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UMBILICAL POINTS ON SURFACES IN RY
KAZUYUKI ENOMOTO

Let ¢: M— R" be an isometric imbedding of a compact, connected
surface M into a Euclidean space RY. + is said to be umbilical at a point
p of M if all principal curvatures are equal for any normal direction.
It is known that if the Euler characteristic of M is not zero and N = 3,
then + is umbilical at some point on M. In this paper we study umbilical
points of surfaces of higher codimension. In Theorem 1, we show that
if M is homeomorphic to either a 2-sphere or a 2-dimensional projective
space and if the normal connection of « is flat, then 4 is umbilical at
some point on M. In Section 2, we consider a surface M whose Gaussian
curvature is positive constant. If the surface is compact and N = 3,
Liebmann’s theorem says that it must be a round sphere. However, if
N > 4, the surface is not rigid: For any isometric imbedding @ of R® into
R* O(S%r)) is a compact surface of constant positive Gaussian curvature
1/r®. We use Theorem 1 to show that if the normal connection of + is
flat and the length of the mean curvature vector of + is constant, then
(M) is a round sphere in some R*C RY. When N = 4, our conditions
on v is satisfied if the mean curvature vector is parallel with respect to
the normal connection. Our theorem fails if the surface is not compact,
while the corresponding theorem holds locally for a surface with parallel
mean curvature vector (See Remark (i) in Section 3).

The author wishes to thank Professor Hung-Hsi Wu for his constant
encouragement and valuable suggestions.

§1. Preliminaries

Let M be a connected n-dimensional C* Riemannian manifold and let
¥: M — R¥ be an isometric immersion of M into an N-dimensional Euclid-
ean space R”. Let D and D denote the covariant differentiations of M
and RY respectively. Let X, Y be tangent vector fields on M. Then
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(1.1) D, Y=D,Y+ B(X,Y)

where B(X, Y) is the normal component of D,Y.
Let & be a normal vector field on M. We write

(1.2) Dy = —A.X + Di¢

where A,X and D4& are the tangential and normal components of D.t.
Then we have

(1.3) (AX, Y) = (B, Y), &

where ( , > denotes the inner product of R¥. The linear transformation
A, on the tangent bundle TM is called the shape operator of M with
respect to & Since A, is symmetric, i.e.

(1.4) (AKX, Y) =<(X, AY),

all eigenvalues of A, are real. An eigenvalue of A, is called a principal
curvature with respect to & An eigenvector of A, is called a principal
vector with respect to & The mean curvature vector H is defined by

(1.5) H = —’1; trace (B)

The length of H is called the mean curvature.
Let R and R! be the curvature tensors associated with D and D+
respectively, i.e.

(1.6) R(X, Y)Z = DyD,Z — DyDyZ — Dz 1,2
.7 RA(X, Y)& = D{D3¢ — D3Di& — Diy v8

where X, Y, Z are tangent to M and & is normal to M.
Then for any tangent vector fields X, Y, Z, W and normal vector
fields &, 5, we have the following equations:

(L8) (R(X,Y)Z, W) = —(B(X, Z), B(Y, W)) + (B(Y, Z), B(X, W)
(Gauss equation)

(1.9) (RYX, YV)E, 75> = (4.4, — A,A)X, Y (Ricci equation)

The normal connection D! is said to be flat if R = 0. (1.9) implies
that D+ is flat at pe M if and only if

(1.10) AA, = AA,
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for any two normal vectors & and 5 at p. Thus if D* is flat at pe M,

there exists an orthonormal base e, ---,e, of T,M such that each e,
(i=1,.--,n) is a principal vector with respect to any normal vector at
D.

A point p is said to be umbilical with respect to & if A, is propor-
tional to the identity transformation of T,M. 4+ is said to be umbilical
at p if p is umbilical with respect to A, for all normal vectors & at p.
4 is called totally umbilical if + is umbilical at every point of M. It is
well known that if  is totally umbilical, then (}) is an open subset
of either an n-dimensional affine subspace or an n-dimensional round
sphere. (See, for instance, [3] for proof.)

§2. Umbilical points of surfaces in RY

In this section we prove the following theorem.

