increases
discriminability near the middle of a range at the expense of compressing, and thus biasing,
signals towards the ends. Our findings suggest that consumer choice, which requires
mapping attributes to prices to discriminate surplus, may involve a similar mechanism.
Further research is needed to substantiate the scope of this bias, whether an adaptive
normalization process explains it, and the contextual factors involved. For instance, the
effect might be confined to contexts in which decisions are sequential, or indeed might not.
In line with Deane et al. (1972) and Hammond & Summers (1972), our participants

had little problem acquiring nonlinear functions through explanation and demonstration;
the difficulty was in applying them. Overall, therefore, the findings are consistent with
a mechanism for comparing product attributes against prices that is highly flexible but
coarse, and hence prone to imprecision and bias. If so, the measures of accuracy that
we report imply that mistakes in consumers’ assessments of surpluses are likely to be
frequent and sometimes substantive. While the implications are potentially economically
important, therefore, the generalizability of the findings is naturally debatable. Sequential
identification of multiple objective monetary surpluses may not involve exactly the same
mechanisms as nonsequential or occasional assessment of subjective surpluses. However,
the quality of perceptual stimuli and the opportunities for learning and feedback in the
present experiments were far superior to most everyday consumer situations. The findings
therefore imply important limits in consumers’ capabilities, even when products possess
few attributes.
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Appendix
The following is a technical exposition of the GLMMmodels used to generate the JNDs and
PSEs reported in the main text, together with full tables of coefficients. The explanation
focuses on Experiment 1a. The technique is essentially identical across the experiments
and closely follows Moscatelli et al. (2012). We estimate the following model:

𝐼𝑛

[
Pr(”𝑌𝑒𝑠”)
1 − Pr(”𝑌𝑒𝑠”)

]
𝑖𝑡

= (𝜙0 + `𝑖) + (𝛾0 + 𝜐𝑖)𝑠𝑖𝑡 + 𝜙z𝑖𝑡 + 𝛾z𝑖𝑡 ∗ 𝑠𝑖𝑡 (6)

where 𝑠𝑖𝑡 is the normalized surplus for individual, 𝑖, on trial, 𝑡. The fixed effects coefficients
are denoted by 𝜙0, 𝛾0, 𝜙 and 𝛾. The model has normally distributed random effects, `𝑖 and
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𝜐𝑖 with correlation 𝑐𝑜𝑟𝑟 (`𝑖, 𝜐𝑖).5 z𝑖𝑡 is a vector containing the experimental manipulations
of interest and any other variables or interactions of potential interest. z𝑖𝑡 enters both
individually and as an interaction term with surplus, 𝑠𝑖𝑡 . The vector of coefficients 𝜙
therefore determines how bias varies across experimental conditions, while 𝛾 determines
variation in precision.
As an example, consider the GLMM model used to generate Figure 11. In this specifi-

cation, we estimate equation (6) with just dummy variables for the balance condition, each
value function, and their interaction terms. Using the properties of the logistic distribution,
the average JND and PSE for a given value function, 𝑣, and balance condition, 𝑏, are given
by

𝐽𝑁𝐷𝑣,𝑏 =
𝜋
√
3
.

1
𝛾0 + 𝛾𝑣 + 𝛾𝑏 + 𝛾𝑣∗𝑏

(7)

𝑃𝑆𝐸𝑣,𝑏 = −𝜙0 + 𝜙𝑣 + 𝜙𝑏 + 𝜙𝑣∗𝑏
𝛾0 + 𝛾𝑣 + 𝛾𝑏 + 𝛾𝑣∗𝑏

(8)

where each 𝜙 term is the estimated coefficient for the appropriate condition and each 𝛾 is
the estimated coefficient for its interaction with the surplus. Thus, 𝛾𝑣∗𝑏 is the coefficient for
the interaction between the dummy variable for a given value function, a dummy variable
indicating attribute balance, and the surplus. We then use the coefficient estimates from
this GLMM specification and equation (7) to generate the bars in Figure 11.

