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ABSTRACT We study the distribution of noise in images synthesized 
by radio interferometers, focusing particularly on the noise due to 
source power fluctuations. For a total power interferometer, the r.m.s. 
fluctuation in the image consists of a term that is constant all over the 
map, which is the uncorrelated system noise divided by the number 
of telescopes in the interferometer, and a term that is the image 
itself. For a correlation interferometer the expression is not so simple 
but is qualitatively similar. Our results are consistent with intuitive 
expectations in various observing situations. We find similarities in self-
noise at optical and radio wavelengths. 

INTRODUCTION 

This article discusses the distribution of noise in images synthesized by 
interferometers operating mainly at radio wavelengths, although the formalism 
is basically wavelength independent. Noise usually implies fluctuations in the 
image due to random fluctuations at the output of receivers on account of the 
receiver noise, emission from the background such as the sky, the atmosphere 
and the ground, etc. Its distribution in the image has been well studied in the 
past (see Crane and Napier 1988, and references therein). In this article we 
focus special attention on the noise caused by fluctuations in the source power 
itself, the so called "self-noise". This problem has been studied independently 
by Anantharamiah etal. (1988) and Kulkarni (1989). The latter developed the 
analytic tools required for the study of this problem. We will use his results 
to derive an analytic expression for self-noise in terms of the image itself. At 
this conference we learnt that A.A. Deshpande (RRI, Bangalore) has obtained 
results similar to ours by an entirely independent approach. 

Consider an interferometer consisting of N telescopes. It would measure 
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instantaneously Nb = N(N - l)/2 visibilities R and N total powers z. Using 
the Van-Cittert Zernike theorem the "dirty image" J is obtained by Fourier 
transforming the visibilities. 

M = Tfi 
' N Nt 

J2 Z* + XIR< e xP -3 [vi9] + R* e xP +3 [W] 
.fc = l 1 = 1 

(1) 

a\9) = (l2(6)) - (I(6))2 = ± 

where 9 is the coordinate in the image plane (a one-dimensional image will 
be adequate for our purpose) and W is the spatial frequency of the relevent 
baseline*. The usual practice in radio synthesis imaging is not to include the 
total powers and to normalize the right hand side of eq. (1) by 2iVj instead of 
N2. We will adopt the above formalism as it yields an analytic expression for 
self-noise; but the qualitative behaviour of self-noise is independent of whether 
all or some or even none of the total powers are included. Also, the visibilities 
are usually weighted before Fourier inversion, but we will neglect this as it will 
not alter our results which are stated in terms of the dirty image. Finally we 
will ignore deconvolution processes such as CLEAN and MEM that are not 
expected to modify fundamentally the noise in the image. 

The noise in the image can be defined in terms of its variance 

££cov[zt,z,] 
.4=1 (=1 

N Nb 

+2 £ Y^COV[Zjt, R,] exp -j[v,0] + COV[Zk,%] exp+j[w,0] 
* = i 1=1 
JVb Nh 

+ E £C0V[R», R,] exp -j[(V» + V,)$] + COV[Kk, R*] exp -j[(Vk - V,)tf] 
fc=i i= i 

+COV[rk,K,] exp+j[(Wfc - V,)0] + COV[R£,R?] exp+j[(Wt +W,)0] 2) 

where the angle brackets refer to ensemble averages, and COV[a,j/] is the 
covariance of the quantities x and y, denned as (xy) — {x} (y). Thus the noise 
ff(0) at any point 6 in the image depends upon the covariances between the 
ensemble of visibilities R and total powers Z. The signal-to-noise ratio in the 
image (SNR) is given by I(6)/<r(6). 

NOISE IN SYNTHESIZED IMAGE 

Following Kulkarni (1989) it can be shown that 

COV [R™, R*J = £ [S + N]2 COV [R™ , * , „ ] = £ [ru„r„„] 
COV[^v,«iw] = b[S+N]x»vw COV[R„,,Ruu,] = ±[ruvTum] 
COV[K.t,Kv\ = £ [ w « t ] COV[a.«,R„,] = £[ r„r„ , ] (3) 
COV [ZU,ZU] = jj[S + N}2 COV [ZU,Z„] = ^ [ r u „ < J 
COV [Z„, Ru„] = ± [S + N]TUV COV [zu, R,«] = -fr [r;,rut] 

* R will have either two subscripts referring to the two telescopes involved, 
or a single subscript referring to the baseline involved, depending upon the 
convenience. 
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where S and N are the true source and noise powers respectively at any 
telescope, and ru„ is the true visibility on the baseline formed by telescopes u 
and v. One notices that the covariance is more significant among visibilities 
that have more telescopes in common. 