THEOREM 1. Let M be a compact surface which is homeomorphic to
a 2-sphere or a 2-dimensional projective space and let +»: M— RN be an
isometric imbedding. Suppose that the normal connection of + is flat.
Then +» is umbilical at some point p, e M.

Proof. Suppose that - does not have any umbilical point. Then at
each point p of M there exists a neighborhood U, of p and a normal
vector field & on U, such that A, is not proportional to the identity
transformation. We choose each U, in such a way that U, is simply
connected and for any p and ¢ U, N U, is either empty or connected.
Since M is compact, there exist a finite number of points p,, ---, p; such
that M = U, U---UU,. We simply denote U,, by U,. Let &, be a normal
vector field defined on U, such that A, is not proportional to the identity
at each point of U,. At each point of U, the eigenvectors of A., form
a pair of lines (i.e. 1-dimensional linear subspaces) in the tangent plane.
Since U, is simply connected, there exist continuous line fields L! and L}
on U, such that at each ¢ in U, Li{q) and Liq) contain all eigenvectors
of A

Suppose U,NU,; # ¢. Let qe U,NU,;. Since A, and A, are not
proportional to the identity transformation and the normal connection is
flat, all eigenvectors of A, and A, , coincide. This implies that either
(i) Li(g) = Li(g) and Liq) = Li(q) or (i) Li(g) = Li(g) and Li(q) = Li(g).
Since U;NU; is simply connected, it follows from the continuity of the
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line fields that if (i) (or (ii)) occurs at one point of U;NU,, it must hold
for all points of U;NU,;. By renaming the line fields if necessary, we may
assume that L= L{ and L} = Lj on U,NU,. Let{U,, ---, U,} be a chain
of the elements of {U;:i =1, ---, k}, i.e. a subset of {U:i=1,..-,k}
which satisfies U,NU,,,, + ¢ for all t=1,---,5s — 1. Suppose that we
obtain a line field Li* on U,, by the continuation of Li* along the chain.
If U,NU, #+ ¢, it may well happen that L{ coincides with L& rather
than L?* on U, ,NU,. But in the case when M is simply connected (i.e.
homeomorphic to a 2-sphere), it follows from the standard monodromy
argument that Li* always coincides with Li*. This implies that a global
continuous line field L, can be defined on M. This is a contradiction
because there is no global continuous line field on a 2-sphere. Thus if
M is homeomorphic to a 2-sphere, there exists at least one point on M
where +» is umbilical.

Now we consider the case when M is homeomorphic to a 2-dimensional
projective space. Suppose that +» does not have any umbilical point.
Then, as we see in the above argument, there exists an open covering
{U:i=1, ..., k} of M and continuous line fields L{ and L{ defined on
U, such that if U,NU, + ¢, either Li = L] or Li = L] on U,NU,. Let M
be the standard double covering of M which is homeomorphic to a 2-sphere
and let z: M — M be the projection. Let U, and U, be the connected
components of z~Y(U,). Let L* (i =1, .-,k 2 =1,2) be the unique line
field on U,, which satisfies da(L?*) = Li. In a similar way, a continuous
line field L is defined. Now we have an open covering of MM, {U,}, and
continuous line fields L{* and L on U, Moreover, if U,NU,, #+ ¢, we
have either L#* = L{* or L¥ = L{* on U;NU,,. Thus, using the standard
monodromy argument again, we obtain a global continuous line field on
M, which is a contradiction. Therefore, if M is homeomorphic to a 2-
dimensional projective space, there exists at least one point of M where
4 is umbilical. This completes the proof of Theorem 1.

§3. Surfaces in RY with positive constant curvature and constant
mean curvature

In this section we use Theorem 1 to prove the following theorem.

THEOREM 2. Let M be a compact surface with constant Gaussian
curvature c* > 0 and let v: M — R be an isometric imbedding. Suppose
that the mean curvature of \r is constant, i.e. |H| is constant, and the normal
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connection is flat. Then (M) is a round 2-sphere in o 3-dimensional
affine space R®*C RY.

Proof. First we define a function on M by

(3.1 F(p) =|H()} — K(p) (peM)

where H(p) is the mean curvature vector at p and K(p) is the Gaussian
curvature of M at p. We prove the following lemma:

LemmMmA 3.1. F(p) =0 if and only if « is umbilical at p.