5With multiple observations from the same individual, we could alternatively treat `𝑖 and 𝜐𝑖 as fixed
effects and estimate them for each individual. This approach does not change the overall pattern of results.
Moreover, estimated `𝑖 and 𝜐𝑖 are approximately normally distributed, supporting the use of the random
effects model.
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Table 3: GLMM Results from Experiment 1

(1) (2) (3) (4) (5)

Surplus 7.80∗∗∗ 7.38∗∗∗ 8.71∗∗∗ 7.82∗∗∗ 8.48∗∗∗
(0.41) (0.65) (0.49) (0.46) (0.75)

Constant 0.13∗∗∗ 0.11∗ 0.18∗∗∗ 0.35∗∗∗ 0.26∗∗∗
(0.04) (0.06) (0.07) (0.05) (0.09)

Normalized Price Range 0.73∗∗∗ 0.73∗∗∗ 0.73∗∗∗ 0.73∗∗∗ 0.73∗∗∗
(0.06) (0.06) (0.06) (0.06) (0.06)

Moderate Diminishing Returns 0.06 −0.07
(0.07) (0.11)

Severe Diminishing Returns 0.01 −0.15
(0.09) (0.10)

Low Attribute Range −0.09 −0.28*
(0.08) (0.15)

Victorian Lantern −0.26∗∗∗
(0.07)

Mayan Pyramid −0.33∗∗∗
(0.07)

Low Range ×Moderate Diminishing Returns 0.26
(0.19)

Low Range × Severe Diminishing Returns 0.32∗∗
(0.14)

Surplus-Interaction Terms
Normalized Price Range 0.85∗∗∗ 0.85∗∗∗ 0.85∗∗∗ 0.90∗∗∗ 0.85∗∗∗

(0.20) (0.21) (0.20) (0.20) (0.21)
Moderate Diminishing Returns 1.53∗∗∗ 0.69

(0.55) (0.62)
Severe Diminishing Returns −0.06 0.00

(0.58) (0.93)
Low Attribute Range −1.66∗∗∗ −1.92∗∗∗

(0.48) (0.67)
Victorian Lantern −0.22

(0.48)
Mayan Pyramid 0.42

(0.47)
Low Range ×Moderate Diminishing Returns 1.39

(1.00)
Low Range × Severe Diminishing Returns −0.20

(1.07)

Number of Individuals 36 36 36 36 36
Observations 15,552 15,552 15,552 15,552 15,552
∗∗∗ 𝑝 < 0.01, ∗∗ 𝑝 < 0.05, ∗ 𝑝 < 0.1. Individual-cluster-robust standard errors in parentheses.
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Table 4: GLMM Results from Experiment 2

(1) (2)

Surplus 4.88∗∗∗ 4.61∗∗∗
(0.46) (0.48)

Constant 0.05 0.00
(0.16) (0.16)

Normalized Price Range 0.49∗∗∗ 0.49∗∗∗
(0.05) (0.05)

Constant Returns to Scale −0.19 −0.17
(0.17) (0.16)

Increasing Returns to Scale 0.14 0.15
(0.27) (0.26)

Leontief 0.01 0.01
(0.21) (0.21)

Cyclical −0.15 −0.15
(0.19) (0.20)

Goldilocks −0.48∗∗∗ −0.49∗∗∗
(0.15) (0.15)

Unbalanced Attributes 0.09 0.09
(0.09) (0.09)

Numeric Attribute 0.10
(0.11)

Surplus-Interaction Terms
Normalized Price Range 0.09 0.08

(0.15) (0.15)
Constant Returns to Scale 0.24 0.43

(0.31) (0.34)
Increasing Returns to Scale −0.72∗∗ −0.66∗∗∗

(0.28) (0.25)
Leontief 1.69∗∗∗ 1.69∗∗∗

(0.57) (0.57)
Cyclical −1.91∗∗∗ −1.95∗∗∗

(0.40) (0.38)
Goldilocks −2.70∗∗∗ −2.78∗∗∗

(0.30) (0.28)
Unbalanced Attributes −0.42* −0.43*

(0.25) (0.22)
Numeric attribute 0.55∗∗

(0.22)
Number of Individuals 24 24
Observations 8,064 8,064
∗∗∗
𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. Individual-cluster-robust standard

errors in parentheses.
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