Substituting the above covariances into eq. (2) it can be shown that 

1 T Nb 

<T{B) = -j=— N(S + N) + J2*k exp -j[vk6] + i*k exp +j[Vk6] 

1 £+/w (4) 

<j{6) consists of a uniform value of N/N at all 6 plus a term 1(6) = •£, [NS + 
£ f = i r * exP -3 [vk<>] + r j exp +j[vk0]] equal to the dirty image 1(6) without the 
noise N, both divided by \fM. For a correlation interferometer the expression 
for noise <rc is 

*c(6) = -j=f^-\IWi (S + Nf + 2(N - 2) (S + N)2Nhi(6) + AN^(6)\t (5) 

where i(6) = ^ E ^ i ^ e x p - j f w ^ ] + r* exp+j[vk6) « 1(6) - S/N is the 
dirty image 1(6) without the total powers Z (this is the result from a correlation 
interferometer), and "i2(0)|„" is the square of i(6) with some side-bands missing 
in the frequency domain. The missing sidebands correspond to products of 
visibilities that have one telescope in common. Equation 5 is almost the same 
as eq. (4), but for the fact that the square can not be completed, and that the 
square of the image has some side-bands missing. For a point source at the 
phase center eq. (5) simplifies to 

1 L , 2SN TV2 

a°(e) = 7Mf+-N-+N(N^) (6) 

For a two element interferometer eq. (6) reduces to the familiar formula of 
Crane and Napier (1988). 

DISCUSSION 

Consider first the case when the source power S is much smaller than the noise 
power N. Then 1(6) can be ignored in eq. (4) and the noise in the image is 
given by N/s/MN, and the SNR is given by I(6)y/MN/N. The SNR in the image 
is inversely proportional to the noise power N, directly proportional to the 
square root of the duration of observation, and directly proportional to the 
number of telescopes N in the interferometer. It is also directly proportional to 
the collecting area of each telescope due to 1(6). This is a very familiar result, 
except that usually the total powers are not included in the analysis, which 
alters the N above to y/Nl (Crane and Napier 1988). 

Next consider a strong unresolved source. The image 1(8) reduces to the 
point source flux S at one point in the image, and N can be ignored in eq. 
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(4). Then the noise in the image is given by S/VM and the SNR is merelyy/Jf, 
independent of the collecting area of each telescope or the number of telescopes 
N. This intuitive result is also well known. 

When the strong source in resolved, I($) reduces to S/N as the summation 
over the visibilities in eq. (1) goes to zero. Thus for a strong resolved source, 
the noise in the image is <r(9) = (S + N)/y/MN. The source power fluctuations 
contribute like uncorrected receiver noise power because the source completely 
fills the interferometer's beam. This result too has been noted by Crane and 
Napier (1988). 

What we have derived so far is strictly valid for a snap-shot mode of 
observation, in which all visibilities are measured simultaneously. What 
happens when the (U, V) plane is synthesized slowly by earth rotation, 
using a smaller number of telescopes? For proper comparison consider two 
interferometers, one consisting of m telescopes, and the other consisting of N 
telescopes. Instantaneously the former measures rrn = m(m — l)/2 visibilities, 
and has to observe for say G sessions to measure the ATj, visibilities that the 
latter interferometer measures instantaneously (JVj, = Gmj,). The noise in a 
slow-synthesis image can be shown to be 

'V-7B 
N + </*(*)) vw)-u>w)' (7) [N VG 

which is true for large m and N. (h(8)) is the average of the G individual 
dirty images without noise, while {ll(9)) is the average of the square of these 
dirty images. Equation (7) implies that self-noise in a slowly synthesized 
image depends upon an average dirty beam that in general has no resemblance 
to the final dirty beam of the interferometer. So self-noise may be found in 
those regions of the map where no source exists at all! To compare further 
consider an image that consists of a strong point source at the phase center 
of the interferometer. Then <r'2 « S2/MG while tx2 = S2/M. The ratio of the 
two variances is inversely proportional to the number of sessions G, which is 
intuitively reasonable. Now y/G can be a large number, of the order of « 25-50, 
particularly in VLBI where a few telescopes are used to synthesize for long 
times. Thus self noise in a slowly synthesized image qualitatively varies directly 
with the rate at which the image is synthesized. 

Prasad and Kulkarni (1989) have obtained an analytic solution to self-
noise at optical wavelength. For a total power interferometer our solution 
is similar to theirs; for a correlation interferometer the self-noise at optical 
wavelengths depends upon the beam combination geometry, unlike the radio 
case. 
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J . Delannoy: What is the practical value of "the number of sessions"? 
Vivekanand: It is "The number of telescopes" 

R. Ekers: Although your formalism has totally obscured the physics it may be 
useful to address some other cases similar to the self-noise case: 1) fluctuations 
in atmospheric attenuation; 2) phase fluctuations (e.g. due to the atmosphere). 
Note that this is not like the vector noise case and may be related to your 
treatment. 
Vivekanand: I can not agree that our simple formula for self-noise actually 
obscures the physics, instead of clarifying it. The derivation is certainly 
difficult, since we start from first principles, but one is welcome to disregard 
our derivation and consider merely the final formula for self-noise. We have 
in a manner considered phase fluctuations due to the atmosphere, in that we 
derived self noise in images that are made from bispectra. We will certainly 
consider the other aspects, and thank you for mentioning them. 
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