Proof. Let (&, &, -, &y_,) be an orthonormal frame of TLM, the
normal space of M at p. Using (1.8), we obtain

(3.2) K(p) = 3 det A, .

From (1.5) we have

(3.3) H(p) = L Vz:j(traceA e,
so that
(3.4) \H(p)P = i (trace A, ).

- l

It follows from (3.2) and (3.4) that

(3.5) F(p) = 1 Ej {(trace A, ) — 4det A, }.

Using elementary linear algebra, we can see that
(3.6) (trace A, ) —4det A,, >0

and the equality holds if and only if every A,, is proportional to the
identity transformation. The lemma follows immediately.

Now we return to the proof of Theorem 2. Since M is compact, and
the Gaussian curvature is positive, M is homeomorphic to either a 2-
sphere or a 2-dimensional projective space. Hence, by Theorem 1, 4 is
umbilical at some point p,, By Lemma 3.1, F(p) =0. On the other
hand, since both |H| and K are constant on M, F is a constant function
on M. Thus F = 0 at every point of M. By Lemma 3.1 again, this implies
that +» is umbilical at every point of M. Since M is compact, (M) is
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a round sphere in some 3-dimensional affine space. This completes the
proof of Theorem 2.

Remark. (i) If the mean curvature vector is parallel in the normal
bundle, i.e. D1H =0, then |H| is constant and the normal connection
DL is fiat unless M is either a minimal surface in R' or a minimal
surface in S¥-! ([2]). In [1], Chen and Ludden proved that if the Gaus-
sian curvature of a surface in R* is positive constant and the mean
curvature vector is parallel in the normal bundle, it is an open piece of
a round sphere. As we see in the following example, our theorem fails
if M is not compact, while the Chen-Ludden theorem holds without global
assumptions.

ExamMpLE 1. Let M be a surface of revolution in R® which is obtained
by rotating the curve

3.7 (x(s), 2(s)) = (a' cos s, IZ [1 — o sin®#] dt)

around the z-axis where s e (—e¢, ¢) for some small ¢ > 0 and « is a positive
number. Then M is a surface of constant Gaussian curvature 1 and if
a # 1, M is not totally umbilical. Let A be the mean curvature of M.
h is a function of s only, which is given by

1 4 «®cos 2s

2a cos s(1 — a*sin 33‘72'

Now we define an isometric imbedding of R® into R'. First we define a
function «(s) by

(3.9) w(s) = 28— P

1 — a*sin’s
where 8 is any positive constant greater than

1 4 a®cos 2¢
20 cos e(1 — asin®e)'?

sup h =

Since 2(s) = z(s) if and only if s = ¢, £(s) can be regarded as a function
of z. k(2) is defined on (2(—¢), 2(¢)) and we may assume, by taking ¢ small
enough, that

z(€e)
dz< E..
IZ(_E)x(z) <2
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We extend £(2) to a non-negative function which is defined on (—oo, o0)
and satisfies

(3.9) f : K)dz < .

Then there exists an isometric immersion of R into R?, ¢: 2z — (¢,(2), ¢2)),
whose curvature is equal to #(z2) at each z. ¢ does not have any self-
intersection (i.e. is an imbedding) due to (3.9). Using ¢, we define a map
@: R°— R by O(x,y, 2) = (x, ¥, 0,(2), ¢(2)). Then @ is an isometric imbed-
ding of R® into R'. We will show that @(M) is a surface in R* with
constant mean curvature and flat normal connection.

Let & be a unit normal vector to M in R® and & be a unit normal
vector to @(R®) in R'. Let X, be a unit tangent vector to the generating
curve (x(s), 2(s)) and X, be a unit tangent vector to the circle z = const.
Then X, and X, are principal vectors of M and hence d@(X,) and do(X,)
are principal vectors of @(M) with respect to d@(&). d?(X)) and d?(X,)
are also principal vectors of @(M) with respect to £&. Since each normal
space of @®(M) is spanned by d@(¢) and &, dO(X)) and dO(X,) are principal
vectors for all normal vectors to @(M) in R. This implies that the normal
connection of (M) is flat. Let H be the mean curvature vector of @(M).
Then

. 1 (dz\?,,
H = hdo) + —«( %)’
and from (3.7) and (3.8), we have
2 2 1 2 dz ¢ — 2
|Hf = h +ZK(-d;> = f.

(ii) If a compact surface in R* with positive (not necessarily constant)
Gaussisn curvature has parallel mean curvature vector, the surface must
be a round sphere ([6]). However, as we see in the following example,
there exists a compact surface in R* with positive Gaussian curvature
which has constant mean curvature, but is not a round sphere. This
contradicts Theorem 5 on p. 361 of [8]. (A possible source of error in
the calculations in [8] might be the formula (4.6) on p. 354 of [8] which
is used to give the formula (6.2) in the proof of Theorem 5. The formula
(4.6) holds for @; = 4 only when either M is minimal or M has a parallel
mean curvature vector). The method of construction of this example is
similar to the one in Remark (i).

https://doi.org/10.1017/5002776300000026X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000026X

142 KAZUYUKI ENOMOTO

ExamMPLE 2. Let M be a surface of revolution defined by
(s, 0) ——> (x(s) cos 4, x(s) sin b, 2(s)) (0 < 6 < 2r)

where, for technical reasons to be explained below, x(s) and z(s) are
required to satisfy the following conditions:

(a) (x(s), 2(s)) is defined on [—112 7, i’%ﬂ]

TN mx(—T ) =0 o —T2) — o1

®) x(ﬁ”) - x( 12”) 0 z( 12“) - z(m”)

(c) the curvature x(s) of (x(s), z(s)) satisfies the following conditions:
(c1) &(s) = (—s)
(€2) 0<r(s) <1if|s|< 162

c3 —1if T <sl < L
(c3) «(s) 1 6_[8]_1271

(c4) J:x/mfc(s)ds = —725

By (cl) and (c4), M becomes a compact surface in R'. By (c2) and (c3),
M has a positive Gaussian curvature at every point. Let A be the mean
curvature of M. Then A is a function of s only and we have A(s) = 1 if
7/6 < |s| < (7/12)z and h(s) < 1 if |s| < z/6. We define a function x(s) by

o) = 21— hE&Y"
dz \?
(%)
We regard « as a function of 2. Since ¢ =0 if 2(z/6) < |z| < 2((7/12)x),
we can extend x(2) to a continuous function on R by setting x(2) = 0 for
all z such that |z| > 2((7/12)z). Then there exists an isometric imbedding
of R into R?, ¢: z — (¢,(2), ¢2)) whose curvature is equal to x(2) at each z.
We define a map @: R°— R* by (x,, 2) = (x,, ¢:(2), ¢(2)). By a similar

argument to Remark (i), we can show that the mean curvature of @(M) C R*
is constant and the normal connection is flat. Moreover, since we have

J: k(2)dz < =,

¢ does not have any self-intersection and @}, is an imbedding.

(i) If dim M > 4 and the codimension is two, then we have the
following theorem which is the analogue of Theorem 1. (The case of
dim M = 3 is open.)
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THEOREM 3. Let M be a compact Riemanniam manifold of dimension
n > 4 with positive constant sectional curvature ¢ > 0 and let +y: M — R***
be an isometric imbedding. Suppose that the mean curvature is constant.
Then (M) is an n-dimensional round sphere in an (n + 1)-dimensional
affine space.

Proof. Since the sectional curvature is positive constant and dim M >4,
there exists a global orthonormal frame field (&, &) of the normal bundle
of M such that

(3.10) A, = —cl and rank A, <1

where [ is the identity transformation of T'M. (This was found by Henke
and Erbacher independently [4], [5].) Let 1 = trace A,,. Then we have

(3.11) H = cg + isz-
n

Since |H[ = ¢* + 2°/n* is constant, 1 is constant.

On the other hand, due to a result obtained by O’Neill [7], there
exists at least one point p, on M where +» is umbilical. Since rank A,, <1,
A, =0 at p, Thus 1 =0 at p, and hence 2 =0 on M. This implies
that 4 is totally umbilical and since M is compact, M is an n-dimensional
round sphere in some R"*! C R"*%
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